tests: add fuzz tests for VecDeque

This commit is contained in:
Pieter Wuille 2024-05-23 13:03:39 -04:00
parent 62fd24af6a
commit 7b8eea067f
2 changed files with 492 additions and 0 deletions

View file

@ -397,6 +397,7 @@ test_fuzz_fuzz_SOURCES = \
test/fuzz/utxo_snapshot.cpp \
test/fuzz/utxo_total_supply.cpp \
test/fuzz/validation_load_mempool.cpp \
test/fuzz/vecdeque.cpp \
test/fuzz/versionbits.cpp
endif # ENABLE_FUZZ_BINARY

491
src/test/fuzz/vecdeque.cpp Normal file
View file

@ -0,0 +1,491 @@
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <span.h>
#include <test/fuzz/util.h>
#include <test/util/xoroshiro128plusplus.h>
#include <util/vecdeque.h>
#include <deque>
#include <stdint.h>
namespace {
/** The maximum number of simultaneous buffers kept by the test. */
static constexpr size_t MAX_BUFFERS{3};
/** How many elements are kept in a buffer at most. */
static constexpr size_t MAX_BUFFER_SIZE{48};
/** How many operations are performed at most on the buffers in one test. */
static constexpr size_t MAX_OPERATIONS{1024};
/** Perform a simulation fuzz test on VecDeque type T.
*
* T must be constructible from a uint64_t seed, comparable to other T, copyable, and movable.
*/
template<typename T, bool CheckNoneLeft>
void TestType(Span<const uint8_t> buffer, uint64_t rng_tweak)
{
FuzzedDataProvider provider(buffer.data(), buffer.size());
// Local RNG, only used for the seeds to initialize T objects with.
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>() ^ rng_tweak);
// Real circular buffers.
std::vector<VecDeque<T>> real;
real.reserve(MAX_BUFFERS);
// Simulated circular buffers.
std::vector<std::deque<T>> sim;
sim.reserve(MAX_BUFFERS);
// Temporary object of type T.
std::optional<T> tmp;
// Compare a real and a simulated buffer.
auto compare_fn = [](const VecDeque<T>& r, const std::deque<T>& s) {
assert(r.size() == s.size());
assert(r.empty() == s.empty());
assert(r.capacity() >= r.size());
if (s.size() == 0) return;
assert(r.front() == s.front());
assert(r.back() == s.back());
for (size_t i = 0; i < s.size(); ++i) {
assert(r[i] == s[i]);
}
};
LIMITED_WHILE(provider.remaining_bytes(), MAX_OPERATIONS) {
int command = provider.ConsumeIntegral<uint8_t>() % 64;
unsigned idx = real.empty() ? 0 : provider.ConsumeIntegralInRange<unsigned>(0, real.size() - 1);
const size_t num_buffers = sim.size();
// Pick one operation based on value of command. Not all operations are always applicable.
// Loop through the applicable ones until command reaches 0 (which avoids the need to
// compute the number of applicable commands ahead of time).
