Merge bitcoin/bitcoin#27165: Make miniscript_{stable,smart} fuzzers avoid too large scripts

56e37e71a2 Make miniscript fuzzers avoid script size limit (Pieter Wuille)
bcec5ab4ff Make miniscript fuzzers avoid ops limit (Pieter Wuille)
213fffa513 Enforce type consistency in miniscript_stable fuzz test (Pieter Wuille)
e1f30414c6 Simplify miniscript fuzzer NodeInfo struct (Pieter Wuille)
5abb0f5ac3 Do base type propagation in miniscript_stable fuzzer (Pieter Wuille)

Pull request description:

  This adds a number of improvements to the miniscript fuzzers that all amount to rejecting invalid or overly big miniscripts early on:
  * Base type propagation in the miniscript_stable fuzzers prevents constructing a large portion of miniscripts that would be illegal, with just a little bit of type logic in the fuzzer. The fuzzer input format is unchanged.
  * Ops and script size tracking in GenNode means that too-large scripts (either due to script size limit or ops limit) will be detected on the fly during fuzz input processing, before actually constructing the scripts.

  Closes #27147.

ACKs for top commit:
  darosior:
    re-ACK 56e37e71a2
  dergoegge:
    tACK 56e37e71a2

Tree-SHA512: 245584adf9a6644a35fe103bc81b619e5b4f5d467571a761b5809d08b1dec48f7ceaf4d8791ccd8208b45c6b309d2ccca23b3d1ec5399df76cd5bf88f2263280
This commit is contained in:
fanquake 2023-02-28 16:58:56 +00:00
commit cb40639bdf
No known key found for this signature in database
GPG key ID: 2EEB9F5CC09526C1
2 changed files with 189 additions and 44 deletions

View file

@ -1136,6 +1136,9 @@ public:
//! Return the maximum number of ops needed to satisfy this script non-malleably. //! Return the maximum number of ops needed to satisfy this script non-malleably.
uint32_t GetOps() const { return ops.count + ops.sat.value; } uint32_t GetOps() const { return ops.count + ops.sat.value; }
//! Return the number of ops in the script (not counting the dynamic ones that depend on execution).
uint32_t GetStaticOps() const { return ops.count; }
//! Check the ops limit of this script against the consensus limit. //! Check the ops limit of this script against the consensus limit.
bool CheckOpsLimit() const { return GetOps() <= MAX_OPS_PER_SCRIPT; } bool CheckOpsLimit() const { return GetOps() <= MAX_OPS_PER_SCRIPT; }

