mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-25 10:43:19 -03:00
Merge bitcoin/bitcoin#27479: BIP324: ElligatorSwift integrations
3168b08043
Bench test for EllSwift ECDH (Pieter Wuille)42d759f239
Bench tests for CKey->EllSwift (dhruv)2e5a8a437c
Fuzz test for Ellswift ECDH (dhruv)c3ac9f5cf4
Fuzz test for CKey->EllSwift->CPubKey creation/decoding (dhruv)aae432a764
Unit test for ellswift creation/decoding roundtrip (dhruv)eff72a0dff
Add ElligatorSwift key creation and ECDH logic (Pieter Wuille)42239f8390
Enable ellswift module in libsecp256k1 (dhruv)901336eee7
Squashed 'src/secp256k1/' changes from 4258c54f4e..705ce7ed8c (Pieter Wuille) Pull request description: This replaces #23432 and part of #23561. This PR introduces all of the ElligatorSwift-related changes (libsecp256k1 updates, generation, decoding, ECDH, tests, fuzzing, benchmarks) needed for BIP324. ElligatorSwift is a special 64-byte encoding format for public keys introduced in libsecp256k1 in https://github.com/bitcoin-core/secp256k1/pull/1129. It has the property that *every* 64-byte array is a valid encoding for some public key, and every key has approximately $2^{256}$ encodings. Furthermore, it is possible to efficiently generate a uniformly random encoding for a given public key or private key. This is used for the key exchange phase in BIP324, to achieve a byte stream that is entirely pseudorandom, even before the shared encryption key is established. ACKs for top commit: instagibbs: reACK3168b08043
achow101: ACK3168b08043
theStack: re-ACK3168b08043
Tree-SHA512: 308ac3d33e9a2deecb65826cbf0390480a38de201918429c35c796f3421cdf94c5501d027a043ae8f012cfaa0584656da1de6393bfba3532ab4c20f9533f06a6
This commit is contained in:
commit
679f825ba3
90 changed files with 4200 additions and 1178 deletions
|
@ -14,7 +14,7 @@
|
|||
</ItemGroup>
|
||||
<ItemDefinitionGroup>
|
||||
<ClCompile>
|
||||
<PreprocessorDefinitions>ENABLE_MODULE_RECOVERY;ENABLE_MODULE_EXTRAKEYS;ENABLE_MODULE_SCHNORRSIG;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<PreprocessorDefinitions>ENABLE_MODULE_RECOVERY;ENABLE_MODULE_EXTRAKEYS;ENABLE_MODULE_SCHNORRSIG;ENABLE_MODULE_ELLSWIFT;%(PreprocessorDefinitions)</PreprocessorDefinitions>
|
||||
<UndefinePreprocessorDefinitions>USE_ASM_X86_64;%(UndefinePreprocessorDefinitions)</UndefinePreprocessorDefinitions>
|
||||
<AdditionalIncludeDirectories>..\..\src\secp256k1;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
|
||||
<DisableSpecificWarnings>4146;4244;4267;4334</DisableSpecificWarnings>
|
||||
|
|
|
@ -18,6 +18,7 @@ bench_bench_bitcoin_SOURCES = \
|
|||
bench/bench.cpp \
|
||||
bench/bench.h \
|
||||
bench/bench_bitcoin.cpp \
|
||||
bench/bip324_ecdh.cpp \
|
||||
bench/block_assemble.cpp \
|
||||
bench/ccoins_caching.cpp \
|
||||
bench/chacha20.cpp \
|
||||
|
@ -29,6 +30,7 @@ bench_bench_bitcoin_SOURCES = \
|
|||
bench/data.h \
|
||||
bench/descriptors.cpp \
|
||||
bench/duplicate_inputs.cpp \
|
||||
bench/ellswift.cpp \
|
||||
bench/examples.cpp \
|
||||
bench/gcs_filter.cpp \
|
||||
bench/hashpadding.cpp \
|
||||
|
|
51
src/bench/bip324_ecdh.cpp
Normal file
51
src/bench/bip324_ecdh.cpp
Normal file
|
@ -0,0 +1,51 @@
|
|||
// Copyright (c) 2022 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <bench/bench.h>
|
||||
|
||||
#include <key.h>
|
||||
#include <pubkey.h>
|
||||
#include <random.h>
|
||||
#include <span.h>
|
||||
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
|
||||
static void BIP324_ECDH(benchmark::Bench& bench)
|
||||
{
|
||||
ECC_Start();
|
||||
FastRandomContext rng;
|
||||
|
||||
std::array<std::byte, 32> key_data;
|
||||
std::array<std::byte, EllSwiftPubKey::size()> our_ellswift_data;
|
||||
std::array<std::byte, EllSwiftPubKey::size()> their_ellswift_data;
|
||||
|
||||
rng.fillrand(key_data);
|
||||
rng.fillrand(our_ellswift_data);
|
||||
rng.fillrand(their_ellswift_data);
|
||||
|
||||
bench.batch(1).unit("ecdh").run([&] {
|
||||
CKey key;
|
||||
key.Set(UCharCast(key_data.data()), UCharCast(key_data.data()) + 32, true);
|
||||
EllSwiftPubKey our_ellswift(our_ellswift_data);
|
||||
EllSwiftPubKey their_ellswift(their_ellswift_data);
|
||||
|
||||
auto ret = key.ComputeBIP324ECDHSecret(their_ellswift, our_ellswift, true);
|
||||
|
||||
// To make sure that the computation is not the same on every iteration (ellswift decoding
|
||||
// is variable-time), distribute bytes from the shared secret over the 3 inputs. The most
|
||||
// important one is their_ellswift, because that one is actually decoded, so it's given most
|
||||
// bytes. The data is copied into the middle, so that both halves are affected:
|
||||
// - Copy 8 bytes from the resulting shared secret into middle of the private key.
|
||||
std::copy(ret.begin(), ret.begin() + 8, key_data.begin() + 12);
|
||||
// - Copy 8 bytes from the resulting shared secret into the middle of our ellswift key.
|
||||
std::copy(ret.begin() + 8, ret.begin() + 16, our_ellswift_data.begin() + 28);
|
||||
// - Copy 16 bytes from the resulting shared secret into the middle of their ellswift key.
|
||||
std::copy(ret.begin() + 16, ret.end(), their_ellswift_data.begin() + 24);
|
||||
});
|
||||
|
||||
ECC_Stop();
|
||||
}
|
||||
|
||||
BENCHMARK(BIP324_ECDH, benchmark::PriorityLevel::HIGH);
|
31
src/bench/ellswift.cpp
Normal file
31
src/bench/ellswift.cpp
Normal file
|
@ -0,0 +1,31 @@
|
|||
// Copyright (c) 2022-2023 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <bench/bench.h>
|
||||
|
||||
#include <key.h>
|
||||
#include <random.h>
|
||||
|
||||
static void EllSwiftCreate(benchmark::Bench& bench)
|
||||
{
|
||||
ECC_Start();
|
||||
|
||||
CKey key;
|
||||
key.MakeNewKey(true);
|
||||
|
||||
uint256 entropy = GetRandHash();
|
||||
|
||||
bench.batch(1).unit("pubkey").run([&] {
|
||||
auto ret = key.EllSwiftCreate(AsBytes(Span{entropy}));
|
||||
/* Use the first 32 bytes of the ellswift encoded public key as next private key. */
|
||||
key.Set(UCharCast(ret.data()), UCharCast(ret.data()) + 32, true);
|
||||
assert(key.IsValid());
|
||||
/* Use the last 32 bytes of the ellswift encoded public key as next entropy. */
|
||||
std::copy(ret.begin() + 32, ret.begin() + 64, AsBytePtr(entropy.data()));
|
||||
});
|
||||
|
||||
ECC_Stop();
|
||||
}
|
||||
|
||||
BENCHMARK(EllSwiftCreate, benchmark::PriorityLevel::HIGH);
|
37
src/key.cpp
37
src/key.cpp
|
@ -11,6 +11,7 @@
|
|||
#include <random.h>
|
||||
|
||||
#include <secp256k1.h>
|
||||
#include <secp256k1_ellswift.h>
|
||||
#include <secp256k1_extrakeys.h>
|
||||
#include <secp256k1_recovery.h>
|
||||
#include <secp256k1_schnorrsig.h>
|
||||
|
@ -331,6 +332,42 @@ bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const
|
|||
return ret;
|
||||
}
|
||||
|
||||
EllSwiftPubKey CKey::EllSwiftCreate(Span<const std::byte> ent32) const
|
||||
{
|
||||
assert(fValid);
|
||||
assert(ent32.size() == 32);
|
||||
std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey;
|
||||
|
||||
auto success = secp256k1_ellswift_create(secp256k1_context_sign,
|
||||
UCharCast(encoded_pubkey.data()),
|
||||
keydata.data(),
|
||||
UCharCast(ent32.data()));
|
||||
|
||||
// Should always succeed for valid keys (asserted above).
