mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-12 04:42:36 -03:00
split up
This commit is contained in:
parent
e3cd7e021a
commit
b394396b45
6 changed files with 750 additions and 694 deletions
34
consts.h
Normal file
34
consts.h
Normal file
|
@ -0,0 +1,34 @@
|
|||
#ifndef _SECP256K1_CONSTS_
|
||||
#define _SECP256K1_CONSTS_
|
||||
|
||||
#include "num.h"
|
||||
|
||||
namespace secp256k1 {
|
||||
|
||||
static const unsigned char order_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
||||
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
||||
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41};
|
||||
|
||||
static const unsigned char field_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F};
|
||||
|
||||
class Constants {
|
||||
private:
|
||||
Context ctx;
|
||||
|
||||
public:
|
||||
const Number order;
|
||||
const Number field;
|
||||
|
||||
Constants() : order(ctx, order_, sizeof(order_)),
|
||||
field(ctx, field_, sizeof(field_)) {}
|
||||
};
|
||||
|
||||
const Constants consts;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
391
field.h
Normal file
391
field.h
Normal file
|
@ -0,0 +1,391 @@
|
|||
#ifndef _SECP256K1_FIELD_
|
||||
#define _SECP256K1_FIELD_
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
|
||||
#include "num.h"
|
||||
#include "consts.h"
|
||||
|
||||
// #define VERIFY_MAGNITUDE 1
|
||||
|
||||
namespace secp256k1 {
|
||||
|
||||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
||||
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
|
||||
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
|
||||
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
|
||||
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
|
||||
* output.
|
||||
*/
|
||||
class FieldElem {
|
||||
private:
|
||||
// X = sum(i=0..4, elem[i]*2^52)
|
||||
uint64_t n[5];
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
int magnitude;
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
/** Creates a constant field element. Magnitude=1 */
|
||||
FieldElem(int x = 0) {
|
||||
n[0] = x;
|
||||
n[1] = n[2] = n[3] = n[4] = 0;
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Normalizes the internal representation entries. Magnitude=1 */
|
||||
void Normalize() {
|
||||
uint64_t c;
|
||||
if (n[0] > 0xFFFFFFFFFFFFFULL || n[1] > 0xFFFFFFFFFFFFFULL || n[2] > 0xFFFFFFFFFFFFFULL || n[3] > 0xFFFFFFFFFFFFFULL || n[4] > 0xFFFFFFFFFFFFULL) {
|
||||
c = n[0];
|
||||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[1];
|
||||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[2];
|
||||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[3];
|
||||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[4];
|
||||
uint64_t t4 = c & 0x0FFFFFFFFFFFFULL;
|
||||
c >>= 48;
|
||||
if (c) {
|
||||
c = c * 0x1000003D1ULL + t0;
|
||||
t0 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t1;
|
||||
t1 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t2;
|
||||
t2 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t3;
|
||||
t3 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t4;
|
||||
t4 = c & 0x0FFFFFFFFFFFFULL;
|
||||
c >>= 48;
|
||||
}
|
||||
n[0] = t0; n[1] = t1; n[2] = t2; n[3] = t3; n[4] = t4;
|
||||
}
|
||||
if (n[4] == 0xFFFFFFFFFFFFULL && n[3] == 0xFFFFFFFFFFFFFULL && n[2] == 0xFFFFFFFFFFFFFULL && n[1] == 0xFFFFFFFFFFFFF && n[0] >= 0xFFFFEFFFFFC2FULL) {
|
||||
n[4] = 0;
|
||||
n[3] = 0;
|
||||
n[2] = 0;
|
||||
n[1] = 0;
|
||||
n[0] -= 0xFFFFEFFFFFC2FULL;
|
||||
}
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool IsZero() {
|
||||
Normalize();
|
||||
return n[0] == 0 && n[1] == 0 && n[2] == 0 && n[3] == 0 && n[4] == 0;
|
||||
}
|
||||
|
||||
bool friend operator==(FieldElem &a, FieldElem &b) {
|
||||
a.Normalize();
|
||||
b.Normalize();
|
||||
return a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2] && a.n[3] == b.n[3] && a.n[4] == b.n[4];
|
||||
}
|
||||
|
||||
/** extract as 32-byte big endian array */
|
||||
void GetBytes(unsigned char *o) {
|
||||
Normalize();
|
||||
for (int i=0; i<32; i++) {
|
||||
int c = 0;
|
||||
for (int j=0; j<2; j++) {
|
||||
int limb = (8*i+4*j)/52;
|
||||
int shift = (8*i+4*j)%52;
|
||||
c |= ((n[limb] >> shift) & 0xF) << (4 * j);
|
||||
}
|
||||
o[31-i] = c;
|
||||
}
|
||||
}
|
||||
|
||||
/** set value of 32-byte big endian array */
|
||||
void SetBytes(const unsigned char *in) {
|
||||
n[0] = n[1] = n[2] = n[3] = n[4] = 0;
|
||||
for (int i=0; i<32; i++) {
|
||||
for (int j=0; j<2; j++) {
|
||||
int limb = (8*i+4*j)/52;
|
||||
int shift = (8*i+4*j)%52;
|
||||
n[limb] |= (uint64_t)((in[31-i] >> (4*j)) & 0xF) << shift;
|
||||
}
|
||||
}
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Set a FieldElem to be the negative of another. Increases magnitude by one. */
|
||||
void SetNeg(const FieldElem &a, int magnitudeIn) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= magnitudeIn);
|
||||
magnitude = magnitudeIn + 1;
|
||||
#endif
|
||||
n[0] = 0xFFFFEFFFFFC2FULL * (magnitudeIn + 1) - a.n[0];
|
||||
n[1] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[1];
|
||||
n[2] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[2];
|
||||
n[3] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[3];
|
||||
n[4] = 0x0FFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[4];
|
||||
}
|
||||
|
||||
/** Multiplies this FieldElem with an integer constant. Magnitude is multiplied by v */
|
||||
void operator*=(int v) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude *= v;
|
||||
#endif
|
||||
n[0] *= v;
|
||||
n[1] *= v;
|
||||
n[2] *= v;
|
||||
n[3] *= v;
|
||||
n[4] *= v;