const bool non_empty{num_buffers != 0};
const bool non_full{num_buffers < MAX_BUFFERS};
const bool partially_full{non_empty && non_full};
const bool multiple_exist{num_buffers > 1};
const bool existing_buffer_non_full{non_empty && sim[idx].size() < MAX_BUFFER_SIZE};
const bool existing_buffer_non_empty{non_empty && !sim[idx].empty()};
assert(non_full || non_empty);
while (true) {
if (non_full && command-- == 0) {
/* Default construct. */
real.emplace_back();
sim.emplace_back();
break;
}
if (non_empty && command-- == 0) {
/* resize() */
compare_fn(real[idx], sim[idx]);
size_t new_size = provider.ConsumeIntegralInRange<size_t>(0, MAX_BUFFER_SIZE);
real[idx].resize(new_size);
sim[idx].resize(new_size);
assert(real[idx].size() == new_size);
break;
}
if (non_empty && command-- == 0) {
/* clear() */
compare_fn(real[idx], sim[idx]);
real[idx].clear();
sim[idx].clear();
assert(real[idx].empty());
break;
}
if (non_empty && command-- == 0) {
/* Copy construct default. */
compare_fn(real[idx], sim[idx]);
real[idx] = VecDeque<T>();
sim[idx].clear();
assert(real[idx].size() == 0);
break;
}
if (non_empty && command-- == 0) {
/* Destruct. */
compare_fn(real.back(), sim.back());
real.pop_back();
sim.pop_back();
break;
}
if (partially_full && command-- == 0) {
/* Copy construct. */
real.emplace_back(real[idx]);
sim.emplace_back(sim[idx]);
break;
}
if (partially_full && command-- == 0) {
/* Move construct. */
VecDeque<T> copy(real[idx]);
real.emplace_back(std::move(copy));
sim.emplace_back(sim[idx]);
break;
}
if (multiple_exist && command-- == 0) {
/* swap() */
swap(real[idx], real[(idx + 1) % num_buffers]);
swap(sim[idx], sim[(idx + 1) % num_buffers]);
break;
}
if (multiple_exist && command-- == 0) {
/* Copy assign. */
compare_fn(real[idx], sim[idx]);
real[idx] = real[(idx + 1) % num_buffers];
sim[idx] = sim[(idx + 1) % num_buffers];
break;
}
if (multiple_exist && command-- == 0) {
/* Move assign. */
VecDeque<T> copy(real[(idx + 1) % num_buffers]);
compare_fn(real[idx], sim[idx]);
real[idx] = std::move(copy);
sim[idx] = sim[(idx + 1) % num_buffers];
break;
}
if (non_empty && command-- == 0) {
/* Self swap() */
swap(real[idx], real[idx]);
break;
}
if (non_empty && command-- == 0) {
/* Self-copy assign. */
real[idx] = real[idx];
break;
}
if (non_empty && command-- == 0) {
/* Self-move assign. */
// Do not use std::move(real[idx]) here: -Wself-move correctly warns about that.
real[idx] = static_cast<VecDeque<T>&&>(real[idx]);
break;
}
if (non_empty && command-- == 0) {
/* reserve() */
size_t res_size = provider.ConsumeIntegralInRange<size_t>(0, MAX_BUFFER_SIZE);
size_t old_cap = real[idx].capacity();
size_t old_size = real[idx].size();
real[idx].reserve(res_size);
assert(real[idx].size() == old_size);
assert(real[idx].capacity() == std::max(old_cap, res_size));
break;
}
if (non_empty && command-- == 0) {
/* shrink_to_fit() */
size_t old_size = real[idx].size();
real[idx].shrink_to_fit();
assert(real[idx].size() == old_size);
assert(real[idx].capacity() == old_size);
break;
}
if (existing_buffer_non_full && command-- == 0) {
/* push_back() (copying) */
tmp = T(rng());
size_t old_size = real[idx].size();
size_t old_cap = real[idx].capacity();
real[idx].push_back(*tmp);
sim[idx].push_back(*tmp);
assert(real[idx].size() == old_size + 1);
if (old_cap > old_size) {
assert(real[idx].capacity() == old_cap);
} else {
assert(real[idx].capacity() > old_cap);
assert(real[idx].capacity() <= 2 * (old_cap + 1));
}
break;
}
if (existing_buffer_non_full && command-- == 0) {
/* push_back() (moving) */
tmp = T(rng());
size_t old_size = real[idx].size();
size_t old_cap = real[idx].capacity();
sim[idx].push_back(*tmp);
real[idx].push_back(std::move(*tmp));
assert(real[idx].size() == old_size + 1);
if (old_cap > old_size) {
assert(real[idx].capacity() == old_cap);
} else {
assert(real[idx].capacity() > old_cap);
assert(real[idx].capacity() <= 2 * (old_cap + 1));
}
break;
}
if (existing_buffer_non_full && command-- == 0) {