|
||||
assert(success);
|
||||
return {encoded_pubkey};
|
||||
}
|
||||
|
||||
ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const
|
||||
{
|
||||
assert(fValid);
|
||||
|
||||
ECDHSecret output;
|
||||
// BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs
|
||||
// accordingly:
|
||||
bool success = secp256k1_ellswift_xdh(secp256k1_context_sign,
|
||||
UCharCast(output.data()),
|
||||
UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()),
|
||||
UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()),
|
||||
keydata.data(),
|
||||
initiating ? 0 : 1,
|
||||
secp256k1_ellswift_xdh_hash_function_bip324,
|
||||
nullptr);
|
||||
// Should always succeed for valid keys (assert above).
|
||||
assert(success);
|
||||
return output;
|
||||
}
|
||||
|
||||
bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
|
||||
if (nDepth == std::numeric_limits<unsigned char>::max()) return false;
|
||||
out.nDepth = nDepth + 1;
|
||||
|
|
27
src/key.h
27
src/key.h
|
@ -22,6 +22,12 @@
|
|||
*/
|
||||
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
|
||||
|
||||
/** Size of ECDH shared secrets. */
|
||||
constexpr static size_t ECDH_SECRET_SIZE = CSHA256::OUTPUT_SIZE;
|
||||
|
||||
// Used to represent ECDH shared secret (ECDH_SECRET_SIZE bytes)
|
||||
using ECDHSecret = std::array<std::byte, ECDH_SECRET_SIZE>;
|
||||
|
||||
/** An encapsulated private key. */
|
||||
class CKey
|
||||
{
|
||||
|
@ -156,6 +162,27 @@ public:
|
|||
|
||||
//! Load private key and check that public key matches.
|
||||
bool Load(const CPrivKey& privkey, const CPubKey& vchPubKey, bool fSkipCheck);
|
||||
|
||||
/** Create an ellswift-encoded public key for this key, with specified entropy.
|
||||
*
|
||||
* entropy must be a 32-byte span with additional entropy to use in the encoding. Every
|
||||
* public key has ~2^256 different encodings, and this function will deterministically pick
|
||||
* one of them, based on entropy. Note that even without truly random entropy, the
|
||||
* resulting encoding will be indistinguishable from uniform to any adversary who does not
|
||||
* know the private key (because the private key itself is always used as entropy as well).
|
||||
*/
|
||||
EllSwiftPubKey EllSwiftCreate(Span<const std::byte> entropy) const;
|
||||
|
||||
/** Compute a BIP324-style ECDH shared secret.
|
||||
*
|
||||
* - their_ellswift: EllSwiftPubKey that was received from the other side.
|
||||
* - our_ellswift: EllSwiftPubKey that was sent to the other side (must have been generated
|
||||
* from *this using EllSwiftCreate()).
|
||||
* - initiating: whether we are the initiating party (true) or responding party (false).
|
||||
*/
|
||||
ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift,
|
||||
const EllSwiftPubKey& our_ellswift,
|
||||
bool initiating) const;
|
||||
};
|
||||
|
||||
struct CExtKey {
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
|
||||
#include <hash.h>
|
||||
#include <secp256k1.h>
|
||||
#include <secp256k1_ellswift.h>
|
||||
#include <secp256k1_extrakeys.h>
|
||||
#include <secp256k1_recovery.h>
|
||||
#include <secp256k1_schnorrsig.h>
|
||||
|
@ -335,6 +336,20 @@ bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChi
|
|||
return true;
|
||||
}
|
||||
|
||||
CPubKey EllSwiftPubKey::Decode() const
|
||||
{
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ellswift_decode(secp256k1_context_static, &pubkey, UCharCast(m_pubkey.data()));
|
||||
|
||||
size_t sz = CPubKey::COMPRESSED_SIZE;
|
||||
std::array<uint8_t, CPubKey::COMPRESSED_SIZE> vch_bytes;
|
||||
|
||||
secp256k1_ec_pubkey_serialize(secp256k1_context_static, vch_bytes.data(), &sz, &pubkey, SECP256K1_EC_COMPRESSED);
|
||||
assert(sz == vch_bytes.size());
|
||||
|
||||
return CPubKey{vch_bytes.begin(), vch_bytes.end()};
|
||||
}
|
||||
|
||||
void CExtPubKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
|
||||
code[0] = nDepth;
|
||||
memcpy(code+1, vchFingerprint, 4);
|
||||
|
|
32
src/pubkey.h
32
src/pubkey.h
|
@ -291,6 +291,38 @@ public:
|
|||
SERIALIZE_METHODS(XOnlyPubKey, obj) { READWRITE(obj.m_keydata); }
|
||||
};
|
||||
|
||||
/** An ElligatorSwift-encoded public key. */
|
||||
struct EllSwiftPubKey
|
||||
{
|
||||
private:
|
||||
static constexpr size_t SIZE = 64;
|
||||
std::array<std::byte, SIZE> m_pubkey;
|
||||
|
||||
public:
|
||||
/** Construct a new ellswift public key from a given serialization. */
|
||||
EllSwiftPubKey(const std::array<std::byte, SIZE>& ellswift) :
|
||||
m_pubkey(ellswift) {}
|
||||
|
||||
/** Decode to normal compressed CPubKey (for debugging purposes). */
|
||||
CPubKey Decode() const;
|
||||
|
||||
// Read-only access for serialization.
