diff --git a/src/field_10x26_impl.h b/src/field_10x26_impl.h index 2c7e5c27cc..4736e3e2ed 100644 --- a/src/field_10x26_impl.h +++ b/src/field_10x26_impl.h @@ -1063,7 +1063,7 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { #endif } -static inline void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) { +static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) { uint32_t mask0 = flag + ~((uint32_t)0), mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); @@ -1089,7 +1089,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_f r->n[7] = a->n[8] >> 16 | a->n[9] << 10; } -static inline void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) { +static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) { r->n[0] = a->n[0] & 0x3FFFFFFUL; r->n[1] = a->n[0] >> 26 | ((a->n[1] << 6) & 0x3FFFFFFUL); r->n[2] = a->n[1] >> 20 | ((a->n[2] << 12) & 0x3FFFFFFUL); diff --git a/src/tests.c b/src/tests.c index f99e22a881..ad7c915242 100644 --- a/src/tests.c +++ b/src/tests.c @@ -36,12 +36,12 @@ void random_field_element_test(secp256k1_fe_t *fe) { } void random_field_element_magnitude(secp256k1_fe_t *fe) { + secp256k1_fe_t zero; int n = secp256k1_rand32() % 9; secp256k1_fe_normalize(fe); if (n == 0) { return; } - secp256k1_fe_t zero; secp256k1_fe_clear(&zero); secp256k1_fe_negate(&zero, &zero, 0); secp256k1_fe_mul_int(&zero, n - 1); @@ -61,14 +61,15 @@ void random_group_element_test(secp256k1_ge_t *ge) { } void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) { + secp256k1_fe_t z2, z3; do { random_field_element_test(&gej->z); if (!secp256k1_fe_is_zero(&gej->z)) { break; } } while(1); - secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &gej->z); - secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z2, &gej->z); + secp256k1_fe_sqr(&z2, &gej->z); + secp256k1_fe_mul(&z3, &z2, &gej->z); secp256k1_fe_mul(&gej->x, &ge->x, &z2); secp256k1_fe_mul(&gej->y, &ge->y, &z3); gej->infinity = ge->infinity; @@ -77,8 +78,8 @@ void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge void random_scalar_order_test(secp256k1_scalar_t *num) { do { unsigned char b32[32]; - secp256k1_rand256_test(b32); int overflow = 0; + secp256k1_rand256_test(b32); secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) continue; @@ -89,8 +90,8 @@ void random_scalar_order_test(secp256k1_scalar_t *num) { void random_scalar_order(secp256k1_scalar_t *num) { do { unsigned char b32[32]; - secp256k1_rand256(b32); int overflow = 0; + secp256k1_rand256(b32); secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) continue; @@ -117,16 +118,17 @@ void run_sha256_tests(void) { {0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42}, {0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8} }; - for (int i = 0; i < 8; i++) { + int i; + for (i = 0; i < 8; i++) { + unsigned char out[32]; secp256k1_sha256_t hasher; secp256k1_sha256_initialize(&hasher); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); - unsigned char out[32]; secp256k1_sha256_finalize(&hasher, out); CHECK(memcmp(out, outputs[i], 32) == 0); if (strlen(inputs[i]) > 0) { - secp256k1_sha256_initialize(&hasher); int split = secp256k1_rand32() % strlen(inputs[i]); + secp256k1_sha256_initialize(&hasher); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); secp256k1_sha256_finalize(&hasher, out); @@ -160,16 +162,17 @@ void run_hmac_sha256_tests(void) { {0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54}, {0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2} }; - for (int i = 0; i < 6; i++) { + int i; + for (i = 0; i < 6; i++) { secp256k1_hmac_sha256_t hasher; + unsigned char out[32]; secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); - unsigned char out[32]; secp256k1_hmac_sha256_finalize(&hasher, out); CHECK(memcmp(out, outputs[i], 32) == 0); if (strlen(inputs[i]) > 0) { - secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); int split = secp256k1_rand32() % strlen(inputs[i]); + secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); secp256k1_hmac_sha256_finalize(&hasher, out); @@ -197,16 +200,17 @@ void run_rfc6979_hmac_sha256_tests(void) { secp256k1_rfc6979_hmac_sha256_t rng; unsigned char out[32]; + int i; secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32); - for (int i = 0; i < 3; i++) { + for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); CHECK(memcmp(out, out1[i], 32) == 0); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32); - for (int i = 0; i < 3; i++) { + for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); CHECK(memcmp(out, out2[i], 32) == 0); } @@ -254,9 +258,10 @@ void test_num_negate(void) { } void test_num_add_sub(void) { - int r = secp256k1_rand32(); secp256k1_num_t n1; secp256k1_num_t n2; + secp256k1_num_t n1p2, n2p1, n1m2, n2m1; + int r = secp256k1_rand32(); random_num_order_test(&n1); /* n1 = R1 */ if (r & 1) { random_num_negate(&n1); @@ -265,7 +270,6 @@ void test_num_add_sub(void) { if (r & 2) { random_num_negate(&n2); } - secp256k1_num_t n1p2, n2p1, n1m2, n2m1; secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */ secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */ secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */ @@ -283,7 +287,8 @@ void test_num_add_sub(void) { } void run_num_smalltests(void) { - for (int i=0; i<100*count; i++) { + int i; + for (i = 0; i < 100*count; i++) { test_num_negate(); test_num_add_sub(); } @@ -293,41 +298,45 @@ void run_num_smalltests(void) { /***** SCALAR TESTS *****/ void scalar_test(void) { + secp256k1_scalar_t s; + secp256k1_scalar_t s1; + secp256k1_scalar_t s2; +#ifndef USE_NUM_NONE + secp256k1_num_t snum, s1num, s2num; + secp256k1_num_t order, half_order; +#endif unsigned char c[32]; /* Set 's' to a random scalar, with value 'snum'. */ - secp256k1_scalar_t s; random_scalar_order_test(&s); /* Set 's1' to a random scalar, with value 's1num'. */ - secp256k1_scalar_t s1; random_scalar_order_test(&s1); /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */ - secp256k1_scalar_t s2; random_scalar_order_test(&s2); secp256k1_scalar_get_b32(c, &s2); #ifndef USE_NUM_NONE - secp256k1_num_t snum, s1num, s2num; secp256k1_scalar_get_num(&snum, &s); secp256k1_scalar_get_num(&s1num, &s1); secp256k1_scalar_get_num(&s2num, &s2); - secp256k1_num_t order; secp256k1_scalar_order_get_num(&order); - secp256k1_num_t half_order = order; + half_order = order; secp256k1_num_shift(&half_order, 1); #endif { + int i; /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */ secp256k1_scalar_t n; secp256k1_scalar_set_int(&n, 0); - for (int i = 0; i < 256; i += 4) { + for (i = 0; i < 256; i += 4) { secp256k1_scalar_t t; + int j; secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4)); - for (int j = 0; j < 4; j++) { + for (j = 0; j < 4; j++) { secp256k1_scalar_add(&n, &n, &n); } secp256k1_scalar_add(&n, &n, &t); @@ -338,16 +347,17 @@ void scalar_test(void) { { /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */ secp256k1_scalar_t n; - secp256k1_scalar_set_int(&n, 0); int i = 0; + secp256k1_scalar_set_int(&n, 0); while (i < 256) { + secp256k1_scalar_t t; + int j; int now = (secp256k1_rand32() % 15) + 1; if (now + i > 256) { now = 256 - i; } - secp256k1_scalar_t t; secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now)); - for (int j = 0; j < now; j++) { + for (j = 0; j < now; j++) { secp256k1_scalar_add(&n, &n, &n); } secp256k1_scalar_add(&n, &n, &t); @@ -360,23 +370,23 @@ void scalar_test(void) { { /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */ secp256k1_num_t rnum; + secp256k1_num_t r2num; + secp256k1_scalar_t r; secp256k1_num_add(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_t r; secp256k1_scalar_add(&r, &s, &s2); - secp256k1_num_t r2num; secp256k1_scalar_get_num(&r2num, &r); CHECK(secp256k1_num_eq(&rnum, &r2num)); } { /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */ + secp256k1_scalar_t r; + secp256k1_num_t r2num; secp256k1_num_t