|
||||
}
|
||||
|
||||
void operator+=(const FieldElem &a) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude += a.magnitude;
|
||||
#endif
|
||||
n[0] += a.n[0];
|
||||
n[1] += a.n[1];
|
||||
n[2] += a.n[2];
|
||||
n[3] += a.n[3];
|
||||
n[4] += a.n[4];
|
||||
}
|
||||
|
||||
/** Set this FieldElem to be the multiplication of two others. Magnitude=1 */
|
||||
void SetMult(const FieldElem &a, const FieldElem &b) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= 8);
|
||||
assert(b.magnitude <= 8);
|
||||
#endif
|
||||
__int128 c = (__int128)a.n[0] * b.n[0];
|
||||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
||||
c = c + (__int128)a.n[0] * b.n[1] +
|
||||
(__int128)a.n[1] * b.n[0];
|
||||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
||||
c = c + (__int128)a.n[0] * b.n[2] +
|
||||
(__int128)a.n[1] * b.n[1] +
|
||||
(__int128)a.n[2] * b.n[0];
|
||||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
||||
c = c + (__int128)a.n[0] * b.n[3] +
|
||||
(__int128)a.n[1] * b.n[2] +
|
||||
(__int128)a.n[2] * b.n[1] +
|
||||
(__int128)a.n[3] * b.n[0];
|
||||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
||||
c = c + (__int128)a.n[0] * b.n[4] +
|
||||
(__int128)a.n[1] * b.n[3] +
|
||||
(__int128)a.n[2] * b.n[2] +
|
||||
(__int128)a.n[3] * b.n[1] +
|
||||
(__int128)a.n[4] * b.n[0];
|
||||
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
||||
c = c + (__int128)a.n[1] * b.n[4] +
|
||||
(__int128)a.n[2] * b.n[3] +
|
||||
(__int128)a.n[3] * b.n[2] +
|
||||
(__int128)a.n[4] * b.n[1];
|
||||
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
||||
c = c + (__int128)a.n[2] * b.n[4] +
|
||||
(__int128)a.n[3] * b.n[3] +
|
||||
(__int128)a.n[4] * b.n[2];
|
||||
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
||||
c = c + (__int128)a.n[3] * b.n[4] +
|
||||
(__int128)a.n[4] * b.n[3];
|
||||
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
||||
c = c + (__int128)a.n[4] * b.n[4];
|
||||
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
||||
uint64_t t9 = c;
|
||||
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
||||
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
||||
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
||||
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
||||
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
||||
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
||||
c = t0 + (__int128)c * 0x1000003D1ULL;
|
||||
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
||||
n[1] = t1 + c;
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Set this FieldElem to be the square of another. Magnitude=1 */
|
||||
void SetSquare(const FieldElem &a) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= 8);
|
||||
#endif
|
||||
__int128 c = (__int128)a.n[0] * a.n[0];
|
||||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[1];
|
||||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[2] +
|
||||
(__int128)a.n[1] * a.n[1];
|
||||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[3] +
|
||||
(__int128)(a.n[1]*2) * a.n[2];
|
||||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[4] +
|
||||
(__int128)(a.n[1]*2) * a.n[3] +
|
||||
(__int128)a.n[2] * a.n[2];
|
||||
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
||||
c = c + (__int128)(a.n[1]*2) * a.n[4] +
|
||||
(__int128)(a.n[2]*2) * a.n[3];
|
||||
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
||||
c = c + (__int128)(a.n[2]*2) * a.n[4] +
|
||||
(__int128)a.n[3] * a.n[3];
|
||||
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
||||
c = c + (__int128)(a.n[3]*2) * a.n[4];
|
||||
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
||||
c = c + (__int128)a.n[4] * a.n[4];
|
||||
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
||||
uint64_t t9 = c;
|
||||
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
||||
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
||||
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
||||
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
||||
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
||||
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
||||
c = t0 + (__int128)c * 0x1000003D1ULL;
|
||||
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
||||
n[1] = t1 + c;
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= 8);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Set this to be the (modular) square root of another FieldElem. Magnitude=1 */
|
||||
void SetSquareRoot(const FieldElem &a) {
|
||||
// calculate a^p, with p={15,780,1022,1023}
|
||||
FieldElem a2; a2.SetSquare(a);
|
||||
FieldElem a3; a3.SetMult(a2,a);
|
||||
FieldElem a6; a6.SetSquare(a3);
|
||||
FieldElem a12; a12.SetSquare(a6);
|
||||
FieldElem a15; a15.SetMult(a12,a3);
|
||||
FieldElem a30; a30.SetSquare(a15);
|
||||
FieldElem a60; a60.SetSquare(a30);
|
||||
FieldElem a120; a120.SetSquare(a60);
|
||||
FieldElem a240; a240.SetSquare(a120);
|
||||
FieldElem a255; a255.SetMult(a240,a15);
|
||||
FieldElem a510; a510.SetSquare(a255);
|
||||
FieldElem a750; a750.SetMult(a510,a240);
|
||||
FieldElem a780; a780.SetMult(a750,a30);
|
||||
FieldElem a1020; a1020.SetSquare(a510);
|
||||
FieldElem a1022; a1022.SetMult(a1020,a2);
|
||||
FieldElem a1023; a1023.SetMult(a1022,a);
|
||||
FieldElem x = a15;
|
||||
for (int i=0; i<21; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1022);
|
||||
for (int i=0; i<2; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
SetMult(x,a780);
|
||||
}
|
||||
|
||||
bool IsOdd() {
|
||||
Normalize();
|
||||
return n[0] & 1;
|
||||
}
|
||||
|
||||
