Merge pull request #19

09ca4f3 secp256k1_fe_sqrt checks for success (Peter Dettman)
This commit is contained in:
Pieter Wuille 2014-06-02 10:46:00 +02:00
commit 7740eff28a
No known key found for this signature in database
GPG key ID: 8F653255C87992E0
6 changed files with 84 additions and 21 deletions

View file

@ -25,7 +25,7 @@ int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned cha
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
secp256k1_fe_t x;
secp256k1_fe_set_b32(&x, pub+1);
secp256k1_ge_set_xo(elem, &x, pub[0] == 0x03);
return secp256k1_ge_set_xo(elem, &x, pub[0] == 0x03);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
secp256k1_fe_t x, y;
secp256k1_fe_set_b32(&x, pub+1);
@ -33,10 +33,10 @@ int static secp256k1_ecdsa_pubkey_parse(secp256k1_ge_t *elem, const unsigned cha
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07))
return 0;
return secp256k1_ge_is_valid(elem);
} else {
return 0;
}
return secp256k1_ge_is_valid(elem);
}
int static secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) {
@ -134,8 +134,7 @@ int static secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256
secp256k1_fe_t fx;
secp256k1_fe_set_b32(&fx, brx);
secp256k1_ge_t x;
secp256k1_ge_set_xo(&x, &fx, recid & 1);
if (!secp256k1_ge_is_valid(&x))
if (!secp256k1_ge_set_xo(&x, &fx, recid & 1))
return 0;
secp256k1_gej_t xj;
secp256k1_gej_set_ge(&xj, &x);

View file

@ -82,9 +82,10 @@ void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s
* The output magnitude is 1 (but not guaranteed to be normalized). */
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) square root of another. Requires the inputs' magnitude to
* be at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
* normalized). Return value indicates whether a square root was found. */
int static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */

View file

@ -62,7 +62,7 @@ void static secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen) {
secp256k1_fe_set_b32(r, tmp);
}
void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
int static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
// The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
// { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
@ -121,6 +121,14 @@ void static secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
// Check that a square root was actually calculated
secp256k1_fe_sqr(&t1, r);
secp256k1_fe_negate(&t1, &t1, 1);
secp256k1_fe_add(&t1, a);
secp256k1_fe_normalize(&t1);
return secp256k1_fe_is_zero(&t1);
}
void static secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {

View file

@ -48,9 +48,9 @@ void static secp256k1_ge_set_infinity(secp256k1_ge_t *r);
/** Set a group element equal to the point with given X and Y coordinates */
void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y);
/** Set a group element (jacobian) equal to the point with given X coordinate, and given oddness for Y.
The result is not guaranteed to be valid. */
void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
int static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
/** Check whether a group element is the point at infinity. */
int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
@ -91,7 +91,7 @@ void static secp256k1_gej_double(secp256k1_gej_t *r, const secp256k1_gej_t *a);
/** Set r equal to the sum of a and b. */
void static secp256k1_gej_add(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b);
/** Set r equal to the sum of a and b (with b given in jacobian coordinates). This is more efficient
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add. */
void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b);

View file

@ -77,17 +77,19 @@ void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, co
secp256k1_fe_set_int(&r->z, 1);
}
void static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
int static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
r->x = *x;
secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x);
secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&c, &x3);
secp256k1_fe_sqrt(&r->y, &c);
if (!secp256k1_fe_sqrt(&r->y, &c))
return 0;
secp256k1_fe_normalize(&r->y);
if (secp256k1_fe_is_odd(&r->y) != odd)
secp256k1_fe_negate(&r->y, &r->y, 1);
return 1;
}
void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {

View file

@ -209,6 +209,54 @@ void run_num_smalltests() {
run_num_int();
}
/***** FIELD TESTS *****/
void random_fe(secp256k1_fe_t *x) {
unsigned char bin[32];
secp256k1_rand256(bin);
secp256k1_fe_set_b32(x, bin);
}
void random_fe_non_square(secp256k1_fe_t *ns) {
secp256k1_fe_t r;
int tries = 100;
while (--tries >= 0) {
random_fe(ns);
if (!secp256k1_fe_sqrt(&r, ns))
break;
}
// 2^-100 probability of spurious failure here
assert(tries >= 0);
}
void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
secp256k1_fe_t r1, r2;
int v = secp256k1_fe_sqrt(&r1, a);
assert((v == 0) == (k == NULL));
if (k != NULL) {
// Check that the returned root is +/- the given known answer
secp256k1_fe_negate(&r2, &r1, 1);
secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
assert(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
}
}
void run_sqrt() {
secp256k1_fe_t ns, x, s, t;
random_fe_non_square(&ns);
for (int i=0; i<10*count; i++) {
random_fe(&x);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&s, &x);
secp256k1_fe_mul(&t, &s, &ns);
test_sqrt(&t, NULL);
}
}
/***** ECMULT TESTS *****/
void run_ecmult_chain() {
// random starting point A (on the curve)
secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64);
@ -275,10 +323,7 @@ void run_ecmult_chain() {
}
void test_point_times_order(const secp256k1_gej_t *point) {
// either the point is not on the curve, or multiplying it by the order results in O
if (!secp256k1_gej_is_valid(point))
return;
// multiplying a point by the order results in O
const secp256k1_num_t *order = &secp256k1_ge_consts->order;
secp256k1_num_t zero;
secp256k1_num_init(&zero);
@ -292,9 +337,14 @@ void test_point_times_order(const secp256k1_gej_t *point) {
void run_point_times_order() {
secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2);
for (int i=0; i<500; i++) {
secp256k1_ge_t p; secp256k1_ge_set_xo(&p, &x, 1);
secp256k1_gej_t j; secp256k1_gej_set_ge(&j, &p);
secp256k1_ge_t p;
if (secp256k1_ge_set_xo(&p, &x, 1)) {
assert(secp256k1_ge_is_valid(&p));
secp256k1_gej_t j;
secp256k1_gej_set_ge(&j, &p);
assert(secp256k1_gej_is_valid(&j));
test_point_times_order(&j);
}
secp256k1_fe_sqr(&x, &x);
}
char c[65]; int cl=65;
@ -451,6 +501,9 @@ int main(int argc, char **argv) {
// num tests
run_num_smalltests();
// field tests
run_sqrt();
// ecmult tests
run_wnaf();
run_point_times_order();