crypto: add KeyPair wrapper class

Add a `KeyPair` class which wraps the `secp256k1_keypair`. This keeps
the secret data in secure memory and enables passing the
`KeyPair` object directly to libsecp256k1 functions expecting a
`secp256k1_keypair`.

Motivation: when passing `CKeys` for taproot outputs to libsecp256k1 functions,
the first step is to create a `secp256k1_keypair` data type and use that
instead. This is so the libsecp256k1 function can determine if the key
needs to be negated, e.g., when signing.

This is a bit clunky in that it creates an extra step when using a `CKey`
for a taproot output and also involves copying the secret data into a
temporary object, which the caller must then take care to cleanse. In
addition, the logic for applying the merkle_root tweak currently
only exists in the `SignSchnorr` function.

In a later commit, we will add the merkle_root tweaking logic to this
function, which will make the merkle_root logic reusable outside of
signing by using the `KeyPair` class directly.

Co-authored-by: Cory Fields <cory-nospam-@coryfields.com>
This commit is contained in:
josibake 2024-07-16 18:34:10 +02:00
parent 5d507a0091
commit c39fd39ba8
No known key found for this signature in database
GPG key ID: 8ADCB558C4F33D65
2 changed files with 74 additions and 0 deletions

View file

@ -363,6 +363,11 @@ ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, c
return output; return output;
} }
KeyPair CKey::ComputeKeyPair() const
{
return KeyPair(*this);
}
CKey GenerateRandomKey(bool compressed) noexcept CKey GenerateRandomKey(bool compressed) noexcept
{ {
CKey key; CKey key;
@ -420,6 +425,16 @@ void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey(); if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey();
} }
KeyPair::KeyPair(const CKey& key)
{
static_assert(std::tuple_size<KeyType>() == sizeof(secp256k1_keypair));
MakeKeyPairData();
auto keypair = reinterpret_cast<secp256k1_keypair*>(m_keypair->data());
bool success = secp256k1_keypair_create(secp256k1_context_sign, keypair, UCharCast(key.data()));
if (!success) ClearKeyPairData();
}
bool ECC_InitSanityCheck() { bool ECC_InitSanityCheck() {
CKey key = GenerateRandomKey(); CKey key = GenerateRandomKey();
CPubKey pubkey = key.GetPubKey(); CPubKey pubkey = key.GetPubKey();

View file

@ -28,6 +28,8 @@ constexpr static size_t ECDH_SECRET_SIZE = CSHA256::OUTPUT_SIZE;
// Used to represent ECDH shared secret (ECDH_SECRET_SIZE bytes) // Used to represent ECDH shared secret (ECDH_SECRET_SIZE bytes)
using ECDHSecret = std::array<std::byte, ECDH_SECRET_SIZE>; using ECDHSecret = std::array<std::byte, ECDH_SECRET_SIZE>;
class KeyPair;
/** An encapsulated private key. */ /** An encapsulated private key. */
class CKey class CKey
{ {
@ -202,6 +204,11 @@ public:
ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift,
const EllSwiftPubKey& our_ellswift, const EllSwiftPubKey& our_ellswift,
bool initiating) const; bool initiating) const;
/** Compute a KeyPair
*
* Wraps a `secp256k1_keypair` type.
*/
KeyPair ComputeKeyPair() const;
}; };
CKey GenerateRandomKey(bool compressed = true) noexcept; CKey GenerateRandomKey(bool compressed = true) noexcept;
@ -235,6 +242,58 @@ struct CExtKey {
void SetSeed(Span<const std::byte> seed); void SetSeed(Span<const std::byte> seed);
}; };
/** KeyPair
*
* Wraps a `secp256k1_keypair` type, an opaque data structure for holding a secret and public key.
* This is intended for BIP340 keys and allows us to easily determine if the secret key needs to
* be negated by checking the parity of the public key. This class primarily intended for passing
* secret keys to libsecp256k1 functions expecting a `secp256k1_keypair`. For all other cases,
* CKey should be preferred.
*/
class KeyPair
{
public:
KeyPair() noexcept = default;
KeyPair(KeyPair&&) noexcept = default;
KeyPair& operator=(KeyPair&&) noexcept = default;
KeyPair& operator=(const KeyPair& other)
{
if (this != &other) {
if (other.m_keypair) {
MakeKeyPairData();
*m_keypair = *other.m_keypair;
} else {
ClearKeyPairData();
}
}
return *this;
}
KeyPair(const KeyPair& other) { *this = other; }
friend KeyPair CKey::ComputeKeyPair() const;
[[nodiscard]] bool SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256& aux) const;
//! Check whether this keypair is valid.
bool IsValid() const { return !!m_keypair; }
private:
KeyPair(const CKey& key);
using KeyType = std::array<unsigned char, 96>;
secure_unique_ptr<KeyType> m_keypair;
void MakeKeyPairData()
{
if (!m_keypair) m_keypair = make_secure_unique<KeyType>();
}
void ClearKeyPairData()
{
m_keypair.reset();
}
};
/** Check that required EC support is available at runtime. */ /** Check that required EC support is available at runtime. */
bool ECC_InitSanityCheck(); bool ECC_InitSanityCheck();