void SetInverse_Number(Context &ctx, FieldElem &a) {
|
||||
unsigned char tmp[32];
|
||||
a.GetBytes(tmp);
|
||||
{
|
||||
Context cctx(ctx);
|
||||
Number n(cctx, tmp, 32);
|
||||
n.SetModInverse(cctx, n, consts.field);
|
||||
n.GetBytes(tmp, 32);
|
||||
}
|
||||
SetBytes(tmp);
|
||||
}
|
||||
|
||||
/** Set this to be the (modular) inverse of another FieldElem. Magnitude=1 */
|
||||
void SetInverse(const FieldElem &a) {
|
||||
// calculate a^p, with p={45,63,1019,1023}
|
||||
FieldElem a2; a2.SetSquare(a);
|
||||
FieldElem a3; a3.SetMult(a2,a);
|
||||
FieldElem a4; a4.SetSquare(a2);
|
||||
FieldElem a5; a5.SetMult(a4,a);
|
||||
FieldElem a10; a10.SetSquare(a5);
|
||||
FieldElem a11; a11.SetMult(a10,a);
|
||||
FieldElem a21; a21.SetMult(a11,a10);
|
||||
FieldElem a42; a42.SetSquare(a21);
|
||||
FieldElem a45; a45.SetMult(a42,a3);
|
||||
FieldElem a63; a63.SetMult(a42,a21);
|
||||
FieldElem a126; a126.SetSquare(a63);
|
||||
FieldElem a252; a252.SetSquare(a126);
|
||||
FieldElem a504; a504.SetSquare(a252);
|
||||
FieldElem a1008; a1008.SetSquare(a504);
|
||||
FieldElem a1019; a1019.SetMult(a1008,a11);
|
||||
FieldElem a1023; a1023.SetMult(a1019,a4);
|
||||
FieldElem x = a63;
|
||||
for (int i=0; i<21; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1019);
|
||||
for (int i=0; i<2; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
SetMult(x,a45);
|
||||
}
|
||||
|
||||
std::string ToString() {
|
||||
unsigned char tmp[32];
|
||||
GetBytes(tmp);
|
||||
std::string ret;
|
||||
for (int i=0; i<32; i++) {
|
||||
static const char *c = "0123456789ABCDEF";
|
||||
ret += c[(tmp[i] >> 4) & 0xF];
|
||||
ret += c[(tmp[i]) & 0xF];
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void SetHex(const std::string &str) {
|
||||
unsigned char tmp[32] = {};
|
||||
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
|
||||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
|
||||
for (int i=0; i<32; i++) {
|
||||
if (str.length() > i*2)
|
||||
tmp[i] = (cvt[(unsigned char)str[2*i]] << 4) + cvt[(unsigned char)str[2*i+1]];
|
||||
}
|
||||
SetBytes(tmp);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
227
group.h
Normal file
227
group.h
Normal file
|
@ -0,0 +1,227 @@
|
|||
#ifndef _SECP256K1_GROUP_
|
||||
#define _SECP256K1_GROUP_
|
||||
|
||||
#include "field.h"
|
||||
|
||||
namespace secp256k1 {
|
||||
|
||||
/** Defines a point on the secp256k1 curve (y^2 = x^3 + 7) */
|
||||
class GroupElem {
|
||||
protected:
|
||||
bool fInfinity;
|
||||
FieldElem x;
|
||||
FieldElem y;
|
||||
|
||||
public:
|
||||
|
||||
/** Creates the point at infinity */
|
||||
GroupElem() {
|
||||
fInfinity = true;
|
||||
}
|
||||
|
||||
/** Creates the point with given affine coordinates */
|
||||
GroupElem(const FieldElem &xin, const FieldElem &yin) {
|
||||
fInfinity = false;
|
||||
x = xin;
|
||||
y = yin;
|
||||
}
|
||||
|
||||
/** Checks whether this is the point at infinity */
|
||||
bool IsInfinity() const {
|
||||
return fInfinity;
|
||||
}
|
||||
|
||||
void SetNeg(GroupElem &p) {
|
||||
fInfinity = p.fInfinity;
|
||||
x = p.x;
|
||||
p.y.Normalize();
|
||||
y.SetNeg(p.y, 1);
|
||||
}
|
||||
|
||||
std::string ToString() {
|
||||
if (fInfinity)
|
||||
return "(inf)";
|
||||
return "(" + x.ToString() + "," + y.ToString() + ")";
|
||||
}
|
||||
|
||||
friend class GroupElemJac;
|
||||
};
|
||||
|
||||
/** Represents a point on the secp256k1 curve, with jacobian coordinates */
|
||||
class GroupElemJac : public GroupElem {
|
||||
protected:
|
||||
FieldElem z;
|
||||
|
||||
public:
|
||||
/** Creates the point at infinity */
|
||||
GroupElemJac() : GroupElem(), z(1) {}
|
||||
|
||||
/** Creates the point with given affine coordinates */
|
||||
GroupElemJac(const FieldElem &xin, const FieldElem &yin) : GroupElem(xin,yin), z(1) {}
|
||||
|
||||
/** Checks whether this is a non-infinite point on the curve */
|
||||
bool IsValid() {
|
||||
if (IsInfinity())
|
||||
return false;
|
||||
// y^2 = x^3 + 7
|
||||
// (Y/Z^3)^2 = (X/Z^2)^3 + 7
|
||||
// Y^2 / Z^6 = X^3 / Z^6 + 7
|
||||
// Y^2 = X^3 + 7*Z^6
|
||||
FieldElem y2; y2.SetSquare(y);
|
||||
FieldElem x3; x3.SetSquare(x); x3.SetMult(x3,x);
|
||||
FieldElem z2; z2.SetSquare(z);
|
||||
FieldElem z6; z6.SetSquare(z2); z6.SetMult(z6,z2);
|
||||
z6 *= 7;
|
||||
x3 += z6;
|
||||
return y2 == x3;
|
||||
}
|
||||
|
||||
/** Returns the affine coordinates of this point */
|
||||
void GetAffine(GroupElem &aff) {
|
||||
z.SetInverse(z);
|
||||
FieldElem z2;
|
||||
z2.SetSquare(z);
|
||||
FieldElem z3;
|
||||
z3.SetMult(z,z2);
|
||||
x.SetMult(x,z2);
|
||||
y.SetMult(y,z3);
|
||||
z = FieldElem(1);
|
||||
aff.fInfinity = false;
|
||||
aff.x = x;
|
||||
aff.y = y;
|
||||
}
|
||||
|
||||
/** Sets this point to have a given X coordinate & given Y oddness */
|
||||
void SetCompressed(const FieldElem &xin, bool fOdd) {
|
||||
x = xin;
|
||||
FieldElem x2; x2.SetSquare(x);
|
||||
FieldElem x3; x3.SetMult(x,x2);
|
||||
fInfinity = false;
|
||||
FieldElem c(7);
|
||||
c += x3;
|
||||
y.SetSquareRoot(c);
|
||||
z = FieldElem(1);
|
||||
if (y.IsOdd() != fOdd)
|
||||
y.SetNeg(y,1);
|
||||
}
|
||||
|
||||
/** Sets this point to be the EC double of another */
|
||||
void SetDouble(const GroupElemJac &p) {
|
||||
if (p.fInfinity || y.IsZero()) {
|
||||
fInfinity = true;
|
||||
return;
|
||||
}
|
||||
|
||||
FieldElem t1,t2,t3,t4,t5;
|
||||
z.SetMult(p.y,p.z);
|
||||
z *= 2; // Z' = 2*Y*Z (2)
|
||||
t1.SetSquare(p.x);
|
||||
t1 *= 3; // T1 = 3*X^2 (3)
|
||||
t2.SetSquare(t1); // T2 = 9*X^4 (1)
|
||||
t3.SetSquare(p.y);
|
||||
t3 *= 2; // T3 = 2*Y^2 (2)
|
||||
t4.SetSquare(t3);
|
||||
