Merge pull request #31

0592d11 Introduce CHECK() for tests that works with NDEBUG. (Pieter Wuille)
This commit is contained in:
Pieter Wuille 2014-06-20 23:25:28 +02:00
commit 9849c6898c
No known key found for this signature in database
GPG key ID: 8F653255C87992E0
4 changed files with 62 additions and 54 deletions

View file

@ -5,6 +5,7 @@
#ifndef _SECP256K1_ECMULT_IMPL_H_ #ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_ #define _SECP256K1_ECMULT_IMPL_H_
#include <assert.h>
#include "num.h" #include "num.h"
#include "group.h" #include "group.h"
#include "ecmult.h" #include "ecmult.h"

View file

@ -6,7 +6,6 @@
#define _SECP256K1_FIELD_REPR_IMPL_H_ #define _SECP256K1_FIELD_REPR_IMPL_H_
#include <stdio.h> #include <stdio.h>
#include <assert.h>
#include <string.h> #include <string.h>
#include "num.h" #include "num.h"
#include "field.h" #include "field.h"

View file

@ -2,6 +2,7 @@
// Distributed under the MIT/X11 software license, see the accompanying // Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php. // file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <assert.h>
#include "num_impl.h" #include "num_impl.h"
#include "field_impl.h" #include "field_impl.h"
#include "group_impl.h" #include "group_impl.h"