|
||||
const std::byte* data() const { return m_pubkey.data(); }
|
||||
static constexpr size_t size() { return SIZE; }
|
||||
auto begin() const { return m_pubkey.cbegin(); }
|
||||
auto end() const { return m_pubkey.cend(); }
|
||||
|
||||
bool friend operator==(const EllSwiftPubKey& a, const EllSwiftPubKey& b)
|
||||
{
|
||||
return a.m_pubkey == b.m_pubkey;
|
||||
}
|
||||
|
||||
bool friend operator!=(const EllSwiftPubKey& a, const EllSwiftPubKey& b)
|
||||
{
|
||||
return a.m_pubkey != b.m_pubkey;
|
||||
}
|
||||
};
|
||||
|
||||
struct CExtPubKey {
|
||||
unsigned char version[4];
|
||||
unsigned char nDepth;
|
||||
|
|
|
@ -599,6 +599,12 @@ std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
|
|||
return ret;
|
||||
}
|
||||
|
||||
void FastRandomContext::fillrand(Span<std::byte> output)
|
||||
{
|
||||
if (requires_seed) RandomSeed();
|
||||
rng.Keystream(UCharCast(output.data()), output.size());
|
||||
}
|
||||
|
||||
FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), bitbuf_size(0)
|
||||
{
|
||||
rng.SetKey32(seed.begin());
|
||||
|
|
|
@ -213,6 +213,9 @@ public:
|
|||
/** Generate random bytes. */
|
||||
std::vector<unsigned char> randbytes(size_t len);
|
||||
|
||||
/** Fill a byte Span with random bytes. */
|
||||
void fillrand(Span<std::byte> output);
|
||||
|
||||
/** Generate a random 32-bit integer. */
|
||||
uint32_t rand32() noexcept { return randbits(32); }
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@ env:
|
|||
ECDH: no
|
||||
RECOVERY: no
|
||||
SCHNORRSIG: no
|
||||
ELLSWIFT: no
|
||||
### test options
|
||||
SECP256K1_TEST_ITERS:
|
||||
BENCH: yes
|
||||
|
@ -74,12 +75,12 @@ task:
|
|||
<< : *LINUX_CONTAINER
|
||||
matrix: &ENV_MATRIX
|
||||
- env: {WIDEMUL: int64, RECOVERY: yes}
|
||||
- env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
|
||||
- env: {WIDEMUL: int128}
|
||||
- env: {WIDEMUL: int128_struct}
|
||||
- env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int128_struct, ELLSWIFT: yes}
|
||||
- env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
|
||||
- env: {WIDEMUL: int128, ECDH: yes, SCHNORRSIG: yes}
|
||||
- env: {WIDEMUL: int128, ASM: x86_64}
|
||||
- env: {WIDEMUL: int128, ASM: x86_64 , ELLSWIFT: yes}
|
||||
- env: { RECOVERY: yes, SCHNORRSIG: yes}
|
||||
- env: {CTIMETESTS: no, RECOVERY: yes, ECDH: yes, SCHNORRSIG: yes, CPPFLAGS: -DVERIFY}
|
||||
- env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETESTS: no, BENCH: no}
|
||||
|
@ -154,6 +155,7 @@ task:
|
|||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
|
@ -173,10 +175,11 @@ task:
|
|||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
matrix:
|
||||
- env: {}
|
||||
- env: {EXPERIMENTAL: yes, ASM: arm}
|
||||
- env: {EXPERIMENTAL: yes, ASM: arm32}
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
- ./ci/cirrus.sh
|
||||
|
@ -193,6 +196,7 @@ task:
|
|||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
|
@ -210,6 +214,7 @@ task:
|
|||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
|
@ -247,6 +252,7 @@ task:
|
|||
RECOVERY: yes
|
||||
EXPERIMENTAL: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
# Use a MinGW-w64 host to tell ./configure we're building for Windows.
|
||||
# This will detect some MinGW-w64 tools but then make will need only
|
||||
|
@ -286,6 +292,7 @@ task:
|
|||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
CTIMETESTS: no
|
||||
matrix:
|
||||
- name: "Valgrind (memcheck)"
|
||||
|
@ -361,6 +368,7 @@ task:
|
|||
ECDH: yes
|
||||
RECOVERY: yes
|
||||
SCHNORRSIG: yes
|
||||
ELLSWIFT: yes
|
||||
<< : *MERGE_BASE
|
||||
test_script:
|
||||
- ./ci/cirrus.sh
|
||||
|
@ -397,13 +405,13 @@ task:
|
|||
- PowerShell -NoLogo -Command if ($env:CIRRUS_PR -ne $null) { git fetch $env:CIRRUS_REPO_CLONE_URL pull/$env:CIRRUS_PR/merge; git reset --hard FETCH_HEAD; }
|
||||
configure_script:
|
||||
- '%x64_NATIVE_TOOLS%'
|
||||
- cmake -G "Visual Studio 17 2022" -A x64 -S . -B build -DSECP256K1_ENABLE_MODULE_RECOVERY=ON -DSECP256K1_BUILD_EXAMPLES=ON
|
||||
- cmake -E env CFLAGS="/WX" cmake -G "Visual Studio 17 2022" -A x64 -S . -B build -DSECP256K1_ENABLE_MODULE_RECOVERY=ON -DSECP256K1_BUILD_EXAMPLES=ON
|
||||
build_script:
|
||||
- '%x64_NATIVE_TOOLS%'
|
||||
- cmake --build build --config RelWithDebInfo -- -property:UseMultiToolTask=true;CL_MPcount=5
|
||||
check_script:
|
||||
- '%x64_NATIVE_TOOLS%'
|
||||
- ctest --test-dir build -j 5
|
||||
- ctest -C RelWithDebInfo --test-dir build -j 5
|
||||
- build\src\RelWithDebInfo\bench_ecmult.exe
|
||||
- build\src\RelWithDebInfo\bench_internal.exe
|
||||
- build\src\RelWithDebInfo\bench.exe
|
||||
|
|
2
src/secp256k1/.gitignore
vendored
2
src/secp256k1/.gitignore
vendored
|
@ -59,5 +59,7 @@ build-aux/compile
|
|||
build-aux/test-driver
|
||||
libsecp256k1.pc
|
||||
|
||||
### CMake
|
||||
/CMakeUserPresets.json
|
||||
# Default CMake build directory.
|
||||
/build
|
||||
|
|
|
@ -7,6 +7,25 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||
|
||||
## [Unreleased]
|
||||
|
||||
## [0.3.2] - 2023-05-13
|
||||
We strongly recommend updating to 0.3.2 if you use or plan to use GCC >=13 to compile libsecp256k1. When in doubt, check the GCC version using `gcc -v`.
|
||||
|
||||
#### Security
|
||||
- Module `ecdh`: Fix "constant-timeness" issue with GCC 13.1 (and potentially future versions of GCC) that could leave applications using libsecp256k1's ECDH module vulnerable to a timing side-channel attack. The fix avoids secret-dependent control flow during ECDH computations when libsecp256k1 is compiled with GCC 13.1.
|
||||
|
||||
#### Fixed
|
||||
- Fixed an old bug that permitted compilers to potentially output bad assembly code on x86_64. In theory, it could lead to a crash or a read of unrelated memory, but this has never been observed on any compilers so far.
|
||||
|
||||
#### Changed
|
||||
- Various improvements and changes to CMake builds. CMake builds remain experimental.
|
||||
- Made API versioning consistent with GNU Autotools builds.
|
||||
- Switched to `BUILD_SHARED_LIBS` variable for controlling whether to build a static or a shared library.
|
||||
- Added `SECP256K1_INSTALL` variable for the controlling whether to install the build artefacts.
|
||||
- Renamed asm build option `arm` to `arm32`. Use `--with-asm=arm32` instead of `--with-asm=arm` (GNU Autotools), and `-DSECP256K1_ASM=arm32` instead of `-DSECP256K1_ASM=arm` (CMake).
|
||||
|
||||
#### ABI Compatibility
|
||||
The ABI is compatible with versions 0.3.0 and 0.3.1.
|
||||
|
||||
## [0.3.1] - 2023-04-10
|
||||
We strongly recommend updating to 0.3.1 if you use or plan to use Clang >=14 to compile libsecp256k1, e.g., Xcode >=14 on macOS has Clang >=14. When in doubt, check the Clang version using `clang -v`.
|
||||
|
||||
|
@ -68,7 +87,8 @@ This version was in fact never released.
|
|||
The number was given by the build system since the introduction of autotools in Jan 2014 (ea0fe5a5bf0c04f9cc955b2966b614f5f378c6f6).
|
||||
Therefore, this version number does not uniquely identify a set of source files.
|
||||
|
||||
[unreleased]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.1...HEAD
|
||||
[unreleased]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.2...HEAD
|
||||
[0.3.2]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.1...v0.3.2
|
||||
[0.3.1]: https://github.com/bitcoin-core/secp256k1/compare/v0.3.0...v0.3.1
|
||||
[0.3.0]: https://github.com/bitcoin-core/secp256k1/compare/v0.2.0...v0.3.0
|
||||
[0.2.0]: https://github.com/bitcoin-core/secp256k1/compare/423b6d19d373f1224fd671a982584d7e7900bc93..v0.2.0
|
||||
|
|
|
@ -1,16 +1,33 @@
|
|||
cmake_minimum_required(VERSION 3.13)
|
||||
|
||||
if(CMAKE_VERSION VERSION_GREATER 3.14)
|
||||
if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.15)
|
||||
# MSVC runtime library flags are selected by the CMAKE_MSVC_RUNTIME_LIBRARY abstraction.
|
||||
cmake_policy(SET CMP0091 NEW)
|
||||
# MSVC warning flags are not in CMAKE_<LANG>_FLAGS by default.
|
||||
cmake_policy(SET CMP0092 NEW)
|
||||
endif()
|
||||
|
||||
# The package (a.k.a. release) version is based on semantic versioning 2.0.0 of
|
||||
# the API. All changes in experimental modules are treated as
|
||||
# backwards-compatible and therefore at most increase the minor version.
|
||||
project(libsecp256k1 VERSION 0.3.2 LANGUAGES C)
|
||||
project(libsecp256k1
|
||||
# The package (a.k.a. release) version is based on semantic versioning 2.0.0 of
|
||||
# the API. All changes in experimental modules are treated as
|
||||
# backwards-compatible and therefore at most increase the minor version.
|
||||
VERSION 0.3.3
|
||||
DESCRIPTION "Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1."