t4 *= 2; // T4 = 8*Y^4 (2)
|
||||
t3.SetMult(p.x,t3); // T3 = 2*X*Y^2 (1)
|
||||
x = t3;
|
||||
x *= 4; // X' = 8*X*Y^2 (4)
|
||||
x.SetNeg(x,4); // X' = -8*X*Y^2 (5)
|
||||
x += t2; // X' = 9*X^4 - 8*X*Y^2 (6)
|
||||
t2.SetNeg(t2,1); // T2 = -9*X^4 (2)
|
||||
t3 *= 6; // T3 = 12*X*Y^2 (6)
|
||||
t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8)
|
||||
y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1)
|
||||
t2.SetNeg(t4,2); // T2 = -8*Y^4 (3)
|
||||
y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4)
|
||||
}
|
||||
|
||||
/** Sets this point to be the EC addition of two others */
|
||||
void SetAdd(const GroupElemJac &p, const GroupElemJac &q) {
|
||||
if (p.fInfinity) {
|
||||
*this = q;
|
||||
return;
|
||||
}
|
||||
if (q.fInfinity) {
|
||||
*this = p;
|
||||
return;
|
||||
}
|
||||
fInfinity = false;
|
||||
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z;
|
||||
FieldElem z22; z22.SetSquare(z2);
|
||||
FieldElem z12; z12.SetSquare(z1);
|
||||
FieldElem u1; u1.SetMult(x1, z22);
|
||||
FieldElem u2; u2.SetMult(x2, z12);
|
||||
FieldElem s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2);
|
||||
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
|
||||
if (u1 == u2) {
|
||||
if (s1 == s2) {
|
||||
SetDouble(p);
|
||||
} else {
|
||||
fInfinity = true;
|
||||
}
|
||||
return;
|
||||
}
|
||||
FieldElem h; h.SetNeg(u1,1); h += u2;
|
||||
FieldElem r; r.SetNeg(s1,1); r += s2;
|
||||
FieldElem r2; r2.SetSquare(r);
|
||||
FieldElem h2; h2.SetSquare(h);
|
||||
FieldElem h3; h3.SetMult(h,h2);
|
||||
z.SetMult(z1,z2); z.SetMult(z, h);
|
||||
FieldElem t; t.SetMult(u1,h2);
|
||||
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
|
||||
y.SetNeg(x,5); y += t; y.SetMult(y,r);
|
||||
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
|
||||
y += h3;
|
||||
}
|
||||
|
||||
/** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */
|
||||
void SetAdd(const GroupElemJac &p, const GroupElem &q) {
|
||||
if (p.fInfinity) {
|
||||
x = q.x;
|
||||
y = q.y;
|
||||
fInfinity = q.fInfinity;
|
||||
z = FieldElem(1);
|
||||
return;
|
||||
}
|
||||
if (q.fInfinity) {
|
||||
*this = p;
|
||||
return;
|
||||
}
|
||||
fInfinity = false;
|
||||
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y;
|
||||
FieldElem z12; z12.SetSquare(z1);
|
||||
FieldElem u1 = x1; u1.Normalize();
|
||||
FieldElem u2; u2.SetMult(x2, z12);
|
||||
FieldElem s1 = y1; s1.Normalize();
|
||||
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
|
||||
if (u1 == u2) {
|
||||
if (s1 == s2) {
|
||||
SetDouble(p);
|
||||
} else {
|
||||
fInfinity = true;
|
||||
}
|
||||
return;
|
||||
}
|
||||
FieldElem h; h.SetNeg(u1,1); h += u2;
|
||||
FieldElem r; r.SetNeg(s1,1); r += s2;
|
||||
FieldElem r2; r2.SetSquare(r);
|
||||
FieldElem h2; h2.SetSquare(h);
|
||||
FieldElem h3; h3.SetMult(h,h2);
|
||||
z = p.z; z.SetMult(z, h);
|
||||
FieldElem t; t.SetMult(u1,h2);
|
||||
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
|
||||
y.SetNeg(x,5); y += t; y.SetMult(y,r);
|
||||
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
|
||||
y += h3;
|
||||
}
|
||||
|
||||
std::string ToString() {
|
||||
GroupElem aff;
|
||||
GetAffine(aff);
|
||||
return aff.ToString();
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
74
num.h
Normal file
74
num.h
Normal file
|
@ -0,0 +1,74 @@
|
|||
#ifndef _SECP256K1_NUM_
|
||||
#define _SECP256K1_NUM_
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <openssl/bn.h>
|
||||
|
||||
namespace secp256k1 {
|
||||
|
||||
class Context {
|
||||
private:
|
||||
BN_CTX *bn_ctx;
|
||||
bool root;
|
||||
bool offspring;
|
||||
|
||||
public:
|
||||
operator BN_CTX*() {
|
||||
return bn_ctx;
|
||||
}
|
||||
|
||||
Context() {
|
||||
bn_ctx = BN_CTX_new();
|
||||
BN_CTX_start(bn_ctx);
|
||||
root = true;
|
||||
offspring = false;
|
||||
}
|
||||
|
||||
Context(Context &par) {
|
||||
bn_ctx = par.bn_ctx;
|
||||
root = false;
|
||||
offspring = false;
|
||||
par.offspring = true;
|
||||
BN_CTX_start(bn_ctx);
|
||||
}
|
||||
|
||||
~Context() {
|
||||
BN_CTX_end(bn_ctx);
|
||||
if (root)
|
||||
BN_CTX_free(bn_ctx);
|
||||
}
|
||||
|
||||
BIGNUM *Get() {
|
||||
assert(offspring == false);
|
||||
return BN_CTX_get(bn_ctx);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class Number {
|
||||
private:
|
||||
BIGNUM *bn;
|
||||
public:
|
||||
Number(Context &ctx) : bn(ctx.Get()) {}
|
||||
Number(Context &ctx, const unsigned char *bin, int len) : bn(ctx.Get()) {
|
||||
SetBytes(bin,len);
|
||||
}
|
||||
void SetBytes(const unsigned char *bin, int len) {
|
||||
BN_bin2bn(bin, len, bn);
|
||||
}
|
||||
void GetBytes(unsigned char *bin, int len) {
|
||||
int size = BN_num_bytes(bn);
|
||||
assert(size <= len);
|
||||
::memset(bin,0,len);
|
||||
BN_bn2bin(bn, bin + size - len);
|
||||
}
|
||||
void SetModInverse(Context &ctx, const Number &x, const Number &m) {
|
||||
BN_mod_inverse(bn, x.bn, m.bn, ctx);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
17
scalar.h
Normal file
17
scalar.h
Normal file
|
@ -0,0 +1,17 @@
|
|||
#ifndef _SECP256K1_SCALAR_
|
||||
#define _SECP256K1_SCALAR_
|
||||
|
||||
#include "num.h"
|
||||
#include "consts.h"
|
||||
|
||||
namespace secp256k1 {
|
||||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141,
|
||||
* using OpenSSL's BIGNUM
|
||||
*/
|
||||
class Scalar : private Number {
|
||||
public:
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
701
secp256k1.cpp
701
secp256k1.cpp
|
@ -1,697 +1,10 @@
|
|||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <openssl/bn.h>
|
||||
#include <assert.h>
|
||||
|
||||
