refactor: move SignSchnorr to KeyPair

Move `SignSchnorr` to `KeyPair`. This makes `CKey::SignSchnorr` now
compute a `KeyPair` object and then call `KeyPair::SignSchorr`. The
notable changes are:

    * Move the merkle_root tweaking out of the sign function and into
      the KeyPair constructor
    * Remove the temporary secp256k1_keypair object and have the
      functions access m_keypair->data() directly
This commit is contained in:
josibake 2024-07-16 18:36:41 +02:00
parent c39fd39ba8
commit cebb08b121
No known key found for this signature in database
GPG key ID: 8ADCB558C4F33D65
2 changed files with 46 additions and 28 deletions

View file

@ -271,27 +271,8 @@ bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig)
bool CKey::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const
{
assert(sig.size() == 64);
secp256k1_keypair keypair;
if (!secp256k1_keypair_create(secp256k1_context_sign, &keypair, UCharCast(begin()))) return false;
if (merkle_root) {
secp256k1_xonly_pubkey pubkey;
if (!secp256k1_keypair_xonly_pub(secp256k1_context_sign, &pubkey, nullptr, &keypair)) return false;
unsigned char pubkey_bytes[32];
if (!secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, pubkey_bytes, &pubkey)) return false;
uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
if (!secp256k1_keypair_xonly_tweak_add(secp256k1_context_static, &keypair, tweak.data())) return false;
}
bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), &keypair, aux.data());
if (ret) {
// Additional verification step to prevent using a potentially corrupted signature
secp256k1_xonly_pubkey pubkey_verify;
ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, &keypair);
ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify);
}
if (!ret) memory_cleanse(sig.data(), sig.size());
memory_cleanse(&keypair, sizeof(keypair));
return ret;
KeyPair kp = ComputeKeyPair(merkle_root);
return kp.SignSchnorr(hash, sig, aux);
}
bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
@ -363,9 +344,9 @@ ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, c
return output;
}
KeyPair CKey::ComputeKeyPair() const
KeyPair CKey::ComputeKeyPair(const uint256* merkle_root) const
{
return KeyPair(*this);
return KeyPair(*this, merkle_root);
}
CKey GenerateRandomKey(bool compressed) noexcept
@ -425,16 +406,39 @@ void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey();
}
KeyPair::KeyPair(const CKey& key)
KeyPair::KeyPair(const CKey& key, const uint256* merkle_root)
{
static_assert(std::tuple_size<KeyType>() == sizeof(secp256k1_keypair));
MakeKeyPairData();
auto keypair = reinterpret_cast<secp256k1_keypair*>(m_keypair->data());
bool success = secp256k1_keypair_create(secp256k1_context_sign, keypair, UCharCast(key.data()));
if (success && merkle_root) {
secp256k1_xonly_pubkey pubkey;
if (!secp256k1_keypair_xonly_pub(secp256k1_context_sign, &pubkey, nullptr, keypair)) return;
unsigned char pubkey_bytes[32];
if (!secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, pubkey_bytes, &pubkey)) return;
uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
success = secp256k1_keypair_xonly_tweak_add(secp256k1_context_static, keypair, tweak.data());
}
if (!success) ClearKeyPairData();
}
bool KeyPair::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256& aux) const
{
assert(sig.size() == 64);
if (!IsValid()) return false;
auto keypair = reinterpret_cast<const secp256k1_keypair*>(m_keypair->data());
bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), keypair, aux.data());
if (ret) {
// Additional verification step to prevent using a potentially corrupted signature
secp256k1_xonly_pubkey pubkey_verify;
ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, keypair);
ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify);
}
if (!ret) memory_cleanse(sig.data(), sig.size());
return ret;
}
bool ECC_InitSanityCheck() {
CKey key = GenerateRandomKey();
CPubKey pubkey = key.GetPubKey();

View file

@ -207,8 +207,19 @@ public:
/** Compute a KeyPair
*
* Wraps a `secp256k1_keypair` type.
*
* `merkle_root` is used to optionally perform tweaking of
* the internal key, as specified in BIP341:
*
* - If merkle_root == nullptr: no tweaking is done, use the internal key directly (this is
* used for signatures in BIP342 script).
* - If merkle_root->IsNull(): tweak the internal key with H_TapTweak(pubkey) (this is used for
* key path spending when no scripts are present).
* - Otherwise: tweak the internal key with H_TapTweak(pubkey || *merkle_root)
* (this is used for key path spending with the
* Merkle root of the script tree).
*/
KeyPair ComputeKeyPair() const;
KeyPair ComputeKeyPair(const uint256* merkle_root) const;
};
CKey GenerateRandomKey(bool compressed = true) noexcept;
@ -249,6 +260,9 @@ struct CExtKey {
* be negated by checking the parity of the public key. This class primarily intended for passing
* secret keys to libsecp256k1 functions expecting a `secp256k1_keypair`. For all other cases,
* CKey should be preferred.
*
* A KeyPair can be created from a CKey with an optional merkle_root tweak (per BIP342). See
* CKey::ComputeKeyPair for more details.
*/
class KeyPair
{
@ -271,14 +285,14 @@ public:
KeyPair(const KeyPair& other) { *this = other; }
friend KeyPair CKey::ComputeKeyPair() const;
friend KeyPair CKey::ComputeKeyPair(const uint256* merkle_root) const;
[[nodiscard]] bool SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256& aux) const;
//! Check whether this keypair is valid.
bool IsValid() const { return !!m_keypair; }
private:
KeyPair(const CKey& key);
KeyPair(const CKey& key, const uint256* merkle_root);
using KeyType = std::array<unsigned char, 96>;
secure_unique_ptr<KeyType> m_keypair;