mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-25 10:43:19 -03:00
blockfilter: Implement GCSFilter constructors.
This commit is contained in:
parent
c454f0ac63
commit
cf70b55005
3 changed files with 157 additions and 0 deletions
|
@ -220,6 +220,7 @@ libbitcoin_server_a_SOURCES = \
|
|||
addrman.cpp \
|
||||
bloom.cpp \
|
||||
blockencodings.cpp \
|
||||
blockfilter.cpp \
|
||||
chain.cpp \
|
||||
checkpoints.cpp \
|
||||
consensus/tx_verify.cpp \
|
||||
|
|
151
src/blockfilter.cpp
Normal file
151
src/blockfilter.cpp
Normal file
|
@ -0,0 +1,151 @@
|
|||
// Copyright (c) 2018 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <blockfilter.h>
|
||||
#include <hash.h>
|
||||
#include <streams.h>
|
||||
|
||||
/// SerType used to serialize parameters in GCS filter encoding.
|
||||
static constexpr int GCS_SER_TYPE = SER_NETWORK;
|
||||
|
||||
/// Protocol version used to serialize parameters in GCS filter encoding.
|
||||
static constexpr int GCS_SER_VERSION = 0;
|
||||
|
||||
template <typename OStream>
|
||||
static void GolombRiceEncode(BitStreamWriter<OStream>& bitwriter, uint8_t P, uint64_t x)
|
||||
{
|
||||
// Write quotient as unary-encoded: q 1's followed by one 0.
|
||||
uint64_t q = x >> P;
|
||||
while (q > 0) {
|
||||
int nbits = q <= 64 ? static_cast<int>(q) : 64;
|
||||
bitwriter.Write(~0ULL, nbits);
|
||||
q -= nbits;
|
||||
}
|
||||
bitwriter.Write(0, 1);
|
||||
|
||||
// Write the remainder in P bits. Since the remainder is just the bottom
|
||||
// P bits of x, there is no need to mask first.
|
||||
bitwriter.Write(x, P);
|
||||
}
|
||||
|
||||
template <typename IStream>
|
||||
static uint64_t GolombRiceDecode(BitStreamReader<IStream>& bitreader, uint8_t P)
|
||||
{
|
||||
// Read unary-encoded quotient: q 1's followed by one 0.
|
||||
uint64_t q = 0;
|
||||
while (bitreader.Read(1) == 1) {
|
||||
++q;
|
||||
}
|
||||
|
||||
uint64_t r = bitreader.Read(P);
|
||||
|
||||
return (q << P) + r;
|
||||
}
|
||||
|
||||
// Map a value x that is uniformly distributed in the range [0, 2^64) to a
|
||||
// value uniformly distributed in [0, n) by returning the upper 64 bits of
|
||||
// x * n.
|
||||
//
|
||||
// See: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
|
||||
static uint64_t MapIntoRange(uint64_t x, uint64_t n)
|
||||
{
|
||||
// To perform the calculation on 64-bit numbers without losing the
|
||||
// result to overflow, split the numbers into the most significant and
|
||||
// least significant 32 bits and perform multiplication piece-wise.