// #define VERIFY_MAGNITUDE 1
|
||||
|
||||
namespace secp256k1 {
|
||||
|
||||
class Context {
|
||||
private:
|
||||
BN_CTX *bn_ctx;
|
||||
bool root;
|
||||
bool offspring;
|
||||
|
||||
public:
|
||||
operator BN_CTX*() {
|
||||
return bn_ctx;
|
||||
}
|
||||
|
||||
Context() {
|
||||
bn_ctx = BN_CTX_new();
|
||||
BN_CTX_start(bn_ctx);
|
||||
root = true;
|
||||
offspring = false;
|
||||
}
|
||||
|
||||
Context(Context &par) {
|
||||
bn_ctx = par.bn_ctx;
|
||||
root = false;
|
||||
offspring = false;
|
||||
par.offspring = true;
|
||||
BN_CTX_start(bn_ctx);
|
||||
}
|
||||
|
||||
~Context() {
|
||||
BN_CTX_end(bn_ctx);
|
||||
if (root)
|
||||
BN_CTX_free(bn_ctx);
|
||||
}
|
||||
|
||||
BIGNUM *Get() {
|
||||
assert(offspring == false);
|
||||
return BN_CTX_get(bn_ctx);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class Number {
|
||||
private:
|
||||
BIGNUM *bn;
|
||||
public:
|
||||
Number(Context &ctx) : bn(ctx.Get()) {}
|
||||
Number(Context &ctx, const unsigned char *bin, int len) : bn(ctx.Get()) {
|
||||
SetBytes(bin,len);
|
||||
}
|
||||
void SetBytes(const unsigned char *bin, int len) {
|
||||
BN_bin2bn(bin, len, bn);
|
||||
}
|
||||
void GetBytes(unsigned char *bin, int len) {
|
||||
int size = BN_num_bytes(bn);
|
||||
assert(size <= len);
|
||||
::memset(bin,0,len);
|
||||
BN_bn2bin(bn, bin + size - len);
|
||||
}
|
||||
void SetModInverse(Context &ctx, const Number &x, const Number &m) {
|
||||
BN_mod_inverse(bn, x.bn, m.bn, ctx);
|
||||
}
|
||||
};
|
||||
|
||||
static const unsigned char order_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
||||
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
||||
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41};
|
||||
|
||||
static const unsigned char field_[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F};
|
||||
|
||||
class Constants {
|
||||
private:
|
||||
Context ctx;
|
||||
|
||||
public:
|
||||
const Number order;
|
||||
const Number field;
|
||||
|
||||
Constants() : order(ctx, order_, sizeof(order_)),
|
||||
field(ctx, field_, sizeof(field_)) {}
|
||||
};
|
||||
|
||||
const Constants consts;
|
||||
|
||||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141,
|
||||
* using OpenSSL's BIGNUM
|
||||
*/
|
||||
class Scalar : private Number {
|
||||
public:
|
||||
};
|
||||
|
||||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
||||
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
|
||||
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
|
||||
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
|
||||
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
|
||||
* output.
|
||||
*/
|
||||
class FieldElem {
|
||||
private:
|
||||
// X = sum(i=0..4, elem[i]*2^52)
|
||||
uint64_t n[5];
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
int magnitude;
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
/** Creates a constant field element. Magnitude=1 */
|
||||
FieldElem(int x = 0) {
|
||||
n[0] = x;
|
||||
n[1] = n[2] = n[3] = n[4] = 0;
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Normalizes the internal representation entries. Magnitude=1 */
|
||||
void Normalize() {
|
||||
uint64_t c;
|
||||
if (n[0] > 0xFFFFFFFFFFFFFULL || n[1] > 0xFFFFFFFFFFFFFULL || n[2] > 0xFFFFFFFFFFFFFULL || n[3] > 0xFFFFFFFFFFFFFULL || n[4] > 0xFFFFFFFFFFFFULL) {
|
||||
c = n[0];
|
||||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[1];
|
||||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[2];
|
||||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[3];
|
||||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + n[4];
|
||||
uint64_t t4 = c & 0x0FFFFFFFFFFFFULL;
|
||||
c >>= 48;
|
||||
if (c) {
|
||||
c = c * 0x1000003D1ULL + t0;
|
||||
t0 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t1;
|
||||
t1 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t2;
|
||||
t2 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t3;
|
||||
t3 = c & 0xFFFFFFFFFFFFFULL;
|
||||
c = (c >> 52) + t4;
|
||||
t4 = c & 0x0FFFFFFFFFFFFULL;
|
||||
c >>= 48;
|
||||
}
|
||||
n[0] = t0; n[1] = t1; n[2] = t2; n[3] = t3; n[4] = t4;
|
||||
}
|
||||
if (n[4] == 0xFFFFFFFFFFFFULL && n[3] == 0xFFFFFFFFFFFFFULL && n[2] == 0xFFFFFFFFFFFFFULL && n[1] == 0xFFFFFFFFFFFFF && n[0] >= 0xFFFFEFFFFFC2FULL) {
|
||||
n[4] = 0;
|
||||
n[3] = 0;
|
||||
n[2] = 0;
|
||||
n[1] = 0;
|
||||
n[0] -= 0xFFFFEFFFFFC2FULL;
|
||||
}
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool IsZero() {
|
||||
Normalize();
|
||||
return n[0] == 0 && n[1] == 0 && n[2] == 0 && n[3] == 0 && n[4] == 0;
|
||||
}
|
||||
|
||||
bool friend operator==(FieldElem &a, FieldElem &b) {
|
||||
a.Normalize();
|
||||
b.Normalize();
|
||||
return a.n[0] == b.n[0] && a.n[1] == b.n[1] && a.n[2] == b.n[2] && a.n[3] == b.n[3] && a.n[4] == b.n[4];
|
||||
}
|
||||
|
||||
/** extract as 32-byte big endian array */
|
||||
void GetBytes(unsigned char *o) {
|
||||
Normalize();
|
||||
for (int i=0; i<32; i++) {
|
||||
int c = 0;
|
||||
for (int j=0; j<2; j++) {
|
||||
int limb = (8*i+4*j)/52;
|
||||
int shift = (8*i+4*j)%52;
|
||||
c |= ((n[limb] >> shift) & 0xF) << (4 * j);
|
||||
}
|
||||
o[31-i] = c;
|
||||
}
|
||||
}
|
||||
|
||||
/** set value of 32-byte big endian array */
|
||||
void SetBytes(const unsigned char *in) {
|
||||
n[0] = n[1] = n[2] = n[3] = n[4] = 0;
|
||||
for (int i=0; i<32; i++) {
|
||||
for (int j=0; j<2; j++) {
|
||||
int limb = (8*i+4*j)/52;
|
||||
int shift = (8*i+4*j)%52;
|
||||
n[limb] |= (uint64_t)((in[31-i] >> (4*j)) & 0xF) << shift;
|
||||
}
|
||||
}