View file

@ -261,8 +261,6 @@ template<typename... Args> NodeRef MakeNodeRef(Args&&... args) {
struct NodeInfo { struct NodeInfo {
//! The type of this node //! The type of this node
Fragment fragment; Fragment fragment;
//! Number of subs of this node
uint8_t n_subs;
//! The timelock value for older() and after(), the threshold value for multi() and thresh() //! The timelock value for older() and after(), the threshold value for multi() and thresh()
uint32_t k; uint32_t k;
//! Keys for this node, if it has some //! Keys for this node, if it has some
@ -272,15 +270,13 @@ struct NodeInfo {
//! The type requirements for the children of this node. //! The type requirements for the children of this node.
std::vector<Type> subtypes; std::vector<Type> subtypes;
NodeInfo(Fragment frag): fragment(frag), n_subs(0), k(0) {} NodeInfo(Fragment frag): fragment(frag), k(0) {}
NodeInfo(Fragment frag, CPubKey key): fragment(frag), n_subs(0), k(0), keys({key}) {} NodeInfo(Fragment frag, CPubKey key): fragment(frag), k(0), keys({key}) {}
NodeInfo(Fragment frag, uint32_t _k): fragment(frag), n_subs(0), k(_k) {} NodeInfo(Fragment frag, uint32_t _k): fragment(frag), k(_k) {}
NodeInfo(Fragment frag, std::vector<unsigned char> h): fragment(frag), n_subs(0), k(0), hash(std::move(h)) {} NodeInfo(Fragment frag, std::vector<unsigned char> h): fragment(frag), k(0), hash(std::move(h)) {}
NodeInfo(uint8_t subs, Fragment frag): fragment(frag), n_subs(subs), k(0), subtypes(subs, ""_mst) {} NodeInfo(std::vector<Type> subt, Fragment frag): fragment(frag), k(0), subtypes(std::move(subt)) {}
NodeInfo(uint8_t subs, Fragment frag, uint32_t _k): fragment(frag), n_subs(subs), k(_k), subtypes(subs, ""_mst) {} NodeInfo(std::vector<Type> subt, Fragment frag, uint32_t _k): fragment(frag), k(_k), subtypes(std::move(subt)) {}
NodeInfo(std::vector<Type> subt, Fragment frag): fragment(frag), n_subs(subt.size()), k(0), subtypes(std::move(subt)) {} NodeInfo(Fragment frag, uint32_t _k, std::vector<CPubKey> _keys): fragment(frag), k(_k), keys(std::move(_keys)) {}
NodeInfo(std::vector<Type> subt, Fragment frag, uint32_t _k): fragment(frag), n_subs(subt.size()), k(_k), subtypes(std::move(subt)) {}
NodeInfo(Fragment frag, uint32_t _k, std::vector<CPubKey> _keys): fragment(frag), n_subs(0), k(_k), keys(std::move(_keys)) {}
}; };
/** Pick an index in a collection from a single byte in the fuzzer's output. */ /** Pick an index in a collection from a single byte in the fuzzer's output. */
@ -329,27 +325,51 @@ std::optional<uint32_t> ConsumeTimeLock(FuzzedDataProvider& provider) {
* bytes as the number of keys define the index of each key in the test data. * bytes as the number of keys define the index of each key in the test data.
* - For thresh(), the next byte defines the threshold value and the following one the number of subs. * - For thresh(), the next byte defines the threshold value and the following one the number of subs.
*/ */
std::optional<NodeInfo> ConsumeNodeStable(FuzzedDataProvider& provider) { std::optional<NodeInfo> ConsumeNodeStable(FuzzedDataProvider& provider, Type type_needed) {
bool allow_B = (type_needed == ""_mst) || (type_needed << "B"_mst);
bool allow_K = (type_needed == ""_mst) || (type_needed << "K"_mst);
bool allow_V = (type_needed == ""_mst) || (type_needed << "V"_mst);
bool allow_W = (type_needed == ""_mst) || (type_needed << "W"_mst);
switch (provider.ConsumeIntegral<uint8_t>()) { switch (provider.ConsumeIntegral<uint8_t>()) {
case 0: return {{Fragment::JUST_0}}; case 0:
case 1: return {{Fragment::JUST_1}}; if (!allow_B) return {};