rnum; secp256k1_num_mul(&rnum, &snum, &s2num); secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_t r; secp256k1_scalar_mul(&r, &s, &s2); - secp256k1_num_t r2num; secp256k1_scalar_get_num(&r2num, &r); CHECK(secp256k1_num_eq(&rnum, &r2num)); /* The result can only be zero if at least one of the factors was zero. */ @@ -387,20 +397,20 @@ void scalar_test(void) { } { + secp256k1_scalar_t neg; + secp256k1_num_t negnum; + secp256k1_num_t negnum2; /* Check that comparison with zero matches comparison with zero on the number. */ CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s)); /* Check that comparison with the half order is equal to testing for high scalar. */ CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0)); - secp256k1_scalar_t neg; secp256k1_scalar_negate(&neg, &s); - secp256k1_num_t negnum; secp256k1_num_sub(&negnum, &order, &snum); secp256k1_num_mod(&negnum, &order); /* Check that comparison with the half order is equal to testing for high scalar after negation. */ CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0)); /* Negating should change the high property, unless the value was already zero. */ CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s)); - secp256k1_num_t negnum2; secp256k1_scalar_get_num(&negnum2, &neg); /* Negating a scalar should be equal to (order - n) mod order on the number. */ CHECK(secp256k1_num_eq(&negnum, &negnum2)); @@ -415,17 +425,17 @@ void scalar_test(void) { { /* Test secp256k1_scalar_mul_shift_var. */ secp256k1_scalar_t r; + secp256k1_num_t one; + secp256k1_num_t rnum; + secp256k1_num_t rnum2; + unsigned char cone[1] = {0x01}; unsigned int shift = 256 + (secp256k1_rand32() % 257); secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift); - secp256k1_num_t rnum; secp256k1_num_mul(&rnum, &s1num, &s2num); secp256k1_num_shift(&rnum, shift - 1); - secp256k1_num_t one; - unsigned char cone[1] = {0x01}; secp256k1_num_set_bin(&one, cone, 1); secp256k1_num_add(&rnum, &rnum, &one); secp256k1_num_shift(&rnum, 1); - secp256k1_num_t rnum2; secp256k1_scalar_get_num(&rnum2, &r); CHECK(secp256k1_num_eq(&rnum, &rnum2)); } @@ -435,11 +445,13 @@ void scalar_test(void) { /* Test that scalar inverses are equal to the inverse of their number modulo the order. */ if (!secp256k1_scalar_is_zero(&s)) { secp256k1_scalar_t inv; - secp256k1_scalar_inverse(&inv, &s); #ifndef USE_NUM_NONE secp256k1_num_t invnum; - secp256k1_num_mod_inverse(&invnum, &snum, &order); secp256k1_num_t invnum2; +#endif + secp256k1_scalar_inverse(&inv, &s); +#ifndef USE_NUM_NONE + secp256k1_num_mod_inverse(&invnum, &snum, &order); secp256k1_scalar_get_num(&invnum2, &inv); CHECK(secp256k1_num_eq(&invnum, &invnum2)); #endif @@ -461,15 +473,18 @@ void scalar_test(void) { } { + secp256k1_scalar_t r1, r2; + secp256k1_scalar_t b; + int i; /* Test add_bit. */ int bit = secp256k1_rand32() % 256; - secp256k1_scalar_t b; secp256k1_scalar_set_int(&b, 1); CHECK(secp256k1_scalar_is_one(&b)); - for (int i = 0; i < bit; i++) { + for (i = 0; i < bit; i++) { secp256k1_scalar_add(&b, &b, &b); } - secp256k1_scalar_t r1 = s1, r2 = s1; + r1 = s1; + r2 = s1; if (!secp256k1_scalar_add(&r1, &r1, &b)) { /* No overflow happened. */ secp256k1_scalar_add_bit(&r2, bit); @@ -551,7 +566,8 @@ void scalar_test(void) { } void run_scalar_tests(void) { - for (int i = 0; i < 128 * count; i++) { + int i; + for (i = 0; i < 128 * count; i++) { scalar_test(); } @@ -571,11 +587,11 @@ void run_scalar_tests(void) { { /* A scalar with value of the curve order should be 0. */ secp256k1_num_t order; - secp256k1_scalar_order_get_num(&order); - unsigned char bin[32]; - secp256k1_num_get_bin(bin, 32, &order); secp256k1_scalar_t zero; + unsigned char bin[32]; int overflow = 0; + secp256k1_scalar_order_get_num(&order); + secp256k1_num_get_bin(bin, 32, &order); secp256k1_scalar_set_b32(&zero, bin, &overflow); CHECK(overflow == 1); CHECK(secp256k1_scalar_is_zero(&zero)); @@ -608,22 +624,26 @@ void