mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-25 18:53:23 -03:00
Some group.h comments
This commit is contained in:
parent
3231676bf9
commit
7fef66199e
1 changed files with 56 additions and 6 deletions
62
src/group.h
62
src/group.h
|
@ -4,50 +4,100 @@
|
|||
#include "num.h"
|
||||
#include "field.h"
|
||||
|
||||
/** A group element of the secp256k1 curve, in affine coordinates. */
|
||||
typedef struct {
|
||||
secp256k1_fe_t x;
|
||||
secp256k1_fe_t y;
|
||||
int infinity;
|
||||
int infinity; // whether this represents the point at infinity
|
||||
} secp256k1_ge_t;
|
||||
|
||||
/** A group element of the secp256k1 curve, in jacobian coordinates. */
|
||||
typedef struct {
|
||||
secp256k1_fe_t x;
|
||||
secp256k1_fe_t y;
|
||||
secp256k1_fe_t x; // actual X: x/z^2
|
||||
secp256k1_fe_t y; // actual Y: y/z^3
|
||||
secp256k1_fe_t z;
|
||||
int infinity;
|
||||
int infinity; // whether this represents the point at infinity
|
||||
} secp256k1_gej_t;
|
||||
|
||||
/** Global constants related to the group */
|
||||
typedef struct {
|
||||
secp256k1_num_t order;
|
||||
secp256k1_ge_t g;
|
||||
secp256k1_num_t order; // the order of the curve (= order of its generator)
|
||||
secp256k1_ge_t g; // the generator point
|
||||
|
||||
// constants related to secp256k1's efficiently computable endomorphism
|
||||
secp256k1_fe_t beta;
|
||||
secp256k1_num_t lambda, a1b2, b1, a2;
|
||||
} secp256k1_ge_consts_t;
|
||||
|
||||
static secp256k1_ge_consts_t *secp256k1_ge_consts = NULL;
|
||||
|
||||
/** Initialize the group module. */
|
||||
void static secp256k1_ge_start(void);
|
||||
|
||||
/** De-initialize the group module. */
|
||||
void static secp256k1_ge_stop(void);
|
||||
|
||||
/** Set a group element equal to the point at infinity */
|
||||
void static secp256k1_ge_set_infinity(secp256k1_ge_t *r);
|
||||
|
||||
/** Set a group element equal to the point with given X and Y coordinates */
|
||||
void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
|
||||
|
||||
/** Check whether a group element is the point at infinity. */
|
||||
int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
|
||||
|
||||
void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
|
||||
|
||||
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */
|
||||
void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a);
|
||||
|
||||
/** Set a group element equal to another which is given in jacobian coordinates */
|
||||
void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a);
|
||||
|
||||
|
||||
/** Set a group element (jacobian) equal to the point at infinity. */
|
||||
void static secp256k1_gej_set_infinity(secp256k1_gej_t *r);
|
||||
|
||||
/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
|
||||
void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
|
||||
|
||||
/** Set a group element (jacobian) equal to the point with given X coordinate, and given oddness for Y.
|
||||
The result is not guaranteed to be valid. */
|
||||
void static secp256k1_gej_set_xo(secp256k1_gej_t *r, const secp256k1_fe_t *x, int odd);
|
||||
|
||||
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
|
||||
void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
|
||||
|
||||
/** Get the X coordinate of a group element (jacobian). */
|
||||
void static secp256k1_gej_get_x(secp256k1_fe_t *r, const secp256k1_gej_t *a);
|
||||
|
||||
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
|
||||
void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a);
|
||||
|
||||
/** Check whether a group element is the point at infinity. */
|
||||
int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a);
|
||||
|
||||
/** Check whether a group element (jacobian) is valid (i.e., on the curve). */
|
||||
int static secp256k1_gej_is_valid(const secp256k1_gej_t *a);
|
||||
|
||||
/** Set r equal to the double of a. */
|
||||
void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a);
|
||||
|
||||
/** Set r equal to the sum of a and b. */
|
||||
void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b);
|
||||
|
||||
/** Set r equal to the sum of a and b (with b given in jacobian coordinates). This is more efficient
|
||||
than secp256k1_gej_add. */
|
||||
void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);
|
||||
|
||||
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */
|
||||
void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a);
|
||||
|
||||
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
|
||||
void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a);
|
||||
|
||||
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (given that a is
|
||||
not more than 256 bits). */
|
||||
void static secp256k1_gej_split_exp(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Add table
Reference in a new issue