case 2: return {{Fragment::PK_K, ConsumePubKey(provider)}}; return {{Fragment::JUST_0}};
case 3: return {{Fragment::PK_H, ConsumePubKey(provider)}}; case 1:
if (!allow_B) return {};
return {{Fragment::JUST_1}};
case 2:
if (!allow_K) return {};
return {{Fragment::PK_K, ConsumePubKey(provider)}};
case 3:
if (!allow_K) return {};
return {{Fragment::PK_H, ConsumePubKey(provider)}};
case 4: { case 4: {
if (!allow_B) return {};
const auto k = ConsumeTimeLock(provider); const auto k = ConsumeTimeLock(provider);
if (!k) return {}; if (!k) return {};
return {{Fragment::OLDER, *k}}; return {{Fragment::OLDER, *k}};
} }
case 5: { case 5: {
if (!allow_B) return {};
const auto k = ConsumeTimeLock(provider); const auto k = ConsumeTimeLock(provider);
if (!k) return {}; if (!k) return {};
return {{Fragment::AFTER, *k}}; return {{Fragment::AFTER, *k}};
} }
case 6: return {{Fragment::SHA256, ConsumeSha256(provider)}}; case 6:
case 7: return {{Fragment::HASH256, ConsumeHash256(provider)}}; if (!allow_B) return {};
case 8: return {{Fragment::RIPEMD160, ConsumeRipemd160(provider)}}; return {{Fragment::SHA256, ConsumeSha256(provider)}};
case 9: return {{Fragment::HASH160, ConsumeHash160(provider)}}; case 7:
if (!allow_B) return {};
return {{Fragment::HASH256, ConsumeHash256(provider)}};
case 8:
if (!allow_B) return {};
return {{Fragment::RIPEMD160, ConsumeRipemd160(provider)}};
case 9:
if (!allow_B) return {};
return {{Fragment::HASH160, ConsumeHash160(provider)}};
case 10: { case 10: {
if (!allow_B) return {};
const auto k = provider.ConsumeIntegral<uint8_t>(); const auto k = provider.ConsumeIntegral<uint8_t>();
const auto n_keys = provider.ConsumeIntegral<uint8_t>(); const auto n_keys = provider.ConsumeIntegral<uint8_t>();
if (n_keys > 20 || k == 0 || k > n_keys) return {}; if (n_keys > 20 || k == 0 || k > n_keys) return {};
@ -357,26 +377,59 @@ std::optional<NodeInfo> ConsumeNodeStable(FuzzedDataProvider& provider) {
for (auto& key: keys) key = ConsumePubKey(provider); for (auto& key: keys) key = ConsumePubKey(provider);
return {{Fragment::MULTI, k, std::move(keys)}}; return {{Fragment::MULTI, k, std::move(keys)}};
} }
case 11: return {{3, Fragment::ANDOR}}; case 11:
case 12: return {{2, Fragment::AND_V}}; if (!(allow_B || allow_K || allow_V)) return {};
case 13: return {{2, Fragment::AND_B}}; return {{{"B"_mst, type_needed, type_needed}, Fragment::ANDOR}};
case 15: return {{2, Fragment::OR_B}}; case 12:
case 16: return {{2, Fragment::OR_C}}; if (!(allow_B || allow_K || allow_V)) return {};
case 17: return {{2, Fragment::OR_D}}; return {{{"V"_mst, type_needed}, Fragment::AND_V}};
case 18: return {{2, Fragment::OR_I}}; case 13:
if (!allow_B) return {};
return {{{"B"_mst, "W"_mst}, Fragment::AND_B}};
case 15:
if (!allow_B) return {};
return {{{"B"_mst, "W"_mst}, Fragment::OR_B}};
case 16:
if (!allow_V) return {};
return {{{"B"_mst, "V"_mst}, Fragment::OR_C}};
case 17:
if (!allow_B) return {};
return {{{"B"_mst, "B"_mst}, Fragment::OR_D}};
case 18:
if (!(allow_B || allow_K || allow_V)) return {};
return {{{type_needed, type_needed}, Fragment::OR_I}};
case 19: { case 19: {
if (!allow_B) return {};
auto k = provider.ConsumeIntegral<uint8_t>(); auto k = provider.ConsumeIntegral<uint8_t>();
auto n_subs = provider.ConsumeIntegral<uint8_t>(); auto n_subs = provider.ConsumeIntegral<uint8_t>();
if (k == 0 || k > n_subs) return {}; if (k == 0 || k > n_subs) return {};
return {{n_subs, Fragment::THRESH, k}}; std::vector<Type> subtypes;
subtypes.reserve(n_subs);
subtypes.emplace_back("B"_mst);