random_fe_non_zero(secp256k1_fe_t *nz) { } void random_fe_non_square(secp256k1_fe_t *ns) { - random_fe_non_zero(ns); secp256k1_fe_t r; + random_fe_non_zero(ns); if (secp256k1_fe_sqrt_var(&r, ns)) { secp256k1_fe_negate(ns, ns, 1); } } int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { - secp256k1_fe_t an = *a; secp256k1_fe_normalize_weak(&an); - secp256k1_fe_t bn = *b; secp256k1_fe_normalize_var(&bn); + secp256k1_fe_t an = *a; + secp256k1_fe_t bn = *b; + secp256k1_fe_normalize_weak(&an); + secp256k1_fe_normalize_var(&bn); return secp256k1_fe_equal_var(&an, &bn); } int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) { - secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai); - secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1); + secp256k1_fe_t x; + secp256k1_fe_t one; + secp256k1_fe_mul(&x, a, ai); + secp256k1_fe_set_int(&one, 1); return check_fe_equal(&x, &one); } @@ -675,8 +695,10 @@ void run_field_misc(void) { secp256k1_fe_t z; secp256k1_fe_t q; secp256k1_fe_t fe5; + int i; CHECK(secp256k1_fe_set_b32(&fe5, f32_5)); - for (int i=0; i<5*count; i++) { + for (i = 0; i < 5*count; i++) { + secp256k1_fe_storage_t xs, ys, zs; random_fe(&x); random_fe_non_zero(&y); /* Test the fe equality and comparison operations. */ @@ -686,7 +708,6 @@ void run_field_misc(void) { secp256k1_fe_add(&z,&y); secp256k1_fe_normalize(&z); /* Test storage conversion and conditional moves. */ - secp256k1_fe_storage_t xs, ys, zs; secp256k1_fe_to_storage(&xs, &x); secp256k1_fe_to_storage(&ys, &y); secp256k1_fe_to_storage(&zs, &z); @@ -720,7 +741,8 @@ void run_field_misc(void) { void run_field_inv(void) { secp256k1_fe_t x, xi, xii; - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { random_fe_non_zero(&x); secp256k1_fe_inv(&xi, &x); CHECK(check_fe_inverse(&x, &xi)); @@ -731,7 +753,8 @@ void run_field_inv(void) { void run_field_inv_var(void) { secp256k1_fe_t x, xi, xii; - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { random_fe_non_zero(&x); secp256k1_fe_inv_var(&xi, &x); CHECK(check_fe_inverse(&x, &xi)); @@ -742,17 +765,19 @@ void run_field_inv_var(void) { void run_field_inv_all_var(void) { secp256k1_fe_t x[16], xi[16], xii[16]; + int i; /* Check it's safe to call for 0 elements */ secp256k1_fe_inv_all_var(0, xi, x); - for (int i=0; iinfinity == b->infinity); if (a->infinity) return; /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */ - secp256k1_fe_t z2s; secp256k1_fe_sqr(&z2s, &b->z); - secp256k1_fe_t u1, u2, s1, s2; secp256k1_fe_mul(&u1, &a->x, &z2s); u2 = b->x; secp256k1_fe_normalize_weak(&u2); secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z); @@ -845,6 +873,7 @@ void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) { } void test_ge(void) { + int i, i1; int runs = 4; /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4). * The second in each pair of identical points uses a random Z coordinate in the Jacobian form. @@ -856,7 +885,8 @@ void test_ge(void) { secp256k1_gej_set_infinity(&gej[0]); secp256k1_ge_clear(&ge[0]); secp256k1_ge_set_gej_var(&ge[0], &gej[0]); - for (int i = 0; i < runs; i++) { + for (i = 0; i < runs; i++) { + int j; secp256k1_ge_t g; random_group_element_test(&g); ge[1 + 4 * i] = g; @@ -867,7 +897,7 @@ void test_ge(void) { random_group_element_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]); secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]); random_group_element_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]); - for (int j = 0; j < 4; j++) { + for (j = 0; j < 4; j++) { random_field_element_magnitude(&ge[1 + j + 4 * i].x); random_field_element_magnitude(&ge[1 + j + 4 * i].y); random_field_element_magnitude(&gej[1 + j + 4 * i].x); @@ -876,8 +906,9 @@ void test_ge(void) { } } - for (int i1 = 0; i1 < 1 + 4 * runs; i1++) { - for (int i2 = 0; i2 < 1 + 4 * runs; i2++) { + for (i1 = 0; i1 < 1 + 4 * runs; i1++) { + int i2; + for (i2 = 0; i2 < 1 + 4 * runs; i2++) { /* Compute reference result using gej + gej (var). */ secp256k1_gej_t refj, resj; secp256k1_ge_t ref; @@ -925,11 +956,12 @@ void test_ge(void) { /* Test adding all points together in random order equals infinity. */ { + secp256k1_gej_t sum; secp256k1_gej_t *gej_shuffled = malloc((4 * runs + 1) * sizeof(secp256k1_gej_t)); - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { gej_shuffled[i] = gej[i]; } - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { int swap = i + secp256k1_rand32() % (4 * runs + 1 - i); if (swap != i) { secp256k1_gej_t t = gej_shuffled[i]; @@ -937,9 +969,8 @@ void test_ge(void) { gej_shuffled[swap] = t; } } - secp256k1_gej_t sum; secp256k1_gej_set_infinity(&sum); - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]); } CHECK(secp256k1_gej_is_infinity(&sum)); @@ -950,7 +981,7 @@ void test_ge(void) { { secp256k1_ge_t *ge_set_all = malloc((4 * runs + 1) * sizeof(secp256k1_ge_t)); secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej); - for (int i = 0; i < 4 * runs + 1; i++) { + for (i = 0; i < 4 * runs + 1; i++) { ge_equals_gej(&ge_set_all[i], &gej[i]); } free(ge_set_all); @@ -961,7 +992,8 @@ void test_ge(void) { } void run_ge(void) { - for (int i = 0; i < count * 32; i++) { + int i; + for (i = 0; i < count * 32; i++) { test_ge(); } } @@ -969,10 +1001,18 @@ void run_ge(void) { /***** ECMULT TESTS *****/ void run_ecmult_chain(void) { - /* random starting point A (on the curve) */ - secp256k1_fe_t ax; VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004")); - secp256k1_fe_t ay; VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f")); - secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay); + secp256k1_gej_t a; + secp256k1_gej_t x; + secp256k1_gej_t x2; + secp256k1_fe_t ax; + secp256k1_fe_t ay; + secp256k1_scalar_t xn; + secp256k1_scalar_t gn; + secp256k1_scalar_t xf; + secp256k1_scalar_t gf; + secp256k1_scalar_t ae; + secp256k1_scalar_t ge; + int i; /* two random initial factors xn and gn */ static const unsigned char xni[32] = { 0x84, 0xcc, 0x54, 0x52, 0xf7, 0xfd, 0xe1, 0xed, @@ -980,31 +1020,31 @@ void run_ecmult_chain(void) { 0xce, 0xf3, 0x1f, 0x14, 0x6e, 0x56, 0x9b, 0xe9, 0x70, 0x5d, 0x35, 0x7a, 0x42, 0x98, 0x54, 0x07 }; - secp256k1_scalar_t xn; - secp256k1_scalar_set_b32(&xn, xni, NULL); static const unsigned char gni[32] = { 0xa1, 0xe5, 0x8d, 0x22, 0x55, 0x3d, 0xcd, 0x42, 0xb2, 0x39, 0x80, 0x62, 0x5d, 0x4c, 0x57, 0xa9, 0x6e, 0x93, 0x23, 0xd4, 0x2b, 0x31, 0x52, 0xe5, 0xca, 0x2c, 0x39, 0x90, 0xed, 0xc7, 0xc9, 0xde }; - secp256k1_scalar_t gn; - secp256k1_scalar_set_b32(&gn, gni, NULL); /* two small multipliers to be applied to xn and gn in every iteration: */ static const unsigned char xfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x13,0x37}; - secp256k1_scalar_t xf; - secp256k1_scalar_set_b32(&xf, xfi, NULL); static const unsigned char gfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x71,0x13}; - secp256k1_scalar_t gf; + char res[131]; + char res2[131]; + /* random starting point A (on the curve) */ + VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004")); + VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f")); + secp256k1_gej_set_xy(&a, &ax, &ay); + secp256k1_scalar_set_b32(&xn, xni, NULL); + secp256k1_scalar_set_b32(&gn, gni, NULL); + secp256k1_scalar_set_b32(&xf, xfi, NULL); secp256k1_scalar_set_b32(&gf, gfi, NULL); /* accumulators with the resulting coefficients to A and G */ - secp256k1_scalar_t ae; secp256k1_scalar_set_int(&ae, 1); - secp256k1_scalar_t ge; secp256k1_scalar_set_int(&ge, 0); /* the point being computed */ - secp256k1_gej_t x = a; - for (int i=0; i<200*count; i++) { + x = a; + for (i = 0; i < 200*count; i++) { /* in each iteration, compute X = xn*X + gn*G; */ secp256k1_ecmult(&x, &x, &xn, &gn); /* also compute ae and ge: the actual accumulated factors for A and G */ @@ -1018,72 +1058,72 @@ void run_ecmult_chain(void) { /* verify */ if (i == 19999) { - char res[131]; secp256k1_gej_get_hex(res, &x); CHECK(memcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)", 