View file

@ -6,8 +6,8 @@
#include "libsecp256k1-config.h" #include "libsecp256k1-config.h"
#endif #endif
#include <assert.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h>
#include "num_impl.h" #include "num_impl.h"
#include "field_impl.h" #include "field_impl.h"
@ -23,6 +23,13 @@
#include "openssl/obj_mac.h" #include "openssl/obj_mac.h"
#endif #endif
#define TEST_FAILURE(msg) do { \
fprintf(stderr, "%s:%d: %s\n", __FILE__, __LINE__, msg); \
abort(); \
} while(0)
#define CHECK(cond) do { if (!(cond)) { TEST_FAILURE("test condition failed: " #cond); } } while(0)
static int count = 100; static int count = 100;
/***** NUM TESTS *****/ /***** NUM TESTS *****/
@ -64,11 +71,11 @@ void test_num_copy_inc_cmp() {
secp256k1_num_init(&n2); secp256k1_num_init(&n2);
random_num_order(&n1); random_num_order(&n1);
secp256k1_num_copy(&n2, &n1); secp256k1_num_copy(&n2, &n1);
assert(secp256k1_num_cmp(&n1, &n2) == 0); CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
assert(secp256k1_num_cmp(&n2, &n1) == 0); CHECK(secp256k1_num_cmp(&n2, &n1) == 0);
secp256k1_num_inc(&n2); secp256k1_num_inc(&n2);
assert(secp256k1_num_cmp(&n1, &n2) != 0); CHECK(secp256k1_num_cmp(&n1, &n2) != 0);
assert(secp256k1_num_cmp(&n2, &n1) != 0); CHECK(secp256k1_num_cmp(&n2, &n1) != 0);
secp256k1_num_free(&n1); secp256k1_num_free(&n1);
secp256k1_num_free(&n2); secp256k1_num_free(&n2);
} }
@ -82,18 +89,18 @@ void test_num_get_set_hex() {
char c[64]; char c[64];
secp256k1_num_get_hex(c, 64, &n1); secp256k1_num_get_hex(c, 64, &n1);
secp256k1_num_set_hex(&n2, c, 64); secp256k1_num_set_hex(&n2, c, 64);
assert(secp256k1_num_cmp(&n1, &n2) == 0); CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
for (int i=0; i<64; i++) { for (int i=0; i<64; i++) {
// check whether the lower 4 bits correspond to the last hex character // check whether the lower 4 bits correspond to the last hex character
int low1 = secp256k1_num_shift(&n1, 4); int low1 = secp256k1_num_shift(&n1, 4);
int lowh = c[63]; int lowh = c[63];
int low2 = (lowh>>6)*9+(lowh-'0')&15; int low2 = (lowh>>6)*9+(lowh-'0')&15;
assert(low1 == low2); CHECK(low1 == low2);
// shift bits off the hex representation, and compare // shift bits off the hex representation, and compare
memmove(c+1, c, 63); memmove(c+1, c, 63);
c[0] = '0'; c[0] = '0';
secp256k1_num_set_hex(&n2, c, 64); secp256k1_num_set_hex(&n2, c, 64);
assert(secp256k1_num_cmp(&n1, &n2) == 0); CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
} }
secp256k1_num_free(&n2); secp256k1_num_free(&n2);
secp256k1_num_free(&n1); secp256k1_num_free(&n1);
@ -107,17 +114,17 @@ void test_num_get_set_bin() {
unsigned char c[32]; unsigned char c[32];
secp256k1_num_get_bin(c, 32, &n1); secp256k1_num_get_bin(c, 32, &n1);
secp256k1_num_set_bin(&n2, c, 32); secp256k1_num_set_bin(&n2, c, 32);
assert(secp256k1_num_cmp(&n1, &n2) == 0); CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
for (int i=0; i<32; i++) { for (int i=0; i<32; i++) {
// check whether the lower 8 bits correspond to the last byte // check whether the lower 8 bits correspond to the last byte
int low1 = secp256k1_num_shift(&n1, 8); int low1 = secp256k1_num_shift(&n1, 8);
int low2 = c[31]; int low2 = c[31];
assert(low1 == low2); CHECK(low1 == low2);
// shift bits off the byte representation, and compare // shift bits off the byte representation, and compare
memmove(c+1, c, 31); memmove(c+1, c, 31);
c[0] = 0; c[0] = 0;
secp256k1_num_set_bin(&n2, c, 32); secp256k1_num_set_bin(&n2, c, 32);
assert(secp256k1_num_cmp(&n1, &n2) == 0); CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
} }
secp256k1_num_free(&n2); secp256k1_num_free(&n2);
secp256k1_num_free(&n1); secp256k1_num_free(&n1);
