Merge bitcoin/bitcoin#31524: refactor: Allow std::byte in Read(LE/BE)

fa83bec78e refactor: Allow std::byte in Read(LE/BE) (MarcoFalke)

Pull request description:

  Starting with C++17, `std::byte` is often (not always) a better choice over `uint8_t` for new code.

  However, the existing codebase discourages the use of `std::byte`, when helpers such as `ReadLE32` are used. This is because calling code will be cluttered with byte-casts.

  Fix it by allowing `std::byte` pointers in `ReadLE32` (and friends).

ACKs for top commit:
  sipa:
    utACK fa83bec78e
  fjahr:
    Code review ACK fa83bec78e
  theuni:
    utACK fa83bec78e
  l0rinc:
    ACK fa83bec78e

Tree-SHA512: 83604dc9df9ad447ad1b6f81f1e1844554c2c5331fcb78bdba1300e050d9dcbe9cf7a1b2dd250772bb23a8bf02a4ec26441012fe2f4bcc670ef31c15151adb15
This commit is contained in:
Ryan Ofsky 2025-01-03 08:23:09 -05:00
commit 6aa0e70ccb
No known key found for this signature in database
GPG key ID: 46800E30FC748A66
2 changed files with 39 additions and 22 deletions

View file

@ -1,4 +1,4 @@
// Copyright (c) 2017-2022 The Bitcoin Core developers // Copyright (c) 2017-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying // Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php. // file COPYING or http://www.opensource.org/licenses/mit-license.php.
@ -25,14 +25,14 @@
void ChaCha20Aligned::SetKey(Span<const std::byte> key) noexcept void ChaCha20Aligned::SetKey(Span<const std::byte> key) noexcept
{ {
assert(key.size() == KEYLEN); assert(key.size() == KEYLEN);
input[0] = ReadLE32(UCharCast(key.data() + 0)); input[0] = ReadLE32(key.data() + 0);
input[1] = ReadLE32(UCharCast(key.data() + 4)); input[1] = ReadLE32(key.data() + 4);
input[2] = ReadLE32(UCharCast(key.data() + 8)); input[2] = ReadLE32(key.data() + 8);
input[3] = ReadLE32(UCharCast(key.data() + 12)); input[3] = ReadLE32(key.data() + 12);
input[4] = ReadLE32(UCharCast(key.data() + 16)); input[4] = ReadLE32(key.data() + 16);
input[5] = ReadLE32(UCharCast(key.data() + 20)); input[5] = ReadLE32(key.data() + 20);
input[6] = ReadLE32(UCharCast(key.data() + 24)); input[6] = ReadLE32(key.data() + 24);
input[7] = ReadLE32(UCharCast(key.data() + 28)); input[7] = ReadLE32(key.data() + 28);
input[8] = 0; input[8] = 0;
input[9] = 0; input[9] = 0;
input[10] = 0; input[10] = 0;

View file

@ -1,4 +1,4 @@
// Copyright (c) 2014-2020 The Bitcoin Core developers // Copyright (c) 2014-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying // Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php. // file COPYING or http://www.opensource.org/licenses/mit-license.php.
@ -7,82 +7,99 @@
#include <compat/endian.h> #include <compat/endian.h>
#include <concepts>
#include <cstddef>
#include <cstdint> #include <cstdint>
#include <cstring> #include <cstring>
uint16_t static inline ReadLE16(const unsigned char* ptr) template <typename B>
concept ByteType = std::same_as<B, unsigned char> || std::same_as<B, std::byte>;
template <ByteType B>
inline uint16_t ReadLE16(const B* ptr)
{ {
uint16_t x; uint16_t x;
memcpy(&x, ptr, 2); memcpy(&x, ptr, 2);
return le16toh_internal(x); return le16toh_internal(x);
} }
uint32_t static inline ReadLE32(const unsigned char* ptr) template <ByteType B>
inline uint32_t ReadLE32(const B* ptr)
{ {
uint32_t x; uint32_t x;
memcpy(&x, ptr, 4); memcpy(&x, ptr, 4);
return le32toh_internal(x); return le32toh_internal(x);
} }
uint64_t static inline ReadLE64(const unsigned char* ptr) template <ByteType B>
inline uint64_t ReadLE64(const B* ptr)
{ {
uint64_t x; uint64_t x;
memcpy(&x, ptr, 8); memcpy(&x, ptr, 8);
return le64toh_internal(x); return le64toh_internal(x);
} }
void static inline WriteLE16(unsigned char* ptr, uint16_t x) template <ByteType B>
inline void WriteLE16(B* ptr, uint16_t x)
{ {
uint16_t v = htole16_internal(x); uint16_t v = htole16_internal(x);
memcpy(ptr, &v, 2); memcpy(ptr, &v, 2);
} }
void static inline WriteLE32(unsigned char* ptr, uint32_t x) template <ByteType B>
inline void WriteLE32(B* ptr, uint32_t x)
{ {
uint32_t v = htole32_internal(x); uint32_t v = htole32_internal(x);
memcpy(ptr, &v, 4); memcpy(ptr, &v, 4);
} }
void static inline WriteLE64(unsigned char* ptr, uint64_t x) template <ByteType B>
inline void WriteLE64(B* ptr, uint64_t x)
{ {
uint64_t v = htole64_internal(x); uint64_t v = htole64_internal(x);
memcpy(ptr, &v, 8); memcpy(ptr, &v, 8);
} }
uint16_t static inline ReadBE16(const unsigned char* ptr) template <ByteType B>
inline uint16_t ReadBE16(const B* ptr)
{ {
uint16_t x; uint16_t x;
memcpy(&x, ptr, 2); memcpy(&x, ptr, 2);
return be16toh_internal(x); return be16toh_internal(x);
} }
uint32_t static inline ReadBE32(const unsigned char* ptr) template <ByteType B>
inline uint32_t ReadBE32(const B* ptr)
{ {
uint32_t x; uint32_t x;
memcpy(&x, ptr, 4); memcpy(&x, ptr, 4);
return be32toh_internal(x); return be32toh_internal(x);
} }
uint64_t static inline ReadBE64(const unsigned char* ptr) template <ByteType B>
inline uint64_t ReadBE64(const B* ptr)
{ {
uint64_t x; uint64_t x;
memcpy(&x, ptr, 8); memcpy(&x, ptr, 8);
return be64toh_internal(x); return be64toh_internal(x);
} }
void static inline WriteBE16(unsigned char* ptr, uint16_t x) template <ByteType B>
inline void WriteBE16(B* ptr, uint16_t x)
{ {
uint16_t v = htobe16_internal(x); uint16_t v = htobe16_internal(x);
memcpy(ptr, &v, 2); memcpy(ptr, &v, 2);
} }
void static inline WriteBE32(unsigned char* ptr, uint32_t x) template <ByteType B>
inline void WriteBE32(B* ptr, uint32_t x)
{ {
uint32_t v = htobe32_internal(x); uint32_t v = htobe32_internal(x);
memcpy(ptr, &v, 4); memcpy(ptr, &v, 4);
} }
void static inline WriteBE64(unsigned char* ptr, uint64_t x) template <ByteType B>
inline void WriteBE64(B* ptr, uint64_t x)
{ {
uint64_t v = htobe64_internal(x); uint64_t v = htobe64_internal(x);
memcpy(ptr, &v, 8); memcpy(ptr, &v, 8);