131) == 0); } } /* redo the computation, but directly with the resulting ae and ge coefficients: */ - secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge); - char res[131]; - char res2[131]; + secp256k1_ecmult(&x2, &a, &ae, &ge); secp256k1_gej_get_hex(res, &x); secp256k1_gej_get_hex(res2, &x2); CHECK(memcmp(res, res2, 131) == 0); } void test_point_times_order(const secp256k1_gej_t *point) { - unsigned char pub[65]; /* X * (point + G) + (order-X) * (pointer + G) = 0 */ secp256k1_scalar_t x; - random_scalar_order_test(&x); secp256k1_scalar_t nx; - secp256k1_scalar_negate(&nx, &x); secp256k1_gej_t res1, res2; + secp256k1_ge_t res3; + unsigned char pub[65]; + int psize = 65; + random_scalar_order_test(&x); + secp256k1_scalar_negate(&nx, &x); secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */ secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ secp256k1_gej_add_var(&res1, &res1, &res2); CHECK(secp256k1_gej_is_infinity(&res1)); CHECK(secp256k1_gej_is_valid_var(&res1) == 0); - secp256k1_ge_t res3; secp256k1_ge_set_gej(&res3, &res1); CHECK(secp256k1_ge_is_infinity(&res3)); CHECK(secp256k1_ge_is_valid_var(&res3) == 0); - int psize = 65; CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0); psize = 65; CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0); } void run_point_times_order(void) { + int i; + char c[64]; secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "0000000000000000000000000000000000000000000000000000000000000002")); - for (int i=0; i<500; i++) { + for (i = 0; i < 500; i++) { secp256k1_ge_t p; if (secp256k1_ge_set_xo_var(&p, &x, 1)) { - CHECK(secp256k1_ge_is_valid_var(&p)); secp256k1_gej_t j; + CHECK(secp256k1_ge_is_valid_var(&p)); secp256k1_gej_set_ge(&j, &p); CHECK(secp256k1_gej_is_valid_var(&j)); test_point_times_order(&j); } secp256k1_fe_sqr(&x, &x); } - char c[64]; secp256k1_fe_get_hex(c, &x); CHECK(memcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45", 64) == 0); } void test_wnaf(const secp256k1_scalar_t *number, int w) { secp256k1_scalar_t x, two, t; + int wnaf[256]; + int zeroes = -1; + int i; + int bits; secp256k1_scalar_set_int(&x, 0); secp256k1_scalar_set_int(&two, 2); - int wnaf[256]; - int bits = secp256k1_ecmult_wnaf(wnaf, number, w); + bits = secp256k1_ecmult_wnaf(wnaf, number, w); CHECK(bits <= 256); - int zeroes = -1; - for (int i=bits-1; i>=0; i--) { - secp256k1_scalar_mul(&x, &x, &two); + for (i = bits-1; i >= 0; i--) { int v = wnaf[i]; + secp256k1_scalar_mul(&x, &x, &two); if (v) { CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */ zeroes=0; @@ -1106,8 +1146,9 @@ void test_wnaf(const secp256k1_scalar_t *number, int w) { } void run_wnaf(void) { + int i; secp256k1_scalar_t n; - for (int i=0; i= 0 && recid < 4); CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); - secp256k1_scalar_t one; secp256k1_scalar_set_int(&one, 1); secp256k1_scalar_add(&msg, &msg, &one); CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); } void run_ecdsa_sign_verify(void) { - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { test_ecdsa_sign_verify(); } } @@ -1188,6 +1232,17 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char void test_ecdsa_end_to_end(void) { unsigned char privkey[32]; unsigned char message[32]; + unsigned char privkey2[32]; + unsigned char csignature[64]; + unsigned char signature[72]; + unsigned char pubkey[65]; + unsigned char recpubkey[65]; + unsigned char seckey[300]; + int signaturelen = 72; + int recid = 0; + int recpubkeylen = 0; + int pubkeylen = 65; + int seckeylen = 300; /* Generate a random key and message. */ { @@ -1200,7 +1255,6 @@ void test_ecdsa_end_to_end(void) { /* Construct and verify corresponding public key. */ CHECK(secp256k1_ec_seckey_verify(privkey) == 1); - unsigned char pubkey[65]; int pubkeylen = 65; CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, (secp256k1_rand32() & 3) != 0) == 1); if (secp256k1_rand32() & 