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Set a FieldElem to be the negative of another. Increases magnitude by one. */
|
||||
void SetNeg(const FieldElem &a, int magnitudeIn) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= magnitudeIn);
|
||||
magnitude = magnitudeIn + 1;
|
||||
#endif
|
||||
n[0] = 0xFFFFEFFFFFC2FULL * (magnitudeIn + 1) - a.n[0];
|
||||
n[1] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[1];
|
||||
n[2] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[2];
|
||||
n[3] = 0xFFFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[3];
|
||||
n[4] = 0x0FFFFFFFFFFFFULL * (magnitudeIn + 1) - a.n[4];
|
||||
}
|
||||
|
||||
/** Multiplies this FieldElem with an integer constant. Magnitude is multiplied by v */
|
||||
void operator*=(int v) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude *= v;
|
||||
#endif
|
||||
n[0] *= v;
|
||||
n[1] *= v;
|
||||
n[2] *= v;
|
||||
n[3] *= v;
|
||||
n[4] *= v;
|
||||
}
|
||||
|
||||
void operator+=(const FieldElem &a) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude += a.magnitude;
|
||||
#endif
|
||||
n[0] += a.n[0];
|
||||
n[1] += a.n[1];
|
||||
n[2] += a.n[2];
|
||||
n[3] += a.n[3];
|
||||
n[4] += a.n[4];
|
||||
}
|
||||
|
||||
/** Set this FieldElem to be the multiplication of two others. Magnitude=1 */
|
||||
void SetMult(const FieldElem &a, const FieldElem &b) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= 8);
|
||||
assert(b.magnitude <= 8);
|
||||
#endif
|
||||
__int128 c = (__int128)a.n[0] * b.n[0];
|
||||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
||||
c = c + (__int128)a.n[0] * b.n[1] +
|
||||
(__int128)a.n[1] * b.n[0];
|
||||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
||||
c = c + (__int128)a.n[0] * b.n[2] +
|
||||
(__int128)a.n[1] * b.n[1] +
|
||||
(__int128)a.n[2] * b.n[0];
|
||||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
||||
c = c + (__int128)a.n[0] * b.n[3] +
|
||||
(__int128)a.n[1] * b.n[2] +
|
||||
(__int128)a.n[2] * b.n[1] +
|
||||
(__int128)a.n[3] * b.n[0];
|
||||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
||||
c = c + (__int128)a.n[0] * b.n[4] +
|
||||
(__int128)a.n[1] * b.n[3] +
|
||||
(__int128)a.n[2] * b.n[2] +
|
||||
(__int128)a.n[3] * b.n[1] +
|
||||
(__int128)a.n[4] * b.n[0];
|
||||
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
||||
c = c + (__int128)a.n[1] * b.n[4] +
|
||||
(__int128)a.n[2] * b.n[3] +
|
||||
(__int128)a.n[3] * b.n[2] +
|
||||
(__int128)a.n[4] * b.n[1];
|
||||
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
||||
c = c + (__int128)a.n[2] * b.n[4] +
|
||||
(__int128)a.n[3] * b.n[3] +
|
||||
(__int128)a.n[4] * b.n[2];
|
||||
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
||||
c = c + (__int128)a.n[3] * b.n[4] +
|
||||
(__int128)a.n[4] * b.n[3];
|
||||
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
||||
c = c + (__int128)a.n[4] * b.n[4];
|
||||
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
||||
uint64_t t9 = c;
|
||||
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
||||
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
||||
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
||||
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
||||
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
||||
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
||||
c = t0 + (__int128)c * 0x1000003D1ULL;
|
||||
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
||||
n[1] = t1 + c;
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
magnitude = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Set this FieldElem to be the square of another. Magnitude=1 */
|
||||
void SetSquare(const FieldElem &a) {
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= 8);
|
||||
#endif
|
||||
__int128 c = (__int128)a.n[0] * a.n[0];
|
||||
uint64_t t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0FFFFFFFFFFFFFE0
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[1];
|
||||
uint64_t t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 20000000000000BF
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[2] +
|
||||
(__int128)a.n[1] * a.n[1];
|
||||
uint64_t t2 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 30000000000001A0
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[3] +
|
||||
(__int128)(a.n[1]*2) * a.n[2];
|
||||
uint64_t t3 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 4000000000000280
|
||||
c = c + (__int128)(a.n[0]*2) * a.n[4] +
|
||||
(__int128)(a.n[1]*2) * a.n[3] +
|
||||
(__int128)a.n[2] * a.n[2];
|
||||
uint64_t t4 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 320000000000037E
|
||||
c = c + (__int128)(a.n[1]*2) * a.n[4] +
|
||||
(__int128)(a.n[2]*2) * a.n[3];
|
||||
uint64_t t5 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 22000000000002BE
|
||||
c = c + (__int128)(a.n[2]*2) * a.n[4] +
|
||||
(__int128)a.n[3] * a.n[3];
|
||||
uint64_t t6 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 12000000000001DE
|
||||
c = c + (__int128)(a.n[3]*2) * a.n[4];
|
||||
uint64_t t7 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 02000000000000FE
|
||||
c = c + (__int128)a.n[4] * a.n[4];
|
||||
uint64_t t8 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 001000000000001E
|
||||
uint64_t t9 = c;
|
||||
c = t0 + (__int128)t5 * 0x1000003D10ULL;
|
||||
t0 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t1 + (__int128)t6 * 0x1000003D10ULL;
|
||||
t1 = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t2 + (__int128)t7 * 0x1000003D10ULL;
|
||||
n[2] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t3 + (__int128)t8 * 0x1000003D10ULL;
|
||||