|
||||
//
|
||||
// See: https://stackoverflow.com/a/26855440
|
||||
uint64_t x_hi = x >> 32;
|
||||
uint64_t x_lo = x & 0xFFFFFFFF;
|
||||
uint64_t n_hi = n >> 32;
|
||||
uint64_t n_lo = n & 0xFFFFFFFF;
|
||||
|
||||
uint64_t ac = x_hi * n_hi;
|
||||
uint64_t ad = x_hi * n_lo;
|
||||
uint64_t bc = x_lo * n_hi;
|
||||
uint64_t bd = x_lo * n_lo;
|
||||
|
||||
uint64_t mid34 = (bd >> 32) + (bc & 0xFFFFFFFF) + (ad & 0xFFFFFFFF);
|
||||
uint64_t upper64 = ac + (bc >> 32) + (ad >> 32) + (mid34 >> 32);
|
||||
return upper64;
|
||||
}
|
||||
|
||||
uint64_t GCSFilter::HashToRange(const Element& element) const
|
||||
{
|
||||
uint64_t hash = CSipHasher(m_siphash_k0, m_siphash_k1)
|
||||
.Write(element.data(), element.size())
|
||||
.Finalize();
|
||||
return MapIntoRange(hash, m_F);
|
||||
}
|
||||
|
||||
std::vector<uint64_t> GCSFilter::BuildHashedSet(const ElementSet& elements) const
|
||||
{
|
||||
std::vector<uint64_t> hashed_elements;
|
||||
hashed_elements.reserve(elements.size());
|
||||
for (const Element& element : elements) {
|
||||
hashed_elements.push_back(HashToRange(element));
|
||||
}
|
||||
std::sort(hashed_elements.begin(), hashed_elements.end());
|
||||
return hashed_elements;
|
||||
}
|
||||
|
||||
GCSFilter::GCSFilter(uint64_t siphash_k0, uint64_t siphash_k1, uint8_t P, uint32_t M)
|
||||
: m_siphash_k0(siphash_k0), m_siphash_k1(siphash_k1), m_P(P), m_M(M), m_N(0), m_F(0)
|
||||
{}
|
||||
|
||||
GCSFilter::GCSFilter(uint64_t siphash_k0, uint64_t siphash_k1, uint8_t P, uint32_t M,
|
||||
std::vector<unsigned char> encoded_filter)
|
||||
: GCSFilter(siphash_k0, siphash_k1, P, M)
|
||||
{
|
||||
m_encoded = std::move(encoded_filter);
|
||||
|
||||
VectorReader stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);
|
||||
|
||||
uint64_t N = ReadCompactSize(stream);
|
||||
m_N = static_cast<uint32_t>(N);
|
||||
if (m_N != N) {
|
||||
throw std::ios_base::failure("N must be <2^32");
|
||||
}
|
||||
m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_M);
|
||||
|
||||
// Verify that the encoded filter contains exactly N elements. If it has too much or too little
|
||||
// data, a std::ios_base::failure exception will be raised.
|
||||
BitStreamReader<VectorReader> bitreader(stream);
|
||||
for (uint64_t i = 0; i < m_N; ++i) {
|
||||
GolombRiceDecode(bitreader, m_P);
|
||||
}
|
||||
if (!stream.empty()) {
|
||||
throw std::ios_base::failure("encoded_filter contains excess data");
|
||||
}
|
||||
}
|
||||
|
||||
GCSFilter::GCSFilter(uint64_t siphash_k0, uint64_t siphash_k1, uint8_t P, uint32_t M,
|
||||
const ElementSet& elements)
|
||||
: GCSFilter(siphash_k0, siphash_k1, P, M)
|
||||
{
|
||||
size_t N = elements.size();
|
||||
m_N = static_cast<uint32_t>(N);
|
||||
if (m_N != N) {
|
||||
throw std::invalid_argument("N must be <2^32");
|
||||
}
|
||||
m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_M);
|
||||
|
||||
CVectorWriter stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);
|
||||
|
||||
WriteCompactSize(stream, m_N);
|
||||
|
||||
if (elements.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
BitStreamWriter<CVectorWriter> bitwriter(stream);
|
||||
|
||||
uint64_t last_value = 0;
|
||||
for (uint64_t value : BuildHashedSet(elements)) {
|
||||
uint64_t delta = value - last_value;
|
||||
GolombRiceEncode(bitwriter, m_P, delta);
|
||||
last_value = value;
|
||||
}
|
||||
|
||||
bitwriter.Flush();
|
||||
}
|
|
@ -31,6 +31,11 @@ private:
|
|||
uint64_t m_F; //!< Range of element hashes, F = N * M
|
||||
std::vector<unsigned char> m_encoded;
|
||||
|
||||
/** Hash a data element to an integer in the range [0, N * M). */
|
||||
uint64_t HashToRange(const Element& element) const;
|
||||
|
||||
std::vector<uint64_t> BuildHashedSet(const ElementSet& elements) const;
|
||||
|
||||
public:
|
||||
|
||||
/** Constructs an empty filter. */
|
||||
|
|
Loading…
Add table
Reference in a new issue