1) { CHECK(secp256k1_ec_pubkey_decompress(pubkey, &pubkeylen)); @@ -1208,40 +1262,43 @@ void test_ecdsa_end_to_end(void) { CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen)); /* Verify private key import and export. */ - unsigned char seckey[300]; int seckeylen = 300; CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1); - unsigned char privkey2[32]; CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1); CHECK(memcmp(privkey, privkey2, 32) == 0); /* Optionally tweak the keys using addition. */ if (secp256k1_rand32() % 3 == 0) { + int ret1; + int ret2; unsigned char rnd[32]; + unsigned char pubkey2[65]; + int pubkeylen2 = 65; secp256k1_rand256_test(rnd); - int ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd); - int ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd); + ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd); + ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd); CHECK(ret1 == ret2); if (ret1 == 0) return; - unsigned char pubkey2[65]; int pubkeylen2 = 65; CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); } /* Optionally tweak the keys using multiplication. */ if (secp256k1_rand32() % 3 == 0) { + int ret1; + int ret2; unsigned char rnd[32]; + unsigned char pubkey2[65]; + int pubkeylen2 = 65; secp256k1_rand256_test(rnd); - int ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd); - int ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd); + ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd); + ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd); CHECK(ret1 == ret2); if (ret1 == 0) return; - unsigned char pubkey2[65]; int pubkeylen2 = 65; CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1); CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0); } /* Sign. */ - unsigned char signature[72]; int signaturelen = 72; CHECK(secp256k1_ecdsa_sign(message, signature, &signaturelen, privkey, NULL, NULL) == 1); /* Verify. */ CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) == 1); @@ -1250,10 +1307,8 @@ void test_ecdsa_end_to_end(void) { CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) != 1); /* Compact sign. */ - unsigned char csignature[64]; int recid = 0; CHECK(secp256k1_ecdsa_sign_compact(message, csignature, privkey, NULL, NULL, &recid) == 1); /* Recover. */ - unsigned char recpubkey[65]; int recpubkeylen = 0; CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1); CHECK(recpubkeylen == pubkeylen); CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0); @@ -1266,6 +1321,8 @@ void test_ecdsa_end_to_end(void) { } void test_random_pubkeys(void) { + secp256k1_ge_t elem; + secp256k1_ge_t elem2; unsigned char in[65]; /* Generate some randomly sized pubkeys. */ uint32_t r = secp256k1_rand32(); @@ -1283,8 +1340,6 @@ void test_random_pubkeys(void) { r>>=11; if (len > 1) secp256k1_rand256(&in[1]); if (len > 33) secp256k1_rand256(&in[33]); - secp256k1_ge_t elem; - secp256k1_ge_t elem2; if (secp256k1_eckey_pubkey_parse(&elem, in, len)) { unsigned char out[65]; unsigned char firstb; @@ -1318,13 +1373,15 @@ void test_random_pubkeys(void) { } void run_random_pubkeys(void) { - for (int i=0; i<10*count; i++) { + int i; + for (i = 0; i < 10*count; i++) { test_random_pubkeys(); } } void run_ecdsa_end_to_end(void) { - for (int i=0; i<64*count; i++) { + int i; + for (i = 0; i < 64*count; i++) { test_ecdsa_end_to_end(); } } @@ -1351,11 +1408,6 @@ void test_ecdsa_edge_cases(void) { }; unsigned char pubkey[65]; int pubkeylen = 65; - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0)); - CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1)); - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2)); - CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3)); - /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */ const unsigned char sigb64[64] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, @@ -1369,7 +1421,16 @@ void test_ecdsa_edge_cases(void) { }; unsigned char pubkeyb[33]; int