|
||||
HOMEPAGE_URL "https://github.com/bitcoin-core/secp256k1"
|
||||
LANGUAGES C
|
||||
)
|
||||
|
||||
if(CMAKE_VERSION VERSION_LESS 3.21)
|
||||
get_directory_property(parent_directory PARENT_DIRECTORY)
|
||||
if(parent_directory)
|
||||
set(PROJECT_IS_TOP_LEVEL OFF CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
|
||||
set(${PROJECT_NAME}_IS_TOP_LEVEL OFF CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
|
||||
else()
|
||||
set(PROJECT_IS_TOP_LEVEL ON CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
|
||||
set(${PROJECT_NAME}_IS_TOP_LEVEL ON CACHE INTERNAL "Emulates CMake 3.21+ behavior.")
|
||||
endif()
|
||||
unset(parent_directory)
|
||||
endif()
|
||||
|
||||
# The library version is based on libtool versioning of the ABI. The set of
|
||||
# rules for updating the version can be found here:
|
||||
|
@ -18,7 +35,7 @@ project(libsecp256k1 VERSION 0.3.2 LANGUAGES C)
|
|||
# All changes in experimental modules are treated as if they don't affect the
|
||||
# interface and therefore only increase the revision.
|
||||
set(${PROJECT_NAME}_LIB_VERSION_CURRENT 2)
|
||||
set(${PROJECT_NAME}_LIB_VERSION_REVISION 2)
|
||||
set(${PROJECT_NAME}_LIB_VERSION_REVISION 3)
|
||||
set(${PROJECT_NAME}_LIB_VERSION_AGE 0)
|
||||
|
||||
set(CMAKE_C_STANDARD 90)
|
||||
|
@ -26,36 +43,42 @@ set(CMAKE_C_EXTENSIONS OFF)
|
|||
|
||||
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
|
||||
|
||||
# We do not use CMake's BUILD_SHARED_LIBS option.
|
||||
option(SECP256K1_BUILD_SHARED "Build shared library." ON)
|
||||
option(SECP256K1_BUILD_STATIC "Build static library." ON)
|
||||
if(NOT SECP256K1_BUILD_SHARED AND NOT SECP256K1_BUILD_STATIC)
|
||||
message(FATAL_ERROR "At least one of SECP256K1_BUILD_SHARED and SECP256K1_BUILD_STATIC must be enabled.")
|
||||
option(BUILD_SHARED_LIBS "Build shared libraries." ON)
|
||||
option(SECP256K1_DISABLE_SHARED "Disable shared library. Overrides BUILD_SHARED_LIBS." OFF)
|
||||
if(SECP256K1_DISABLE_SHARED)
|
||||
set(BUILD_SHARED_LIBS OFF)
|
||||
endif()
|
||||
|
||||
option(SECP256K1_INSTALL "Enable installation." ${PROJECT_IS_TOP_LEVEL})
|
||||
|
||||
option(SECP256K1_ENABLE_MODULE_ECDH "Enable ECDH module." ON)
|
||||
if(SECP256K1_ENABLE_MODULE_ECDH)
|
||||
add_definitions(-DENABLE_MODULE_ECDH=1)
|
||||
add_compile_definitions(ENABLE_MODULE_ECDH=1)
|
||||
endif()
|
||||
|
||||
option(SECP256K1_ENABLE_MODULE_RECOVERY "Enable ECDSA pubkey recovery module." OFF)
|
||||
if(SECP256K1_ENABLE_MODULE_RECOVERY)
|
||||
add_definitions(-DENABLE_MODULE_RECOVERY=1)
|
||||
add_compile_definitions(ENABLE_MODULE_RECOVERY=1)
|
||||
endif()
|
||||
|
||||
option(SECP256K1_ENABLE_MODULE_EXTRAKEYS "Enable extrakeys module." ON)
|
||||
option(SECP256K1_ENABLE_MODULE_SCHNORRSIG "Enable schnorrsig module." ON)
|
||||
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
|
||||
set(SECP256K1_ENABLE_MODULE_EXTRAKEYS ON)
|
||||
add_definitions(-DENABLE_MODULE_SCHNORRSIG=1)
|
||||
add_compile_definitions(ENABLE_MODULE_SCHNORRSIG=1)
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
|
||||
add_definitions(-DENABLE_MODULE_EXTRAKEYS=1)
|
||||
add_compile_definitions(ENABLE_MODULE_EXTRAKEYS=1)
|
||||
endif()
|
||||
|
||||
option(SECP256K1_ENABLE_MODULE_ELLSWIFT "Enable ElligatorSwift module." ON)
|
||||
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
|
||||
add_compile_definitions(ENABLE_MODULE_ELLSWIFT=1)
|
||||
endif()
|
||||
|
||||
option(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS "Enable external default callback functions." OFF)
|
||||
if(SECP256K1_USE_EXTERNAL_DEFAULT_CALLBACKS)
|
||||
add_definitions(-DUSE_EXTERNAL_DEFAULT_CALLBACKS=1)
|
||||
add_compile_definitions(USE_EXTERNAL_DEFAULT_CALLBACKS=1)
|
||||
endif()
|
||||
|
||||
set(SECP256K1_ECMULT_WINDOW_SIZE "AUTO" CACHE STRING "Window size for ecmult precomputation for verification, specified as integer in range [2..24]. \"AUTO\" is a reasonable setting for desktop machines (currently 15). [default=AUTO]")
|
||||
|
@ -65,7 +88,7 @@ check_string_option_value(SECP256K1_ECMULT_WINDOW_SIZE)
|
|||
if(SECP256K1_ECMULT_WINDOW_SIZE STREQUAL "AUTO")
|
||||
set(SECP256K1_ECMULT_WINDOW_SIZE 15)
|
||||
endif()
|
||||
add_definitions(-DECMULT_WINDOW_SIZE=${SECP256K1_ECMULT_WINDOW_SIZE})
|
||||
add_compile_definitions(ECMULT_WINDOW_SIZE=${SECP256K1_ECMULT_WINDOW_SIZE})
|
||||
|
||||
set(SECP256K1_ECMULT_GEN_PREC_BITS "AUTO" CACHE STRING "Precision bits to tune the precomputed table size for signing, specified as integer 2, 4 or 8. \"AUTO\" is a reasonable setting for desktop machines (currently 4). [default=AUTO]")
|
||||
set_property(CACHE SECP256K1_ECMULT_GEN_PREC_BITS PROPERTY STRINGS "AUTO" 2 4 8)
|
||||
|
@ -73,29 +96,35 @@ check_string_option_value(SECP256K1_ECMULT_GEN_PREC_BITS)
|
|||
if(SECP256K1_ECMULT_GEN_PREC_BITS STREQUAL "AUTO")
|
||||
set(SECP256K1_ECMULT_GEN_PREC_BITS 4)
|
||||
endif()
|
||||
add_definitions(-DECMULT_GEN_PREC_BITS=${SECP256K1_ECMULT_GEN_PREC_BITS})
|
||||
add_compile_definitions(ECMULT_GEN_PREC_BITS=${SECP256K1_ECMULT_GEN_PREC_BITS})
|
||||
|
||||
set(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY "OFF" CACHE STRING "Test-only override of the (autodetected by the C code) \"widemul\" setting. Legal values are: \"OFF\", \"int128_struct\", \"int128\" or \"int64\". [default=OFF]")
|
||||
set_property(CACHE SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY PROPERTY STRINGS "OFF" "int128_struct" "int128" "int64")
|
||||
check_string_option_value(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
|
||||
if(SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
|
||||
string(TOUPPER "${SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY}" widemul_upper_value)
|
||||
add_definitions(-DUSE_FORCE_WIDEMUL_${widemul_upper_value}=1)
|
||||
add_compile_definitions(USE_FORCE_WIDEMUL_${widemul_upper_value}=1)
|
||||
endif()
|
||||
mark_as_advanced(FORCE SECP256K1_TEST_OVERRIDE_WIDE_MULTIPLY)
|
||||
|
||||
set(SECP256K1_ASM "AUTO" CACHE STRING "Assembly optimizations to use: \"AUTO\", \"OFF\", \"x86_64\" or \"arm\" (experimental). [default=AUTO]")
|
||||
set_property(CACHE SECP256K1_ASM PROPERTY STRINGS "AUTO" "OFF" "x86_64" "arm")
|
||||
set(SECP256K1_ASM "AUTO" CACHE STRING "Assembly optimizations to use: \"AUTO\", \"OFF\", \"x86_64\" or \"arm32\" (experimental). [default=AUTO]")
|
||||
set_property(CACHE SECP256K1_ASM PROPERTY STRINGS "AUTO" "OFF" "x86_64" "arm32")
|
||||
check_string_option_value(SECP256K1_ASM)
|
||||
if(SECP256K1_ASM STREQUAL "arm")
|
||||
if(SECP256K1_ASM STREQUAL "arm32")
|
||||
enable_language(ASM)
|
||||
add_definitions(-DUSE_EXTERNAL_ASM=1)
|
||||
include(CheckArm32Assembly)
|
||||
check_arm32_assembly()
|
||||
if(HAVE_ARM32_ASM)
|
||||
add_compile_definitions(USE_EXTERNAL_ASM=1)
|
||||
else()
|
||||
message(FATAL_ERROR "ARM32 assembly optimization requested but not available.")