@ -132,7 +139,7 @@ void run_num_int() {
unsigned char c2[3] = {0x11,0x22,0x33}; unsigned char c2[3] = {0x11,0x22,0x33};
secp256k1_num_set_int(&n1, i); secp256k1_num_set_int(&n1, i);
secp256k1_num_get_bin(c2, 3, &n1); secp256k1_num_get_bin(c2, 3, &n1);
assert(memcmp(c1, c2, 3) == 0); CHECK(memcmp(c1, c2, 3) == 0);
} }
secp256k1_num_free(&n1); secp256k1_num_free(&n1);
} }
@ -146,18 +153,18 @@ void test_num_negate() {
random_num_negate(&n1); random_num_negate(&n1);
secp256k1_num_copy(&n2, &n1); // n2 = R secp256k1_num_copy(&n2, &n1); // n2 = R
secp256k1_num_sub(&n1, &n2, &n1); // n1 = n2-n1 = 0 secp256k1_num_sub(&n1, &n2, &n1); // n1 = n2-n1 = 0
assert(secp256k1_num_is_zero(&n1)); CHECK(secp256k1_num_is_zero(&n1));
secp256k1_num_copy(&n1, &n2); // n1 = R secp256k1_num_copy(&n1, &n2); // n1 = R
secp256k1_num_negate(&n1); // n1 = -R secp256k1_num_negate(&n1); // n1 = -R
assert(!secp256k1_num_is_zero(&n1)); CHECK(!secp256k1_num_is_zero(&n1));
secp256k1_num_add(&n1, &n2, &n1); // n1 = n2+n1 = 0 secp256k1_num_add(&n1, &n2, &n1); // n1 = n2+n1 = 0
assert(secp256k1_num_is_zero(&n1)); CHECK(secp256k1_num_is_zero(&n1));
secp256k1_num_copy(&n1, &n2); // n1 = R secp256k1_num_copy(&n1, &n2); // n1 = R
secp256k1_num_negate(&n1); // n1 = -R secp256k1_num_negate(&n1); // n1 = -R
assert(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2)); CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
secp256k1_num_negate(&n1); // n1 = R secp256k1_num_negate(&n1); // n1 = R
assert(secp256k1_num_cmp(&n1, &n2) == 0); CHECK(secp256k1_num_cmp(&n1, &n2) == 0);
assert(secp256k1_num_is_neg(&n1) == secp256k1_num_is_neg(&n2)); CHECK(secp256k1_num_is_neg(&n1) == secp256k1_num_is_neg(&n2));
secp256k1_num_free(&n2); secp256k1_num_free(&n2);
secp256k1_num_free(&n1); secp256k1_num_free(&n1);
} }
@ -180,16 +187,16 @@ void test_num_add_sub() {
secp256k1_num_add(&n2p1, &n2, &n1); // n2p1 = R2 + R1 secp256k1_num_add(&n2p1, &n2, &n1); // n2p1 = R2 + R1
secp256k1_num_sub(&n1m2, &n1, &n2); // n1m2 = R1 - R2 secp256k1_num_sub(&n1m2, &n1, &n2); // n1m2 = R1 - R2
secp256k1_num_sub(&n2m1, &n2, &n1); // n2m1 = R2 - R1 secp256k1_num_sub(&n2m1, &n2, &n1); // n2m1 = R2 - R1
assert(secp256k1_num_cmp(&n1p2, &n2p1) == 0); CHECK(secp256k1_num_cmp(&n1p2, &n2p1) == 0);
assert(secp256k1_num_cmp(&n1p2, &n1m2) != 0); CHECK(secp256k1_num_cmp(&n1p2, &n1m2) != 0);
secp256k1_num_negate(&n2m1); // n2m1 = -R2 + R1 secp256k1_num_negate(&n2m1); // n2m1 = -R2 + R1
assert(secp256k1_num_cmp(&n2m1, &n1m2) == 0); CHECK(secp256k1_num_cmp(&n2m1, &n1m2) == 0);
assert(secp256k1_num_cmp(&n2m1, &n1) != 0); CHECK(secp256k1_num_cmp(&n2m1, &n1) != 0);
secp256k1_num_add(&n2m1, &n2m1, &n2); // n2m1 = -R2 + R1 + R2 = R1 secp256k1_num_add(&n2m1, &n2m1, &n2); // n2m1 = -R2 + R1 + R2 = R1
assert(secp256k1_num_cmp(&n2m1, &n1) == 0); CHECK(secp256k1_num_cmp(&n2m1, &n1) == 0);
assert(secp256k1_num_cmp(&n2p1, &n1) != 0); CHECK(secp256k1_num_cmp(&n2p1, &n1) != 0);
secp256k1_num_sub(&n2p1, &n2p1, &n2); // n2p1 = R2 + R1 - R2 = R1 secp256k1_num_sub(&n2p1, &n2p1, &n2); // n2p1 = R2 + R1 - R2 = R1
assert(secp256k1_num_cmp(&n2p1, &n1) == 0); CHECK(secp256k1_num_cmp(&n2p1, &n1) == 0);
secp256k1_num_free(&n2m1); secp256k1_num_free(&n2m1);
secp256k1_num_free(&n1m2); secp256k1_num_free(&n1m2);
secp256k1_num_free(&n2p1); secp256k1_num_free(&n2p1);
@ -226,7 +233,7 @@ void random_fe_non_zero(secp256k1_fe_t *nz) {
break; break;
} }
// Infinitesimal probability of spurious failure here // Infinitesimal probability of spurious failure here
assert(tries >= 0); CHECK(tries >= 0);
} }
void random_fe_non_square(secp256k1_fe_t *ns) { void random_fe_non_square(secp256k1_fe_t *ns) {