n[3] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 0000001000003D10
|
||||
c = c + t4 + (__int128)t9 * 0x1000003D10ULL;
|
||||
n[4] = c & 0x0FFFFFFFFFFFFULL; c = c >> 48; // c max 000001000003D110
|
||||
c = t0 + (__int128)c * 0x1000003D1ULL;
|
||||
n[0] = c & 0xFFFFFFFFFFFFFULL; c = c >> 52; // c max 1000008
|
||||
n[1] = t1 + c;
|
||||
#ifdef VERIFY_MAGNITUDE
|
||||
assert(a.magnitude <= 8);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Set this to be the (modular) square root of another FieldElem. Magnitude=1 */
|
||||
void SetSquareRoot(const FieldElem &a) {
|
||||
// calculate a^p, with p={15,780,1022,1023}
|
||||
FieldElem a2; a2.SetSquare(a);
|
||||
FieldElem a3; a3.SetMult(a2,a);
|
||||
FieldElem a6; a6.SetSquare(a3);
|
||||
FieldElem a12; a12.SetSquare(a6);
|
||||
FieldElem a15; a15.SetMult(a12,a3);
|
||||
FieldElem a30; a30.SetSquare(a15);
|
||||
FieldElem a60; a60.SetSquare(a30);
|
||||
FieldElem a120; a120.SetSquare(a60);
|
||||
FieldElem a240; a240.SetSquare(a120);
|
||||
FieldElem a255; a255.SetMult(a240,a15);
|
||||
FieldElem a510; a510.SetSquare(a255);
|
||||
FieldElem a750; a750.SetMult(a510,a240);
|
||||
FieldElem a780; a780.SetMult(a750,a30);
|
||||
FieldElem a1020; a1020.SetSquare(a510);
|
||||
FieldElem a1022; a1022.SetMult(a1020,a2);
|
||||
FieldElem a1023; a1023.SetMult(a1022,a);
|
||||
FieldElem x = a15;
|
||||
for (int i=0; i<21; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1022);
|
||||
for (int i=0; i<2; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
SetMult(x,a780);
|
||||
}
|
||||
|
||||
bool IsOdd() {
|
||||
Normalize();
|
||||
return n[0] & 1;
|
||||
}
|
||||
|
||||
void SetInverse(Context &ctx, FieldElem &a) {
|
||||
unsigned char tmp[32];
|
||||
a.GetBytes(tmp);
|
||||
{
|
||||
Context cctx(ctx);
|
||||
Number n(cctx, tmp, 32);
|
||||
n.SetModInverse(cctx, n, consts.field);
|
||||
n.GetBytes(tmp, 32);
|
||||
}
|
||||
SetBytes(tmp);
|
||||
}
|
||||
|
||||
/** Set this to be the (modular) inverse of another FieldElem. Magnitude=1 */
|
||||
void SetInverse_(const FieldElem &a) {
|
||||
// calculate a^p, with p={45,63,1019,1023}
|
||||
FieldElem a2; a2.SetSquare(a);
|
||||
FieldElem a3; a3.SetMult(a2,a);
|
||||
FieldElem a4; a4.SetSquare(a2);
|
||||
FieldElem a5; a5.SetMult(a4,a);
|
||||
FieldElem a10; a10.SetSquare(a5);
|
||||
FieldElem a11; a11.SetMult(a10,a);
|
||||
FieldElem a21; a21.SetMult(a11,a10);
|
||||
FieldElem a42; a42.SetSquare(a21);
|
||||
FieldElem a45; a45.SetMult(a42,a3);
|
||||
FieldElem a63; a63.SetMult(a42,a21);
|
||||
FieldElem a126; a126.SetSquare(a63);
|
||||
FieldElem a252; a252.SetSquare(a126);
|
||||
FieldElem a504; a504.SetSquare(a252);
|
||||
FieldElem a1008; a1008.SetSquare(a504);
|
||||
FieldElem a1019; a1019.SetMult(a1008,a11);
|
||||
FieldElem a1023; a1023.SetMult(a1019,a4);
|
||||
FieldElem x = a63;
|
||||
for (int i=0; i<21; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1019);
|
||||
for (int i=0; i<2; i++) {
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
x.SetMult(x,a1023);
|
||||
}
|
||||
for (int j=0; j<10; j++) x.SetSquare(x);
|
||||
SetMult(x,a45);
|
||||
}
|
||||
|
||||
std::string ToString() {
|
||||
unsigned char tmp[32];
|
||||
GetBytes(tmp);
|
||||
std::string ret;
|
||||
for (int i=0; i<32; i++) {
|
||||
static const char *c = "0123456789ABCDEF";
|
||||
ret += c[(tmp[i] >> 4) & 0xF];
|
||||
ret += c[(tmp[i]) & 0xF];
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void SetHex(const std::string &str) {
|
||||
unsigned char tmp[32] = {};
|
||||
static const int cvt[256] = {0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 1, 2, 3, 4, 5, 6,7,8,9,0,0,0,0,0,0,
|
||||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,
|
||||
0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0};
|
||||
for (int i=0; i<32; i++) {
|
||||
if (str.length() > i*2)
|
||||
tmp[i] = (cvt[(unsigned char)str[2*i]] << 4) + cvt[(unsigned char)str[2*i+1]];
|
||||
}
|
||||
SetBytes(tmp);
|
||||
}
|
||||
};
|
||||
|
||||
class GroupElem {
|
||||
protected:
|
||||
bool fInfinity;
|
||||
FieldElem x;
|
||||
FieldElem y;
|
||||
|
||||
public:
|
||||
|
||||
/** Creates the point at infinity */
|
||||
GroupElem() {
|
||||
fInfinity = true;
|
||||
}
|
||||
|
||||
/** Creates the point with given affine coordinates */
|
||||
GroupElem(const FieldElem &xin, const FieldElem &yin) {
|
||||
fInfinity = false;
|
||||
x = xin;
|
||||
y = yin;
|
||||
}
|
||||
|
||||
/** Checks whether this is the point at infinity */
|
||||
bool IsInfinity() const {
|
||||
return fInfinity;
|
||||
}
|
||||
|
||||
void SetNeg(GroupElem &p) {
|
||||
fInfinity = p.fInfinity;
|
||||
x = p.x;
|
||||
p.y.Normalize();
|
||||
y.SetNeg(p.y, 1);
|
||||
}
|
||||
|
||||
std::string ToString() {
|
||||
if (fInfinity)
|
||||
return "(inf)";
|
||||
return "(" + x.ToString() + "," + y.ToString() + ")";
|
||||
}
|
||||
|
||||
friend class GroupElemJac;
|
||||
};
|
||||
|
||||
class GroupElemJac : public GroupElem {
|
||||
protected:
|
||||
FieldElem z;
|
||||
|
||||
public:
|
||||
/** Creates the point at infinity */
|
||||
GroupElemJac() : GroupElem(), z(1) {}
|
||||
|
||||
/** Creates the point with given affine coordinates */
|
||||
GroupElemJac(const FieldElem &xin, const FieldElem &yin) : GroupElem(xin,yin), z(1) {}
|
||||
|
||||
/** Checks whether this is a non-infinite point on the curve */
|
||||
bool IsValid() {
|
||||
if (IsInfinity())
|
||||
return false;
|
||||
// y^2 = x^3 + 7
|
||||
// (Y/Z^3)^2 = (X/Z^2)^3 + 7
|
||||
// Y^2 / Z^6 = X^3 / Z^6 + 7
|
||||
// Y^2 = X^3 + 7*Z^6
|
||||
FieldElem y2; y2.SetSquare(y);
|
||||