/* emplace_back() */
uint64_t seed{rng()};
size_t old_size = real[idx].size();
size_t old_cap = real[idx].capacity();
sim[idx].emplace_back(seed);
real[idx].emplace_back(seed);
assert(real[idx].size() == old_size + 1);
if (old_cap > old_size) {
assert(real[idx].capacity() == old_cap);
} else {
assert(real[idx].capacity() > old_cap);
assert(real[idx].capacity() <= 2 * (old_cap + 1));
}
break;
}
if (existing_buffer_non_full && command-- == 0) {
/* push_front() (copying) */
tmp = T(rng());
size_t old_size = real[idx].size();
size_t old_cap = real[idx].capacity();
real[idx].push_front(*tmp);
sim[idx].push_front(*tmp);
assert(real[idx].size() == old_size + 1);
if (old_cap > old_size) {
assert(real[idx].capacity() == old_cap);
} else {
assert(real[idx].capacity() > old_cap);
assert(real[idx].capacity() <= 2 * (old_cap + 1));
}
break;
}
if (existing_buffer_non_full && command-- == 0) {
/* push_front() (moving) */
tmp = T(rng());
size_t old_size = real[idx].size();
size_t old_cap = real[idx].capacity();
sim[idx].push_front(*tmp);
real[idx].push_front(std::move(*tmp));
assert(real[idx].size() == old_size + 1);
if (old_cap > old_size) {
assert(real[idx].capacity() == old_cap);
} else {
assert(real[idx].capacity() > old_cap);
assert(real[idx].capacity() <= 2 * (old_cap + 1));
}
break;
}
if (existing_buffer_non_full && command-- == 0) {
/* emplace_front() */
uint64_t seed{rng()};
size_t old_size = real[idx].size();
size_t old_cap = real[idx].capacity();
sim[idx].emplace_front(seed);
real[idx].emplace_front(seed);
assert(real[idx].size() == old_size + 1);
if (old_cap > old_size) {
assert(real[idx].capacity() == old_cap);
} else {
assert(real[idx].capacity() > old_cap);
assert(real[idx].capacity() <= 2 * (old_cap + 1));
}
break;
}
if (existing_buffer_non_empty && command-- == 0) {
/* front() [modifying] */
tmp = T(rng());
size_t old_size = real[idx].size();
assert(sim[idx].front() == real[idx].front());
sim[idx].front() = *tmp;
real[idx].front() = std::move(*tmp);
assert(real[idx].size() == old_size);
break;
}
if (existing_buffer_non_empty && command-- == 0) {
/* back() [modifying] */
tmp = T(rng());
size_t old_size = real[idx].size();
assert(sim[idx].back() == real[idx].back());
sim[idx].back() = *tmp;
real[idx].back() = *tmp;
assert(real[idx].size() == old_size);
break;
}
if (existing_buffer_non_empty && command-- == 0) {
/* operator[] [modifying] */
tmp = T(rng());
size_t pos = provider.ConsumeIntegralInRange<size_t>(0, sim[idx].size() - 1);
size_t old_size = real[idx].size();
assert(sim[idx][pos] == real[idx][pos]);
sim[idx][pos] = *tmp;
real[idx][pos] = std::move(*tmp);
assert(real[idx].size() == old_size);
break;
}
if (existing_buffer_non_empty && command-- == 0) {
/* pop_front() */
assert(sim[idx].front() == real[idx].front());
size_t old_size = real[idx].size();
sim[idx].pop_front();
real[idx].pop_front();
assert(real[idx].size() == old_size - 1);
break;
}
if (existing_buffer_non_empty && command-- == 0) {
/* pop_back() */
assert(sim[idx].back() == real[idx].back());
size_t old_size = real[idx].size();
sim[idx].pop_back();
real[idx].pop_back();
assert(real[idx].size() == old_size - 1);
break;
}
}
}
/* Fully compare the final state. */
for (unsigned i = 0; i < sim.size(); ++i) {
// Make sure const getters work.
const VecDeque<T>& realbuf = real[i];
const std::deque<T>& simbuf = sim[i];
compare_fn(realbuf, simbuf);
for (unsigned j = 0; j < sim.size(); ++j) {
assert((realbuf == real[j]) == (simbuf == sim[j]));
assert(((realbuf <=> real[j]) >= 0) == (simbuf >= sim[j]));
assert(((realbuf <=> real[j]) <= 0) == (simbuf <= sim[j]));
}
// Clear out the buffers so we can check below that no objects exist anymore.
sim[i].clear();
real[i].clear();
}
if constexpr (CheckNoneLeft) {
tmp = std::nullopt;
T::CheckNoneExist();
}
}
/** Data structure with built-in tracking of all existing objects. */
template<size_t Size>
class TrackedObj
{
static_assert(Size > 0);
/* Data type for map that actually stores the object data.