@ -240,14 +247,14 @@ void random_fe_non_square(secp256k1_fe_t *ns) {
void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) { void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
secp256k1_fe_t r1, r2; secp256k1_fe_t r1, r2;
int v = secp256k1_fe_sqrt(&r1, a); int v = secp256k1_fe_sqrt(&r1, a);
assert((v == 0) == (k == NULL)); CHECK((v == 0) == (k == NULL));
if (k != NULL) { if (k != NULL) {
// Check that the returned root is +/- the given known answer // Check that the returned root is +/- the given known answer
secp256k1_fe_negate(&r2, &r1, 1); secp256k1_fe_negate(&r2, &r1, 1);
secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k); secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2); secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
assert(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2)); CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
} }
} }
@ -331,7 +338,7 @@ void run_ecmult_chain() {
if (i == 19999) { if (i == 19999) {
char res[132]; int resl = 132; char res[132]; int resl = 132;
secp256k1_gej_get_hex(res, &resl, &x); secp256k1_gej_get_hex(res, &resl, &x);
assert(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0); CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0);
} }
} }
// redo the computation, but directly with the resulting ae and ge coefficients: // redo the computation, but directly with the resulting ae and ge coefficients:
@ -340,8 +347,8 @@ void run_ecmult_chain() {
char res2[132]; int resl2 = 132; char res2[132]; int resl2 = 132;
secp256k1_gej_get_hex(res, &resl, &x); secp256k1_gej_get_hex(res, &resl, &x);
secp256k1_gej_get_hex(res2, &resl2, &x2); secp256k1_gej_get_hex(res2, &resl2, &x2);
assert(strcmp(res, res2) == 0); CHECK(strcmp(res, res2) == 0);
assert(strlen(res) == 131); CHECK(strlen(res) == 131);
secp256k1_num_free(&xn); secp256k1_num_free(&xn);
secp256k1_num_free(&gn); secp256k1_num_free(&gn);
secp256k1_num_free(&xf); secp256k1_num_free(&xf);
@ -358,7 +365,7 @@ void test_point_times_order(const secp256k1_gej_t *point) {
secp256k1_num_set_int(&zero, 0); secp256k1_num_set_int(&zero, 0);
secp256k1_gej_t res; secp256k1_gej_t res;
secp256k1_ecmult(&res, point, order, order); // calc res = order * point + order * G; secp256k1_ecmult(&res, point, order, order); // calc res = order * point + order * G;
assert(secp256k1_gej_is_infinity(&res)); CHECK(secp256k1_gej_is_infinity(&res));
secp256k1_num_free(&zero); secp256k1_num_free(&zero);
} }
@ -367,17 +374,17 @@ void run_point_times_order() {
for (int i=0; i<500; i++) { for (int i=0; i<500; i++) {
secp256k1_ge_t p; secp256k1_ge_t p;
if (secp256k1_ge_set_xo(&p, &x, 1)) { if (secp256k1_ge_set_xo(&p, &x, 1)) {
assert(secp256k1_ge_is_valid(&p)); CHECK(secp256k1_ge_is_valid(&p));
secp256k1_gej_t j; secp256k1_gej_t j;
secp256k1_gej_set_ge(&j, &p); secp256k1_gej_set_ge(&j, &p);
assert(secp256k1_gej_is_valid(&j)); CHECK(secp256k1_gej_is_valid(&j));
test_point_times_order(&j); test_point_times_order(&j);
} }
secp256k1_fe_sqr(&x, &x); secp256k1_fe_sqr(&x, &x);
} }
char c[65]; int cl=65; char c[65]; int cl=65;
secp256k1_fe_get_hex(c, &cl, &x); secp256k1_fe_get_hex(c, &cl, &x);
assert(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0); CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0);
} }
void test_wnaf(const secp256k1_num_t *number, int w) { void test_wnaf(const secp256k1_num_t *number, int w) {
@ -394,19 +401,19 @@ void test_wnaf(const secp256k1_num_t *number, int w) {
secp256k1_num_mul(&x, &x, &two); secp256k1_num_mul(&x, &x, &two);
int v = wnaf[i]; int v = wnaf[i];
if (v) { if (v) {
assert(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1 CHECK(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1