for (size_t i = 1; i < n_subs; ++i) subtypes.emplace_back("W"_mst);
return {{std::move(subtypes), Fragment::THRESH, k}};
} }
case 20: return {{1, Fragment::WRAP_A}}; case 20:
case 21: return {{1, Fragment::WRAP_S}}; if (!allow_W) return {};
case 22: return {{1, Fragment::WRAP_C}}; return {{{"B"_mst}, Fragment::WRAP_A}};
case 23: return {{1, Fragment::WRAP_D}}; case 21:
case 24: return {{1, Fragment::WRAP_V}}; if (!allow_W) return {};
case 25: return {{1, Fragment::WRAP_J}}; return {{{"B"_mst}, Fragment::WRAP_S}};
case 26: return {{1, Fragment::WRAP_N}}; case 22:
if (!allow_B) return {};
return {{{"K"_mst}, Fragment::WRAP_C}};
case 23:
if (!allow_B) return {};
return {{{"V"_mst}, Fragment::WRAP_D}};
case 24:
if (!allow_V) return {};
return {{{"B"_mst}, Fragment::WRAP_V}};
case 25:
if (!allow_B) return {};
return {{{"B"_mst}, Fragment::WRAP_J}};
case 26:
if (!allow_B) return {};
return {{{"B"_mst}, Fragment::WRAP_N}};
default: default:
break; break;
} }
@ -709,11 +762,16 @@ std::optional<NodeInfo> ConsumeNodeSmart(FuzzedDataProvider& provider, Type type
* a NodeRef whose Type() matches the type fed to ConsumeNode. * a NodeRef whose Type() matches the type fed to ConsumeNode.
*/ */
template<typename F> template<typename F>
NodeRef GenNode(F ConsumeNode, Type root_type = ""_mst, bool strict_valid = false) { NodeRef GenNode(F ConsumeNode, Type root_type, bool strict_valid = false) {
/** A stack of miniscript Nodes being built up. */ /** A stack of miniscript Nodes being built up. */
std::vector<NodeRef> stack; std::vector<NodeRef> stack;
/** The queue of instructions. */ /** The queue of instructions. */
std::vector<std::pair<Type, std::optional<NodeInfo>>> todo{{root_type, {}}}; std::vector<std::pair<Type, std::optional<NodeInfo>>> todo{{root_type, {}}};
/** Predict the number of (static) script ops. */
uint32_t ops{0};
/** Predict the total script size (every unexplored subnode is counted as one, as every leaf is
* at least one script byte). */
uint32_t scriptsize{1};
while (!todo.empty()) { while (!todo.empty()) {
// The expected type we have to construct. // The expected type we have to construct.
@ -722,6 +780,78 @@ NodeRef GenNode(F ConsumeNode, Type root_type = ""_mst, bool strict_valid = fals
// Fragment/children have not been decided yet. Decide them. // Fragment/children have not been decided yet. Decide them.
auto node_info = ConsumeNode(type_needed); auto node_info = ConsumeNode(type_needed);
if (!node_info) return {}; if (!node_info) return {};
// Update predicted resource limits. Since every leaf Miniscript node is at least one
// byte long, we move one byte from each child to their parent. A similar technique is
// used in the miniscript::internal::Parse function to prevent runaway string parsing.
scriptsize += miniscript::internal::ComputeScriptLen(node_info->fragment, ""_mst, node_info->subtypes.size(), node_info->k, node_info->subtypes.size(), node_info->keys.size()) - 1;
if (scriptsize > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
switch (node_info->fragment) {
case Fragment::JUST_0:
case Fragment::JUST_1:
break;
case Fragment::PK_K:
break;
case Fragment::PK_H:
ops += 3;
break;
case Fragment::OLDER:
case Fragment::AFTER:
ops += 1;
break;
case Fragment::RIPEMD160:
case Fragment::SHA256:
case Fragment::HASH160:
case Fragment::HASH256:
ops += 4;
break;
case Fragment::ANDOR:
ops += 3;
break;
case Fragment::AND_V:
break;
case Fragment::AND_B:
case Fragment::OR_B:
ops += 1;
break;
case Fragment::OR_C:
ops += 2;
break;
case Fragment::OR_D:
ops += 3;
break;
case Fragment::OR_I:
ops += 3;
break;
case Fragment::THRESH:
ops += node_info->subtypes.size();
break;
case Fragment::MULTI:
ops += 1;
break;
case Fragment::WRAP_A:
ops += 2;
break;
case Fragment::WRAP_S:
ops += 1;
break;
case Fragment::WRAP_C:
ops += 1;
break;
case Fragment::WRAP_D:
ops += 3;
break;
case Fragment::WRAP_V:
// We don't account for OP_VERIFY here; that will be corrected for when the actual
// node is constructed below.
break;
case Fragment::WRAP_J:
ops += 4;
break;
case Fragment::WRAP_N:
ops += 1;
break;
}
if (ops > MAX_OPS_PER_SCRIPT) return {};
auto subtypes = node_info->subtypes; auto subtypes = node_info->subtypes;
todo.back().second = std::move(node_info); todo.back().second = std::move(node_info);
todo.reserve(todo.size() + subtypes.size()); todo.reserve(todo.size() + subtypes.size());
@ -738,11 +868,11 @@ NodeRef GenNode(F ConsumeNode, Type root_type = ""_mst, bool strict_valid = fals
NodeInfo& info = *todo.back().second; NodeInfo& info = *todo.back().second;
// Gather children from the back of stack. // Gather children from the back of stack.
std::vector<NodeRef> sub; std::vector<NodeRef> sub;
sub.reserve(info.n_subs); sub.reserve(info.subtypes.size());
for (size_t i = 0; i < info.n_subs; ++i) { for (size_t i = 0; i < info.subtypes.size(); ++i) {
sub.push_back(std::move(*(stack.end() - info.n_subs + i))); sub.push_back(std::move(*(stack.end() - info.subtypes.size() + i)));
} }
stack.erase(stack.end() - info.n_subs, stack.end()); stack.erase(stack.end() - info.subtypes.size(), stack.end());
// Construct new NodeRef. // Construct new NodeRef.
NodeRef node; NodeRef node;
if (info.keys.empty()) { if (info.keys.empty()) {
@ -753,17 +883,29 @@ NodeRef GenNode(F ConsumeNode, Type root_type = ""_mst, bool strict_valid = fals
node = MakeNodeRef(info.fragment, std::move(info.keys), info.k); node = MakeNodeRef(info.fragment, std::move(info.keys), info.k);
} }
// Verify acceptability. // Verify acceptability.
if (!node || !(node->GetType() << type_needed)) { if (!node || (node->GetType() & "KVWB"_mst) == ""_mst) {
assert(!strict_valid); assert(!strict_valid);
return {}; return {};
} }
if (!(type_needed == ""_mst)) {
assert(node->GetType() << type_needed);
}
if (!node->IsValid()) return {}; if (!node->IsValid()) return {};
// Update resource predictions.
if (node->fragment == Fragment::WRAP_V && node->subs[0]->GetType() << "x"_mst) {
ops += 1;
scriptsize += 1;
}
if (ops > MAX_OPS_PER_SCRIPT) return {};
if (scriptsize > MAX_STANDARD_P2WSH_SCRIPT_SIZE) return {};
// Move it to the stack. // Move it to the stack.
stack.push_back(std::move(node)); stack.push_back(std::move(node));
todo.pop_back(); todo.pop_back();
} }
} }
assert(stack.size() == 1); assert(stack.size() == 1);
assert(stack[0]->GetStaticOps() == ops);
assert(stack[0]->ScriptSize() == scriptsize);
stack[0]->DuplicateKeyCheck(KEY_COMP); stack[0]->DuplicateKeyCheck(KEY_COMP);
return std::move(stack[0]); return std::move(stack[0]);
} }
@ -921,9 +1063,9 @@ void FuzzInitSmart()
FUZZ_TARGET_INIT(miniscript_stable, FuzzInit) FUZZ_TARGET_INIT(miniscript_stable, FuzzInit)
{ {
FuzzedDataProvider provider(buffer.data(), buffer.size()); FuzzedDataProvider provider(buffer.data(), buffer.size());
TestNode(GenNode([&](Type) { TestNode(GenNode([&](Type needed_type) {
return ConsumeNodeStable(provider); return ConsumeNodeStable(provider, needed_type);
}), provider); }, ""_mst), provider);
} }
/** Fuzz target that runs TestNode on nodes generated using ConsumeNodeSmart. */ /** Fuzz target that runs TestNode on nodes generated using ConsumeNodeSmart. */