mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-27 03:33:27 -03:00
Merge pull request #123
13278f6
Add explanation about how inversion can be avoided (Pieter Wuille)ce7eb6f
Optimize verification: avoid field inverse (Pieter Wuille)
This commit is contained in:
commit
e99c4c461c
3 changed files with 46 additions and 21 deletions
|
@ -109,25 +109,53 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const se
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_recompute(secp256k1_scalar_t *r2, const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
|
||||
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
|
||||
if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s))
|
||||
return 0;
|
||||
|
||||
int ret = 0;
|
||||
secp256k1_scalar_t sn, u1, u2;
|
||||
secp256k1_scalar_inverse_var(&sn, &sig->s);
|
||||
secp256k1_scalar_mul(&u1, &sn, message);
|
||||
secp256k1_scalar_mul(&u2, &sn, &sig->r);
|
||||
secp256k1_gej_t pubkeyj; secp256k1_gej_set_ge(&pubkeyj, pubkey);
|
||||
secp256k1_gej_t pr; secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
|
||||
if (!secp256k1_gej_is_infinity(&pr)) {
|
||||
secp256k1_fe_t xr; secp256k1_gej_get_x_var(&xr, &pr);
|
||||
secp256k1_fe_normalize_var(&xr);
|
||||
unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr);
|
||||
secp256k1_scalar_set_b32(r2, xrb, NULL);
|
||||
ret = 1;
|
||||
if (secp256k1_gej_is_infinity(&pr)) {
|
||||
return 0;
|
||||
}
|
||||
return ret;
|
||||
unsigned char c[32];
|
||||
secp256k1_scalar_get_b32(c, &sig->r);
|
||||
secp256k1_fe_t xr;
|
||||
secp256k1_fe_set_b32(&xr, c);
|
||||
|
||||
// We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
|
||||
// in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
|
||||
// compute the remainder modulo n, and compare it to xr. However:
|
||||
//
|
||||
// xr == X(pr) mod n
|
||||
// <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
|
||||
// [Since 2 * n > p, h can only be 0 or 1]
|
||||
// <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
|
||||
// [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
|
||||
// <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
|
||||
// [Multiplying both sides of the equations by pr.z^2 mod p]
|
||||
// <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
|
||||
//
|
||||
// Thus, we can avoid the inversion, but we have to check both cases separately.
|
||||
// secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
|
||||
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
|
||||
// xr.x == xr * xr.z^2 mod p, so the signature is valid.
|
||||
return 1;
|
||||
}
|
||||
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_consts->p_minus_order) >= 0) {
|
||||
// xr + p >= n, so we can skip testing the second case.
|
||||
return 0;
|
||||
}
|
||||
secp256k1_fe_add(&xr, &secp256k1_ecdsa_consts->order_as_fe);
|
||||
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
|
||||
// (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid.
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) {
|
||||
|
@ -159,13 +187,6 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256
|
|||
return !secp256k1_gej_is_infinity(&qj);
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
|
||||
secp256k1_scalar_t r2;
|
||||
int ret = 0;
|
||||
ret = secp256k1_ecdsa_sig_recompute(&r2, sig, pubkey, message) && secp256k1_scalar_eq(&sig->r, &r2);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int secp256k1_ecdsa_sig_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) {
|
||||
secp256k1_gej_t rp;
|
||||
secp256k1_ecmult_gen(&rp, nonce);
|
||||
|
|
|
@ -81,8 +81,8 @@ static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, co
|
|||
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
|
||||
|
||||
/** Get the X coordinate of a group element (jacobian). */
|
||||
static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a);
|
||||
/** Compare the X coordinate of a group element (jacobian). */
|
||||
static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a);
|
||||
|
||||
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
|
||||
static void secp256k1_gej_neg_var(secp256k1_gej_t *r, const secp256k1_gej_t *a);
|
||||
|
|
|
@ -163,9 +163,13 @@ static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {
|
|||
secp256k1_fe_set_int(&r->z, 1);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a) {
|
||||
secp256k1_fe_t zi2; secp256k1_fe_inv_var(&zi2, &a->z); secp256k1_fe_sqr(&zi2, &zi2);
|
||||
secp256k1_fe_mul(r, &a->x, &zi2);
|
||||
static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) {
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
secp256k1_fe_t r; secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
|
||||
secp256k1_fe_t r2 = a->x;
|
||||
secp256k1_fe_normalize_var(&r);
|
||||
secp256k1_fe_normalize_var(&r2);
|
||||
return secp256k1_fe_equal(&r, &r2);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_neg_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
|
||||
|
|
Loading…
Add table
Reference in a new issue