feefrac: add helper functions for 96-bit division

This commit is contained in:
Pieter Wuille 2024-07-26 15:04:05 -04:00
parent 4b923b602c
commit 78e16b4f53
2 changed files with 109 additions and 0 deletions

View file

@ -104,3 +104,72 @@ FUZZ_TARGET(feefrac)
assert((fr1 == fr2) == std::is_eq(cmp_total));
assert((fr1 != fr2) == std::is_neq(cmp_total));
}
FUZZ_TARGET(feefrac_div_fallback)
{
// Verify the behavior of FeeFrac::DivFallback over all possible inputs.
// Construct a 96-bit signed value num, and positive 31-bit value den.
FuzzedDataProvider provider(buffer.data(), buffer.size());
auto num_high = provider.ConsumeIntegral<int64_t>();
auto num_low = provider.ConsumeIntegral<uint32_t>();
std::pair<int64_t, uint32_t> num{num_high, num_low};
auto den = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
// Predict the sign of the actual result.
bool is_negative = num_high < 0;
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
// value of the quotient is the rounded-up quotient of the absolute values.
auto num_abs = Abs256(num);
auto den_abs = Abs256(den);
auto quot_abs = is_negative ? (num_abs + den_abs - 1) / den_abs : num_abs / den_abs;
// If the result is not representable by an int64_t, bail out.
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
return;
}
// Verify the behavior of FeeFrac::DivFallback.
auto res = FeeFrac::DivFallback(num, den);
assert((res < 0) == is_negative);
assert(Abs256(res) == quot_abs);
}
FUZZ_TARGET(feefrac_mul_div)
{
// Verify the behavior of:
// - The combination of FeeFrac::Mul + FeeFrac::Div.
// - The combination of FeeFrac::MulFallback + FeeFrac::DivFallback.
// - FeeFrac::Evaluate.
// Construct a 32-bit signed multiplicand, a 64-bit signed multiplicand, and a positive 31-bit
// divisor.
FuzzedDataProvider provider(buffer.data(), buffer.size());
auto mul32 = provider.ConsumeIntegral<int32_t>();
auto mul64 = provider.ConsumeIntegral<int64_t>();
auto div = provider.ConsumeIntegralInRange<int32_t>(1, std::numeric_limits<int32_t>::max());
// Predict the sign of the overall result.
bool is_negative = ((mul32 < 0) && (mul64 > 0)) || ((mul32 > 0) && (mul64 < 0));
// Evaluate absolute value using arith_uint256. If the actual result is negative, the absolute
// value of the quotient is the rounded-up quotient of the absolute values.
auto prod_abs = Abs256(mul32) * Abs256(mul64);
auto div_abs = Abs256(div);
auto quot_abs = is_negative ? (prod_abs + div_abs - 1) / div_abs : prod_abs / div_abs;
// If the result is not representable by an int64_t, bail out.
if ((is_negative && quot_abs > MAX_ABS_INT64) || (!is_negative && quot_abs >= MAX_ABS_INT64)) {
// If 0 <= mul32 <= div, then the result is guaranteed to be representable.
assert(mul32 < 0 || mul32 > div);
return;
}
// Verify the behavior of FeeFrac::Mul + FeeFrac::Div.
auto res = FeeFrac::Div(FeeFrac::Mul(mul64, mul32), div);
assert((res < 0) == is_negative);
assert(Abs256(res) == quot_abs);
// Verify the behavior of FeeFrac::MulFallback + FeeFrac::DivFallback.
auto res_fallback = FeeFrac::DivFallback(FeeFrac::MulFallback(mul64, mul32), div);
assert(res == res_fallback);
}

View file

@ -47,6 +47,32 @@ struct FeeFrac
return {high + (low >> 32), static_cast<uint32_t>(low)};
}
/** Helper function for 96/32 signed division, rounding towards negative infinity. This is a
* fallback version, separate so it can be tested on platforms where it isn't actually needed.
*
* The exact behavior with negative n does not really matter, but this implementation chooses
* to always round down, for consistency and testability.
*
* The result must fit in an int64_t, and d must be strictly positive. */
static inline int64_t DivFallback(std::pair<int64_t, uint32_t> n, int32_t d) noexcept
{
Assume(d > 0);
// Compute quot_high = n.first / d, so the result becomes
// (n.second + (n.first - quot_high * d) * 2**32) / d + (quot_high * 2**32), or
// (n.second + (n.first % d) * 2**32) / d + (quot_high * 2**32).
int64_t quot_high = n.first / d;
// Evaluate the parenthesized expression above, so the result becomes
// n_low / d + (quot_high * 2**32)
int64_t n_low = ((n.first % d) << 32) + n.second;
// Evaluate the division so the result becomes quot_low + quot_high * 2**32. We need this
// division to round down however, while the / operator rounds towards zero. In case n_low
// is negative and not a multiple of size, we thus need a correction.
int64_t quot_low = n_low / d;
quot_low -= (n_low % d) < 0;
// Combine and return the result
return (quot_high << 32) + quot_low;
}
#ifdef __SIZEOF_INT128__
/** Helper function for 32*64 signed multiplication, returning an unspecified but totally
* ordered type. This is a version relying on __int128. */
@ -54,8 +80,22 @@ struct FeeFrac
{
return __int128{a} * b;
}
/** Helper function for 96/32 signed division, rounding towards negative infinity. This is a
* version relying on __int128.
*
* The result must fit in an int64_t, and d must be strictly positive. */
static inline int64_t Div(__int128 n, int32_t d) noexcept
{
Assume(d > 0);
// Compute the division.
int64_t quot = n / d;
// Make it round down.
return quot - ((n % d) < 0);
}
#else
static constexpr auto Mul = MulFallback;
static constexpr auto Div = DivFallback;
#endif
int64_t fee;