*
* The key is a pointer to the TrackedObj, the value is the uint64_t it was initialized with.
* Default-constructed and moved-from objects hold an std::nullopt.
*/
using track_map_type = std::map<const TrackedObj<Size>*, std::optional<uint64_t>>;
private:
/** Actual map. */
static inline track_map_type g_tracker;
/** Iterators into the tracker map for this object.
*
* This is an array of size Size, all holding the same value, to give the object configurable
* size. The value is g_tracker.end() if this object is not fully initialized. */
typename track_map_type::iterator m_track_entry[Size];
void Check() const
{
auto it = g_tracker.find(this);
for (size_t i = 0; i < Size; ++i) {
assert(m_track_entry[i] == it);
}
}
/** Create entry for this object in g_tracker and populate m_track_entry. */
void Register()
{
auto [it, inserted] = g_tracker.emplace(this, std::nullopt);
assert(inserted);
for (size_t i = 0; i < Size; ++i) {
m_track_entry[i] = it;
}
}
void Deregister()
{
Check();
assert(m_track_entry[0] != g_tracker.end());
g_tracker.erase(m_track_entry[0]);
for (size_t i = 0; i < Size; ++i) {
m_track_entry[i] = g_tracker.end();
}
}
/** Get value corresponding to this object in g_tracker. */
std::optional<uint64_t>& Deref()
{
Check();
assert(m_track_entry[0] != g_tracker.end());
return m_track_entry[0]->second;
}
/** Get value corresponding to this object in g_tracker. */
const std::optional<uint64_t>& Deref() const
{
Check();
assert(m_track_entry[0] != g_tracker.end());
return m_track_entry[0]->second;
}
public:
~TrackedObj() { Deregister(); }
TrackedObj() { Register(); }
TrackedObj(uint64_t value)
{
Register();
Deref() = value;
}
TrackedObj(const TrackedObj& other)
{
Register();
Deref() = other.Deref();
}
TrackedObj(TrackedObj&& other)
{
Register();
Deref() = other.Deref();
other.Deref() = std::nullopt;
}
TrackedObj& operator=(const TrackedObj& other)
{
if (this == &other) return *this;
Deref() = other.Deref();
return *this;
}
TrackedObj& operator=(TrackedObj&& other)
{
if (this == &other) return *this;
Deref() = other.Deref();
other.Deref() = std::nullopt;
return *this;
}
friend bool operator==(const TrackedObj& a, const TrackedObj& b)
{
return a.Deref() == b.Deref();
}
friend std::strong_ordering operator<=>(const TrackedObj& a, const TrackedObj& b)
{
// Libc++ 15 & 16 do not support std::optional<T>::operator<=> yet. See
// https://reviews.llvm.org/D146392.
if (!a.Deref().has_value() || !b.Deref().has_value()) {
return a.Deref().has_value() <=> b.Deref().has_value();
}
return *a.Deref() <=> *b.Deref();
}
static void CheckNoneExist()
{
assert(g_tracker.empty());
}
};
} // namespace
FUZZ_TARGET(vecdeque)
{
// Run the test with simple uints (which satisfy all the trivial properties).
static_assert(std::is_trivially_copyable_v<uint32_t>);
static_assert(std::is_trivially_destructible_v<uint64_t>);
TestType<uint8_t, false>(buffer, 1);
TestType<uint16_t, false>(buffer, 2);
TestType<uint32_t, false>(buffer, 3);
TestType<uint64_t, false>(buffer, 4);
// Run the test with TrackedObjs (which do not).
static_assert(!std::is_trivially_copyable_v<TrackedObj<3>>);
static_assert(!std::is_trivially_destructible_v<TrackedObj<17>>);
TestType<TrackedObj<1>, true>(buffer, 5);
TestType<TrackedObj<3>, true>(buffer, 6);
TestType<TrackedObj<17>, true>(buffer, 7);
}