|
||||
endif()
|
||||
elseif(SECP256K1_ASM)
|
||||
include(Check64bitAssembly)
|
||||
check_64bit_assembly()
|
||||
if(HAS_64BIT_ASM)
|
||||
include(CheckX86_64Assembly)
|
||||
check_x86_64_assembly()
|
||||
if(HAVE_X86_64_ASM)
|
||||
set(SECP256K1_ASM "x86_64")
|
||||
add_definitions(-DUSE_ASM_X86_64=1)
|
||||
add_compile_definitions(USE_ASM_X86_64=1)
|
||||
elseif(SECP256K1_ASM STREQUAL "AUTO")
|
||||
set(SECP256K1_ASM "OFF")
|
||||
else()
|
||||
|
@ -105,8 +134,8 @@ endif()
|
|||
|
||||
option(SECP256K1_EXPERIMENTAL "Allow experimental configuration options." OFF)
|
||||
if(NOT SECP256K1_EXPERIMENTAL)
|
||||
if(SECP256K1_ASM STREQUAL "arm")
|
||||
message(FATAL_ERROR "ARM assembly optimization is experimental. Use -DSECP256K1_EXPERIMENTAL=ON to allow.")
|
||||
if(SECP256K1_ASM STREQUAL "arm32")
|
||||
message(FATAL_ERROR "ARM32 assembly optimization is experimental. Use -DSECP256K1_EXPERIMENTAL=ON to allow.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
@ -118,7 +147,7 @@ if(SECP256K1_VALGRIND)
|
|||
if(Valgrind_FOUND)
|
||||
set(SECP256K1_VALGRIND ON)
|
||||
include_directories(${Valgrind_INCLUDE_DIR})
|
||||
add_definitions(-DVALGRIND)
|
||||
add_compile_definitions(VALGRIND)
|
||||
elseif(SECP256K1_VALGRIND STREQUAL "AUTO")
|
||||
set(SECP256K1_VALGRIND OFF)
|
||||
else()
|
||||
|
@ -165,42 +194,51 @@ mark_as_advanced(
|
|||
CMAKE_SHARED_LINKER_FLAGS_COVERAGE
|
||||
)
|
||||
|
||||
if(CMAKE_CONFIGURATION_TYPES)
|
||||
set(CMAKE_CONFIGURATION_TYPES "RelWithDebInfo" "Release" "Debug" "MinSizeRel" "Coverage")
|
||||
endif()
|
||||
|
||||
get_property(cached_cmake_build_type CACHE CMAKE_BUILD_TYPE PROPERTY TYPE)
|
||||
if(cached_cmake_build_type)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY
|
||||
STRINGS "RelWithDebInfo" "Release" "Debug" "MinSizeRel" "Coverage"
|
||||
)
|
||||
endif()
|
||||
|
||||
get_property(is_multi_config GLOBAL PROPERTY GENERATOR_IS_MULTI_CONFIG)
|
||||
set(default_build_type "RelWithDebInfo")
|
||||
if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
|
||||
message(STATUS "Setting build type to \"${default_build_type}\" as none was specified")
|
||||
set(CMAKE_BUILD_TYPE "${default_build_type}" CACHE STRING "Choose the type of build." FORCE)
|
||||
if(is_multi_config)
|
||||
set(CMAKE_CONFIGURATION_TYPES "${default_build_type}" "Release" "Debug" "MinSizeRel" "Coverage" CACHE STRING
|
||||
"Supported configuration types."
|
||||
FORCE
|
||||
)
|
||||
else()
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY
|
||||
STRINGS "${default_build_type}" "Release" "Debug" "MinSizeRel" "Coverage"
|
||||
)
|
||||
if(NOT CMAKE_BUILD_TYPE)
|
||||
message(STATUS "Setting build type to \"${default_build_type}\" as none was specified")
|
||||
set(CMAKE_BUILD_TYPE "${default_build_type}" CACHE STRING
|
||||
"Choose the type of build."
|
||||
FORCE
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
include(TryAddCompileOption)
|
||||
include(TryAppendCFlags)
|
||||
if(MSVC)
|
||||
try_add_compile_option(/W2)
|
||||
try_add_compile_option(/wd4146)
|
||||
# Keep the following commands ordered lexicographically.
|
||||
try_append_c_flags(/W3) # Production quality warning level.
|
||||
try_append_c_flags(/wd4146) # Disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned".
|
||||
try_append_c_flags(/wd4244) # Disable warning C4244 "'conversion' conversion from 'type1' to 'type2', possible loss of data".
|
||||
try_append_c_flags(/wd4267) # Disable warning C4267 "'var' : conversion from 'size_t' to 'type', possible loss of data".
|
||||
# Eliminate deprecation warnings for the older, less secure functions.
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
else()
|
||||
try_add_compile_option(-pedantic)
|
||||
try_add_compile_option(-Wall)
|
||||
try_add_compile_option(-Wcast-align)
|
||||
try_add_compile_option(-Wcast-align=strict)
|
||||
try_add_compile_option(-Wconditional-uninitialized)
|
||||
try_add_compile_option(-Wextra)
|
||||
try_add_compile_option(-Wnested-externs)
|
||||
try_add_compile_option(-Wno-long-long)
|
||||
try_add_compile_option(-Wno-overlength-strings)
|
||||
try_add_compile_option(-Wno-unused-function)
|
||||
try_add_compile_option(-Wreserved-identifier)
|
||||
try_add_compile_option(-Wshadow)
|
||||
try_add_compile_option(-Wstrict-prototypes)
|
||||
try_add_compile_option(-Wundef)
|
||||
# Keep the following commands ordered lexicographically.
|
||||
try_append_c_flags(-pedantic)
|
||||
try_append_c_flags(-Wall) # GCC >= 2.95 and probably many other compilers.
|
||||
try_append_c_flags(-Wcast-align) # GCC >= 2.95.
|
||||
try_append_c_flags(-Wcast-align=strict) # GCC >= 8.0.
|
||||
try_append_c_flags(-Wconditional-uninitialized) # Clang >= 3.0 only.