FieldElem x3; x3.SetSquare(x); x3.SetMult(x3,x);
|
||||
FieldElem z2; z2.SetSquare(z);
|
||||
FieldElem z6; z6.SetSquare(z2); z6.SetMult(z6,z2);
|
||||
z6 *= 7;
|
||||
x3 += z6;
|
||||
return y2 == x3;
|
||||
}
|
||||
|
||||
/** Returns the affine coordinates of this point */
|
||||
void GetAffine(Context &ctx, GroupElem &aff) {
|
||||
z.SetInverse(ctx, z);
|
||||
FieldElem z2;
|
||||
z2.SetSquare(z);
|
||||
FieldElem z3;
|
||||
z3.SetMult(z,z2);
|
||||
x.SetMult(x,z2);
|
||||
y.SetMult(y,z3);
|
||||
z = FieldElem(1);
|
||||
aff.fInfinity = false;
|
||||
aff.x = x;
|
||||
aff.y = y;
|
||||
}
|
||||
|
||||
/** Sets this point to have a given X coordinate & given Y oddness */
|
||||
void SetCompressed(const FieldElem &xin, bool fOdd) {
|
||||
x = xin;
|
||||
FieldElem x2; x2.SetSquare(x);
|
||||
FieldElem x3; x3.SetMult(x,x2);
|
||||
fInfinity = false;
|
||||
FieldElem c(7);
|
||||
c += x3;
|
||||
y.SetSquareRoot(c);
|
||||
z = FieldElem(1);
|
||||
if (y.IsOdd() != fOdd)
|
||||
y.SetNeg(y,1);
|
||||
}
|
||||
|
||||
/** Sets this point to be the EC double of another */
|
||||
void SetDouble(const GroupElemJac &p) {
|
||||
if (p.fInfinity || y.IsZero()) {
|
||||
fInfinity = true;
|
||||
return;
|
||||
}
|
||||
|
||||
FieldElem t1,t2,t3,t4,t5;
|
||||
z.SetMult(p.y,p.z);
|
||||
z *= 2; // Z' = 2*Y*Z (2)
|
||||
t1.SetSquare(p.x);
|
||||
t1 *= 3; // T1 = 3*X^2 (3)
|
||||
t2.SetSquare(t1); // T2 = 9*X^4 (1)
|
||||
t3.SetSquare(p.y);
|
||||
t3 *= 2; // T3 = 2*Y^2 (2)
|
||||
t4.SetSquare(t3);
|
||||
t4 *= 2; // T4 = 8*Y^4 (2)
|
||||
t3.SetMult(p.x,t3); // T3 = 2*X*Y^2 (1)
|
||||
x = t3;
|
||||
x *= 4; // X' = 8*X*Y^2 (4)
|
||||
x.SetNeg(x,4); // X' = -8*X*Y^2 (5)
|
||||
x += t2; // X' = 9*X^4 - 8*X*Y^2 (6)
|
||||
t2.SetNeg(t2,1); // T2 = -9*X^4 (2)
|
||||
t3 *= 6; // T3 = 12*X*Y^2 (6)
|
||||
t3 += t2; // T3 = 12*X*Y^2 - 9*X^4 (8)
|
||||
y.SetMult(t1,t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1)
|
||||
t2.SetNeg(t4,2); // T2 = -8*Y^4 (3)
|
||||
y += t2; // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4)
|
||||
}
|
||||
|
||||
/** Sets this point to be the EC addition of two others */
|
||||
void SetAdd(const GroupElemJac &p, const GroupElemJac &q) {
|
||||
if (p.fInfinity) {
|
||||
*this = q;
|
||||
return;
|
||||
}
|
||||
if (q.fInfinity) {
|
||||
*this = p;
|
||||
return;
|
||||
}
|
||||
fInfinity = false;
|
||||
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y, &z2 = q.z;
|
||||
FieldElem z22; z22.SetSquare(z2);
|
||||
FieldElem z12; z12.SetSquare(z1);
|
||||
FieldElem u1; u1.SetMult(x1, z22);
|
||||
FieldElem u2; u2.SetMult(x2, z12);
|
||||
FieldElem s1; s1.SetMult(y1, z22); s1.SetMult(s1, z2);
|
||||
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
|
||||
if (u1 == u2) {
|
||||
if (s1 == s2) {
|
||||
SetDouble(p);
|
||||
} else {
|
||||
fInfinity = true;
|
||||
}
|
||||
return;
|
||||
}
|
||||
FieldElem h; h.SetNeg(u1,1); h += u2;
|
||||
FieldElem r; r.SetNeg(s1,1); r += s2;
|
||||
FieldElem r2; r2.SetSquare(r);
|
||||
FieldElem h2; h2.SetSquare(h);
|
||||
FieldElem h3; h3.SetMult(h,h2);
|
||||
z.SetMult(z1,z2); z.SetMult(z, h);
|
||||
FieldElem t; t.SetMult(u1,h2);
|
||||
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
|
||||
y.SetNeg(x,5); y += t; y.SetMult(y,r);
|
||||
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
|
||||
y += h3;
|
||||
}
|
||||
|
||||
/** Sets this point to be the EC addition of two others (one of which is in affine coordinates) */
|
||||
void SetAdd(const GroupElemJac &p, const GroupElem &q) {
|
||||
if (p.fInfinity) {
|
||||
x = q.x;
|
||||
y = q.y;
|
||||
fInfinity = q.fInfinity;
|
||||
z = FieldElem(1);
|
||||
return;
|
||||
}
|
||||
if (q.fInfinity) {
|
||||
*this = p;
|
||||
return;
|
||||
}
|
||||
fInfinity = false;
|
||||
const FieldElem &x1 = p.x, &y1 = p.y, &z1 = p.z, &x2 = q.x, &y2 = q.y;
|
||||
FieldElem z12; z12.SetSquare(z1);
|
||||
FieldElem u1 = x1; u1.Normalize();
|
||||
FieldElem u2; u2.SetMult(x2, z12);
|
||||
FieldElem s1 = y1; s1.Normalize();
|
||||
FieldElem s2; s2.SetMult(y2, z12); s2.SetMult(s2, z1);
|
||||
if (u1 == u2) {
|
||||
if (s1 == s2) {
|
||||
SetDouble(p);
|
||||
} else {
|
||||
fInfinity = true;
|
||||
}
|
||||
return;
|
||||
}
|
||||
FieldElem h; h.SetNeg(u1,1); h += u2;
|
||||
FieldElem r; r.SetNeg(s1,1); r += s2;
|
||||
FieldElem r2; r2.SetSquare(r);
|
||||
FieldElem h2; h2.SetSquare(h);
|
||||
FieldElem h3; h3.SetMult(h,h2);
|
||||
z = p.z; z.SetMult(z, h);
|
||||
FieldElem t; t.SetMult(u1,h2);
|
||||
x = t; x *= 2; x += h3; x.SetNeg(x,3); x += r2;
|
||||
y.SetNeg(x,5); y += t; y.SetMult(y,r);
|
||||
h3.SetMult(h3,s1); h3.SetNeg(h3,1);
|
||||
y += h3;
|
||||
}
|
||||
|
||||
std::string ToString() {
|
||||
Context ctx;
|
||||
GroupElem aff;
|
||||
GetAffine(ctx,aff);
|
||||
return aff.ToString();
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#include "num.h"
|
||||
#include "consts.h"
|
||||
#include "scalar.h"
|
||||
#include "field.h"
|
||||
#include "group.h"
|
||||
|
||||
using namespace secp256k1;
|
||||
|
||||
|
@ -703,13 +16,13 @@ int main() {
|
|||
printf("%s\n",f1.ToString().c_str());
|
||||
// printf("%s\n",f2.ToString().c_str());
|
||||
for (int i=0; i<1000000; i++) {
|
||||
f1.SetInverse(ctx,f1);
|
||||
f1.SetInverse_Number(ctx,f1);
|
||||
// f2.SetInverse_(f2);
|
||||
// if (!(f1 == f2)) {
|
||||
// printf("f1 %i: %s\n",i,f1.ToString().c_str());
|
||||
// printf("f2 %i: %s\n",i,f2.ToString().c_str());
|
||||
// }
|
||||
f1 *= 2;
|
||||
// f1 *= 2;
|
||||
// f2 *= 2;
|
||||
}
|
||||
printf("%s\n",f1.ToString().c_str());
|
||||
|
|
Loading…
Reference in a new issue