zeroes=0; zeroes=0;
assert((v & 1) == 1); // check non-zero elements are odd CHECK((v & 1) == 1); // check non-zero elements are odd
assert(v <= (1 << (w-1)) - 1); // check range below CHECK(v <= (1 << (w-1)) - 1); // check range below
assert(v >= -(1 << (w-1)) - 1); // check range above CHECK(v >= -(1 << (w-1)) - 1); // check range above
} else { } else {
assert(zeroes != -1); // check that no unnecessary zero padding exists CHECK(zeroes != -1); // check that no unnecessary zero padding exists
zeroes++; zeroes++;
} }
secp256k1_num_set_int(&t, v); secp256k1_num_set_int(&t, v);
secp256k1_num_add(&x, &x, &t); secp256k1_num_add(&x, &x, &t);
} }
assert(secp256k1_num_cmp(&x, number) == 0); // check that wnaf represents number CHECK(secp256k1_num_cmp(&x, number) == 0); // check that wnaf represents number
secp256k1_num_free(&x); secp256k1_num_free(&x);
secp256k1_num_free(&two); secp256k1_num_free(&two);
secp256k1_num_free(&t); secp256k1_num_free(&t);
@ -445,9 +452,9 @@ void test_ecdsa_sign_verify() {
secp256k1_ecdsa_sig_t sig; secp256k1_ecdsa_sig_t sig;
secp256k1_ecdsa_sig_init(&sig); secp256k1_ecdsa_sig_init(&sig);
random_sign(&sig, &key, &msg, NULL); random_sign(&sig, &key, &msg, NULL);
assert(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
secp256k1_num_inc(&msg); secp256k1_num_inc(&msg);
assert(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg)); CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
secp256k1_ecdsa_sig_free(&sig); secp256k1_ecdsa_sig_free(&sig);
secp256k1_num_free(&msg); secp256k1_num_free(&msg);
secp256k1_num_free(&key); secp256k1_num_free(&key);
@ -466,9 +473,9 @@ EC_KEY *get_openssl_key(const secp256k1_num_t *key) {
int compr = secp256k1_rand32() & 1; int compr = secp256k1_rand32() & 1;
const unsigned char* pbegin = privkey; const unsigned char* pbegin = privkey;
EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
assert(secp256k1_ecdsa_privkey_serialize(privkey, &privkeylen, key, compr)); CHECK(secp256k1_ecdsa_privkey_serialize(privkey, &privkeylen, key, compr));
assert(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
assert(EC_KEY_check_key(ec_key)); CHECK(EC_KEY_check_key(ec_key));
return ec_key; return ec_key;
} }
@ -486,21 +493,21 @@ void test_ecdsa_openssl() {
secp256k1_ge_t q; secp256k1_ge_t q;
secp256k1_ge_set_gej(&q, &qj); secp256k1_ge_set_gej(&q, &qj);
EC_KEY *ec_key = get_openssl_key(&key); EC_KEY *ec_key = get_openssl_key(&key);
assert(ec_key); CHECK(ec_key);
unsigned char signature[80]; unsigned char signature[80];
int sigsize = 80; int sigsize = 80;
assert(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key)); CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
secp256k1_ecdsa_sig_t sig; secp256k1_ecdsa_sig_t sig;
secp256k1_ecdsa_sig_init(&sig); secp256k1_ecdsa_sig_init(&sig);
assert(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize)); CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize));
assert(secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
secp256k1_num_inc(&sig.r); secp256k1_num_inc(&sig.r);
assert(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg)); CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
random_sign(&sig, &key, &msg, NULL); random_sign(&sig, &key, &msg, NULL);
sigsize = 80; sigsize = 80;
assert(secp256k1_ecdsa_sig_serialize(signature, &sigsize, &sig)); CHECK(secp256k1_ecdsa_sig_serialize(signature, &sigsize, &sig));
assert(ECDSA_verify(0, message, sizeof(message), signature, sigsize, ec_key) == 1); CHECK(ECDSA_verify(0, message, sizeof(message), signature, sigsize, ec_key) == 1);
secp256k1_ecdsa_sig_free(&sig); secp256k1_ecdsa_sig_free(&sig);
EC_KEY_free(ec_key); EC_KEY_free(ec_key);