|
||||
try_append_c_flags(-Wextra) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
|
||||
try_append_c_flags(-Wnested-externs)
|
||||
try_append_c_flags(-Wno-long-long) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
|
||||
try_append_c_flags(-Wno-overlength-strings) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
|
||||
try_append_c_flags(-Wno-unused-function) # GCC >= 3.0, -Wunused-function is implied by -Wall.
|
||||
try_append_c_flags(-Wreserved-identifier) # Clang >= 13.0 only.
|
||||
try_append_c_flags(-Wshadow)
|
||||
try_append_c_flags(-Wstrict-prototypes)
|
||||
try_append_c_flags(-Wundef)
|
||||
endif()
|
||||
|
||||
set(CMAKE_C_VISIBILITY_PRESET hidden)
|
||||
|
@ -225,13 +263,19 @@ message("\n")
|
|||
message("secp256k1 configure summary")
|
||||
message("===========================")
|
||||
message("Build artifacts:")
|
||||
message(" shared library ...................... ${SECP256K1_BUILD_SHARED}")
|
||||
message(" static library ...................... ${SECP256K1_BUILD_STATIC}")
|
||||
if(BUILD_SHARED_LIBS)
|
||||
set(library_type "Shared")
|
||||
else()
|
||||
set(library_type "Static")
|
||||
endif()
|
||||
|
||||
message(" library type ........................ ${library_type}")
|
||||
message("Optional modules:")
|
||||
message(" ECDH ................................ ${SECP256K1_ENABLE_MODULE_ECDH}")
|
||||
message(" ECDSA pubkey recovery ............... ${SECP256K1_ENABLE_MODULE_RECOVERY}")
|
||||
message(" extrakeys ........................... ${SECP256K1_ENABLE_MODULE_EXTRAKEYS}")
|
||||
message(" schnorrsig .......................... ${SECP256K1_ENABLE_MODULE_SCHNORRSIG}")
|
||||
message(" ElligatorSwift ...................... ${SECP256K1_ENABLE_MODULE_ELLSWIFT}")
|
||||
message("Parameters:")
|
||||
message(" ecmult window size .................. ${SECP256K1_ECMULT_WINDOW_SIZE}")
|
||||
message(" ecmult gen precision bits ........... ${SECP256K1_ECMULT_GEN_PREC_BITS}")
|
||||
|
@ -268,7 +312,7 @@ message("CFLAGS ................................ ${CMAKE_C_FLAGS}")
|
|||
get_directory_property(compile_options COMPILE_OPTIONS)
|
||||
string(REPLACE ";" " " compile_options "${compile_options}")
|
||||
message("Compile options ....................... " ${compile_options})
|
||||
if(DEFINED CMAKE_BUILD_TYPE)
|
||||
if(NOT is_multi_config)
|
||||
message("Build type:")
|
||||
message(" - CMAKE_BUILD_TYPE ................... ${CMAKE_BUILD_TYPE}")
|
||||
string(TOUPPER "${CMAKE_BUILD_TYPE}" build_type)
|
||||
|
@ -276,7 +320,7 @@ if(DEFINED CMAKE_BUILD_TYPE)
|
|||
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_${build_type}}")
|
||||
message(" - LDFLAGS for shared libraries ....... ${CMAKE_SHARED_LINKER_FLAGS_${build_type}}")
|
||||
else()
|
||||
message("Available configurations .............. ${CMAKE_CONFIGURATION_TYPES}")
|
||||
message("Supported configurations .............. ${CMAKE_CONFIGURATION_TYPES}")
|
||||
message("RelWithDebInfo configuration:")
|
||||
message(" - CFLAGS ............................. ${CMAKE_C_FLAGS_RELWITHDEBINFO}")
|
||||
message(" - LDFLAGS for executables ............ ${CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO}")
|
||||
|
|
19
src/secp256k1/CMakePresets.json
Normal file
19
src/secp256k1/CMakePresets.json
Normal file
|
@ -0,0 +1,19 @@
|
|||
{
|
||||
"cmakeMinimumRequired": {"major": 3, "minor": 21, "patch": 0},
|
||||
"version": 3,
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "dev-mode",
|
||||
"displayName": "Development mode (intended only for developers of the library)",
|
||||
"cacheVariables": {
|
||||
"SECP256K1_EXPERIMENTAL": "ON",
|
||||
"SECP256K1_ENABLE_MODULE_RECOVERY": "ON",
|
||||
"SECP256K1_BUILD_EXAMPLES": "ON"
|
||||
},
|
||||
"warnings": {
|
||||
"dev": true,
|
||||
"uninitialized": true
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
|
@ -1,5 +1,3 @@
|
|||
.PHONY: clean-precomp precomp
|
||||
|
||||
ACLOCAL_AMFLAGS = -I build-aux/m4
|
||||
|
||||
# AM_CFLAGS will be automatically prepended to CFLAGS by Automake when compiling some foo
|
||||
|
@ -65,6 +63,7 @@ noinst_HEADERS += src/hash_impl.h
|
|||
noinst_HEADERS += src/field.h
|
||||
noinst_HEADERS += src/field_impl.h
|
||||
noinst_HEADERS += src/bench.h
|
||||
noinst_HEADERS += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
|
||||
noinst_HEADERS += contrib/lax_der_parsing.h
|
||||
noinst_HEADERS += contrib/lax_der_parsing.c
|
||||
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
|
||||
|
@ -190,11 +189,11 @@ EXTRA_PROGRAMS = precompute_ecmult precompute_ecmult_gen
|
|||
CLEANFILES = $(EXTRA_PROGRAMS)
|
||||
|
||||
precompute_ecmult_SOURCES = src/precompute_ecmult.c
|
||||
precompute_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES)
|
||||
precompute_ecmult_CPPFLAGS = $(SECP_CONFIG_DEFINES) -DVERIFY
|
||||
precompute_ecmult_LDADD = $(COMMON_LIB)
|
||||
|
||||
precompute_ecmult_gen_SOURCES = src/precompute_ecmult_gen.c
|
||||
precompute_ecmult_gen_CPPFLAGS = $(SECP_CONFIG_DEFINES)
|
||||
precompute_ecmult_gen_CPPFLAGS = $(SECP_CONFIG_DEFINES) -DVERIFY
|
||||
precompute_ecmult_gen_LDADD = $(COMMON_LIB)
|
||||
|
||||
# See Automake manual, Section "Errors with distclean".
|
||||
|
@ -202,7 +201,7 @@ precompute_ecmult_gen_LDADD = $(COMMON_LIB)
|
|||
# otherwise make's decision whether to rebuild them (even in the first
|
||||
# build by a normal user) depends on mtimes, and thus is very fragile.
|
||||
# This means that rebuilds of the prebuilt files always need to be
|
||||
# forced by deleting them, e.g., by invoking `make clean-precomp`.
|
||||
# forced by deleting them.
|
||||
src/precomputed_ecmult.c:
|
||||
$(MAKE) $(AM_MAKEFLAGS) precompute_ecmult$(EXEEXT)
|
||||
./precompute_ecmult$(EXEEXT)
|
||||
|
@ -217,11 +216,29 @@ precomp: $(PRECOMP)