pubkeyblen = 33; - for (int recid = 0; recid < 4; recid++) { + int recid; + + CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0)); + CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1)); + CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2)); + CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3)); + + for (recid = 0; recid < 4; recid++) { + int i; + int recid2; /* (4,4) encoded in DER. */ unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04}; unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01}; @@ -1412,7 +1473,7 @@ void test_ecdsa_edge_cases(void) { }; CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkeyb, &pubkeyblen, 1, recid)); CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1); - for (int recid2 = 0; recid2 < 4; recid2++) { + for (recid2 = 0; recid2 < 4; recid2++) { unsigned char pubkey2b[33]; int pubkey2blen = 33; CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkey2b, &pubkey2blen, 1, recid2)); @@ -1438,10 +1499,11 @@ void test_ecdsa_edge_cases(void) { sigbder[7]--; CHECK(secp256k1_ecdsa_verify(msg32, sigbder, 6, pubkeyb, pubkeyblen) == -2); CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder)-1, pubkeyb, pubkeyblen) == -2); - for(int i = 0; i<8; i++) { + for(i = 0; i < 8; i++) { + int c; unsigned char orig = sigbder[i]; /*Try every single-byte change.*/ - for (int c=0; c<256; c++) { + for (c = 0; c < 256; c++) { if (c == orig ) continue; sigbder[i] = c; CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == @@ -1453,16 +1515,17 @@ void test_ecdsa_edge_cases(void) { /* Test the case where ECDSA recomputes a point that is infinity. */ { + secp256k1_gej_t keyj; + secp256k1_ge_t key; + secp256k1_scalar_t msg; secp256k1_ecdsa_sig_t sig; secp256k1_scalar_set_int(&sig.s, 1); secp256k1_scalar_negate(&sig.s, &sig.s); secp256k1_scalar_inverse(&sig.s, &sig.s); secp256k1_scalar_set_int(&sig.r, 1); - secp256k1_gej_t keyj; secp256k1_ecmult_gen(&keyj, &sig.r); - secp256k1_ge_t key; secp256k1_ge_set_gej(&key, &keyj); - secp256k1_scalar_t msg = sig.s; + msg = sig.s; CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0); } @@ -1536,26 +1599,27 @@ void test_ecdsa_edge_cases(void) { /* Nonce function corner cases. */ { + int i; unsigned char key[32]; unsigned char msg[32]; unsigned char sig[72]; + unsigned char sig2[72]; + secp256k1_ecdsa_sig_t s[512]; + int siglen = 72; + int siglen2 = 72; + int recid2; memset(key, 0, 32); memset(msg, 0, 32); key[31] = 1; msg[31] = 1; - int siglen = 72; - int recid; /* Nonce function failure results in signature failure. */ CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, NULL) == 0); CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, NULL, &recid) == 0); /* The retry loop successfully makes its way to the first good value. */ - unsigned char sig2[72]; - int siglen2 = 72; siglen = 72; CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, NULL) == 1); CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, NULL) == 1); CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0)); - int recid2; CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, NULL, &recid) == 1); CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, NULL, &recid2) == 1); CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0)); @@ -1569,25 +1633,26 @@ void test_ecdsa_edge_cases(void) { CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, NULL, &recid2) == 1); CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0)); /* The default nonce function changes output with different messages. */ - secp256k1_ecdsa_sig_t s[512]; - for(int i=0; i<256; i++) { + for(i = 0; i < 256; i++) { + int j; siglen2 = 72; msg[0] = i; CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, NULL) == 1); CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2)); - for (int j=0; j 1) { count = strtol(argv[1], NULL, 0); } /* find random seed */ - uint64_t seed; if (argc > 2) { seed = strtoull(argv[2], NULL, 0); } else {