|
|||
# e.g., after `make maintainer-clean`).
|
||||
BUILT_SOURCES = $(PRECOMP)
|
||||
|
||||
maintainer-clean-local: clean-precomp
|
||||
|
||||
.PHONY: clean-precomp
|
||||
clean-precomp:
|
||||
rm -f $(PRECOMP)
|
||||
maintainer-clean-local: clean-precomp
|
||||
|
||||
### Pregenerated test vectors
|
||||
### (see the comments in the previous section for detailed rationale)
|
||||
TESTVECTORS = src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
|
||||
|
||||
src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h:
|
||||
mkdir -p $(@D)
|
||||
python3 $(top_srcdir)/tools/tests_wycheproof_generate.py $(top_srcdir)/src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json > $@
|
||||
|
||||
testvectors: $(TESTVECTORS)
|
||||
|
||||
BUILT_SOURCES += $(TESTVECTORS)
|
||||
|
||||
.PHONY: clean-testvectors
|
||||
clean-testvectors:
|
||||
rm -f $(TESTVECTORS)
|
||||
maintainer-clean-local: clean-testvectors
|
||||
|
||||
### Additional files to distribute
|
||||
EXTRA_DIST = autogen.sh CHANGELOG.md SECURITY.md
|
||||
EXTRA_DIST += doc/release-process.md doc/safegcd_implementation.md
|
||||
EXTRA_DIST += examples/EXAMPLES_COPYING
|
||||
|
@ -231,6 +248,9 @@ EXTRA_DIST += sage/group_prover.sage
|
|||
EXTRA_DIST += sage/prove_group_implementations.sage
|
||||
EXTRA_DIST += sage/secp256k1_params.sage
|
||||
EXTRA_DIST += sage/weierstrass_prover.sage
|
||||
EXTRA_DIST += src/wycheproof/WYCHEPROOF_COPYING
|
||||
EXTRA_DIST += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json
|
||||
EXTRA_DIST += tools/tests_wycheproof_generate.py
|
||||
|
||||
if ENABLE_MODULE_ECDH
|
||||
include src/modules/ecdh/Makefile.am.include
|
||||
|
@ -248,19 +268,6 @@ if ENABLE_MODULE_SCHNORRSIG
|
|||
include src/modules/schnorrsig/Makefile.am.include
|
||||
endif
|
||||
|
||||
EXTRA_DIST += src/wycheproof/WYCHEPROOF_COPYING
|
||||
EXTRA_DIST += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
|
||||
EXTRA_DIST += src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json
|
||||
EXTRA_DIST += tools/tests_wycheproof_generate.py
|
||||
|
||||
TESTVECTORS = src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h
|
||||
|
||||
src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.h:
|
||||
python3 tools/tests_wycheproof_generate.py src/wycheproof/ecdsa_secp256k1_sha256_bitcoin_test.json > $@
|
||||
|
||||
testvectors: $(TESTVECTORS)
|
||||
|
||||
maintainer-clean-testvectors: clean-testvectors
|
||||
|
||||
clean-testvectors:
|
||||
rm -f $(TESTVECTORS)
|
||||
if ENABLE_MODULE_ELLSWIFT
|
||||
include src/modules/ellswift/Makefile.am.include
|
||||
endif
|
||||
|
|
|
@ -1,12 +1,31 @@
|
|||
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
|
||||
AC_DEFUN([SECP_64BIT_ASM_CHECK],[
|
||||
AC_DEFUN([SECP_X86_64_ASM_CHECK],[
|
||||
AC_MSG_CHECKING(for x86_64 assembly availability)
|
||||
AC_LINK_IFELSE([AC_LANG_PROGRAM([[
|
||||
#include <stdint.h>]],[[
|
||||
uint64_t a = 11, tmp;
|
||||
__asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
|
||||
]])],[has_64bit_asm=yes],[has_64bit_asm=no])
|
||||
AC_MSG_RESULT([$has_64bit_asm])
|
||||
]])], [has_x86_64_asm=yes], [has_x86_64_asm=no])
|
||||
AC_MSG_RESULT([$has_x86_64_asm])
|
||||
])
|
||||
|
||||
AC_DEFUN([SECP_ARM32_ASM_CHECK], [
|
||||
AC_MSG_CHECKING(for ARM32 assembly availability)
|
||||
SECP_ARM32_ASM_CHECK_CFLAGS_saved_CFLAGS="$CFLAGS"
|
||||
CFLAGS="-x assembler"
|
||||
AC_LINK_IFELSE([AC_LANG_SOURCE([[
|
||||
.syntax unified
|
||||
.eabi_attribute 24, 1
|
||||
.eabi_attribute 25, 1
|
||||
.text
|
||||
.global main
|
||||
main:
|
||||
ldr r0, =0x002A
|
||||
mov r7, #1
|
||||
swi 0
|
||||
]])], [has_arm32_asm=yes], [has_arm32_asm=no])
|
||||
AC_MSG_RESULT([$has_arm32_asm])
|
||||
CFLAGS="$SECP_ARM32_ASM_CHECK_CFLAGS_saved_CFLAGS"
|
||||
])
|
||||
|
||||
AC_DEFUN([SECP_VALGRIND_CHECK],[
|
||||
|
@ -21,6 +40,7 @@ if test x"$has_valgrind" != x"yes"; then
|
|||
# error "Valgrind does not support this platform."
|
||||
#endif
|
||||
]])], [has_valgrind=yes])
|
||||
CPPFLAGS="$CPPFLAGS_TEMP"
|
||||
fi
|
||||
AC_MSG_RESULT($has_valgrind)
|
||||
])
|
||||
|
|
|
@ -36,8 +36,7 @@ case "$WRAPPER_CMD" in
|
|||
*wine*)
|
||||
# Make sure to shutdown wineserver whenever we exit.
|
||||
trap "wineserver -k || true" EXIT INT HUP
|
||||
# This is apparently only reliable when we run a dummy command such as "hh.exe" afterwards.
|
||||
wineserver -p && wine hh.exe
|
||||
wineserver -p
|
||||
;;
|
||||
esac
|
||||
|
||||
|
@ -62,6 +61,7 @@ fi
|
|||
--with-ecmult-window="$ECMULTWINDOW" \
|
||||
--with-ecmult-gen-precision="$ECMULTGENPRECISION" \
|
||||
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
|
||||
--enable-module-ellswift="$ELLSWIFT" \
|
||||
--enable-module-schnorrsig="$SCHNORRSIG" \
|
||||
--enable-examples="$EXAMPLES" \
|
||||
--enable-ctime-tests="$CTIMETESTS" \
|
||||
|
|
|
@ -29,9 +29,10 @@ RUN apt-get update && apt-get install --no-install-recommends -y \
|
|||
git clone https://github.com/mstorsjo/msvc-wine && \
|
||||
mkdir /opt/msvc && \
|
||||
python3 msvc-wine/vsdownload.py --accept-license --dest /opt/msvc Microsoft.VisualStudio.Workload.VCTools && \
|
||||
msvc-wine/install.sh /opt/msvc
|
||||
|
||||
# Initialize the wine environment. Wait until the wineserver process has
|
||||
# exited before closing the session, to avoid corrupting the wine prefix.
|
||||
RUN wine64 wineboot --init && \
|
||||
# Since commit 2146cbfaf037e21de56c7157ec40bb6372860f51, the
|
||||
# msvc-wine effectively initializes the wine prefix when running
|
||||
# the install.sh script.
|
||||
msvc-wine/install.sh /opt/msvc && \
|
||||
# Wait until the wineserver process has exited before closing the session,
|
||||
# to avoid corrupting the wine prefix.
|
||||
while (ps -A | grep wineserver) > /dev/null; do sleep 1; done
|
||||
|
|
6
src/secp256k1/cmake/CheckArm32Assembly.cmake
Normal file
6
src/secp256k1/cmake/CheckArm32Assembly.cmake
Normal file
|
@ -0,0 +1,6 @@
|
|||
function(check_arm32_assembly)
|
||||
try_compile(HAVE_ARM32_ASM
|
||||
${CMAKE_BINARY_DIR}/check_arm32_assembly
|
||||
SOURCES ${CMAKE_SOURCE_DIR}/cmake/source_arm32.s
|
||||
)
|
||||
endfunction()
|
|
@ -1,11 +1,9 @@
|
|||
function(check_string_option_value option)
|
||||
get_property(expected_values CACHE ${option} PROPERTY STRINGS)
|
||||
if(expected_values)
|
||||
foreach(value IN LISTS expected_values)
|
||||
if(value STREQUAL "${${option}}")
|
||||
return()
|
||||
endif()
|
||||
endforeach()
|
||||
if(${option} IN_LIST expected_values)
|
||||
return()
|
||||
endif()
|
||||
message(FATAL_ERROR "${option} value is \"${${option}}\", but must be one of ${expected_values}.")
|
||||
endif()
|
||||
message(AUTHOR_WARNING "The STRINGS property must be set before invoking `check_string_option_value' function.")
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
include(CheckCSourceCompiles)
|
||||
|
||||
function(check_64bit_assembly)
|
||||
function(check_x86_64_assembly)
|
||||
check_c_source_compiles("
|
||||
#include <stdint.h>
|
||||
|
||||
|
@ -9,6 +9,6 @@ function(check_64bit_assembly)
|
|||
uint64_t a = 11, tmp;
|
||||
__asm__ __volatile__(\"movq $0x100000000,%1; mulq %%rsi\" : \"+a\"(a) : \"S\"(tmp) : \"cc\", \"%rdx\");
|
||||
}
|
||||
" HAS_64BIT_ASM)
|
||||
set(HAS_64BIT_ASM ${HAS_64BIT_ASM} PARENT_SCOPE)
|
||||
" HAVE_X86_64_ASM)
|
||||
set(HAVE_X86_64_ASM ${HAVE_X86_64_ASM} PARENT_SCOPE)
|
||||
endfunction()
|
|
@ -1,4 +1,4 @@
|
|||
if(CMAKE_HOST_SYSTEM_NAME STREQUAL "Darwin")
|
||||
if(CMAKE_HOST_APPLE)
|
||||
find_program(BREW_COMMAND brew)
|
||||
execute_process(
|
||||
COMMAND ${BREW_COMMAND} --prefix valgrind
|
||||
|
|
|
@ -1,23 +0,0 @@
|
|||
include(CheckCCompilerFlag)
|
||||
|
||||
function(try_add_compile_option option)
|
||||
string(MAKE_C_IDENTIFIER ${option} result)
|
||||
string(TOUPPER ${result} result)
|
||||
set(result "C_SUPPORTS${result}")
|
||||
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
|
||||
if(NOT MSVC)
|
||||
set(CMAKE_REQUIRED_FLAGS "-Werror")
|
||||
endif()
|
||||
check_c_compiler_flag(${option} ${result})
|
||||
if(${result})
|
||||
get_property(compile_options
|
||||
DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
|
||||
PROPERTY COMPILE_OPTIONS
|
||||
)
|
||||
list(APPEND compile_options "${option}")
|
||||
set_property(
|
||||
DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
|
||||
PROPERTY COMPILE_OPTIONS "${compile_options}"
|
||||
)
|
||||
endif()
|
||||
endfunction()
|
24
src/secp256k1/cmake/TryAppendCFlags.cmake
Normal file
24
src/secp256k1/cmake/TryAppendCFlags.cmake
Normal file
|
@ -0,0 +1,24 @@
|
|||
include(CheckCCompilerFlag)
|
||||
|
||||
function(secp256k1_check_c_flags_internal flags output)
|
||||
string(MAKE_C_IDENTIFIER "${flags}" result)
|
||||
string(TOUPPER "${result}" result)
|
||||
set(result "C_SUPPORTS_${result}")
|
||||
if(NOT MSVC)
|
||||
set(CMAKE_REQUIRED_FLAGS "-Werror")
|
||||
endif()
|
||||
|
||||
# This avoids running a linker.
|
||||
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
|
||||
check_c_compiler_flag("${flags}" ${result})
|
||||
|
||||
set(${output} ${${result}} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
# Append flags to the COMPILE_OPTIONS directory property if CC accepts them.
|
||||
macro(try_append_c_flags)
|
||||
secp256k1_check_c_flags_internal("${ARGV}" result)
|
||||
if(result)
|
||||
add_compile_options(${ARGV})
|
||||
endif()
|
||||
endmacro()
|
9
src/secp256k1/cmake/source_arm32.s
Normal file
9
src/secp256k1/cmake/source_arm32.s
Normal file
|
@ -0,0 +1,9 @@
|
|||
.syntax unified
|
||||
.eabi_attribute 24, 1
|
||||
.eabi_attribute 25, 1
|
||||
.text
|
||||
.global main
|
||||
main:
|
||||
ldr r0, =0x002A
|
||||
mov r7, #1
|
||||
swi 0
|
|
@ -5,7 +5,7 @@ AC_PREREQ([2.60])
|
|||
# backwards-compatible and therefore at most increase the minor version.
|
||||
define(_PKG_VERSION_MAJOR, 0)
|
||||
define(_PKG_VERSION_MINOR, 3)
|
||||
define(_PKG_VERSION_PATCH, 2)
|
||||
define(_PKG_VERSION_PATCH, 3)
|
||||
define(_PKG_VERSION_IS_RELEASE, false)
|
||||
|
||||
# The library version is based on libtool versioning of the ABI. The set of
|
||||
|
@ -14,7 +14,7 @@ define(_PKG_VERSION_IS_RELEASE, false)
|
|||
# All changes in experimental modules are treated as if they don't affect the
|
||||
# interface and therefore only increase the revision.
|
||||
define(_LIB_VERSION_CURRENT, 2)
|
||||
define(_LIB_VERSION_REVISION, 2)
|
||||
define(_LIB_VERSION_REVISION, 3)
|
||||
define(_LIB_VERSION_AGE, 0)
|
||||
|
||||
AC_INIT([libsecp256k1],m4_join([.], _PKG_VERSION_MAJOR, _PKG_VERSION_MINOR, _PKG_VERSION_PATCH)m4_if(_PKG_VERSION_IS_RELEASE, [true], [], [-dev]),[https://github.com/bitcoin-core/secp256k1/issues],[libsecp256k1],[https://github.com/bitcoin-core/secp256k1])
|
||||
|
@ -121,8 +121,12 @@ AC_DEFUN([SECP_TRY_APPEND_DEFAULT_CFLAGS], [
|
|||
# libtool makes the same assumption internally.
|
||||
# Note that "/opt" and "-opt" are equivalent for MSVC; we use "-opt" because "/opt" looks like a path.
|
||||
if test x"$GCC" != x"yes" && test x"$build_windows" = x"yes"; then
|
||||
SECP_TRY_APPEND_CFLAGS([-W2 -wd4146], $1) # Moderate warning level, disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned"
|
||||
SECP_TRY_APPEND_CFLAGS([-external:anglebrackets -external:W0], $1) # Suppress warnings from #include <...> files
|
||||
SECP_TRY_APPEND_CFLAGS([-W3], $1) # Production quality warning level.
|
||||
SECP_TRY_APPEND_CFLAGS([-wd4146], $1) # Disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned".
|
||||
SECP_TRY_APPEND_CFLAGS([-wd4244], $1) # Disable warning C4244 "'conversion' conversion from 'type1' to 'type2', possible loss of data".
|
||||
SECP_TRY_APPEND_CFLAGS([-wd4267], $1) # Disable warning C4267 "'var' : conversion from 'size_t' to 'type', possible loss of data".
|
||||
# Eliminate deprecation warnings for the older, less secure functions.
|
||||
CPPFLAGS="-D_CRT_SECURE_NO_WARNINGS $CPPFLAGS"
|
||||
# We pass -ignore:4217 to the MSVC linker to suppress warning 4217 when
|
||||
# importing variables from a statically linked secp256k1.
|
||||
# (See the libtool manual, section "Windows DLLs" for background.)
|
||||
|
@ -186,6 +190,10 @@ AC_ARG_ENABLE(module_schnorrsig,
|
|||
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module [default=yes]]), [],
|
||||
[SECP_SET_DEFAULT([enable_module_schnorrsig], [yes], [yes])])
|
||||
|
||||
AC_ARG_ENABLE(module_ellswift,
|
||||
AS_HELP_STRING([--enable-module-ellswift],[enable ElligatorSwift module [default=yes]]), [],
|
||||
[SECP_SET_DEFAULT([enable_module_ellswift], [yes], [yes])])
|
||||
|
||||
AC_ARG_ENABLE(external_default_callbacks,
|
||||
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), [],
|
||||
[SECP_SET_DEFAULT([enable_external_default_callbacks], [no], [no])])
|
||||
|
@ -198,8 +206,8 @@ AC_ARG_ENABLE(external_default_callbacks,
|
|||
# * and auto (the default).
|
||||
AC_ARG_WITH([test-override-wide-multiply], [] ,[set_widemul=$withval], [set_widemul=auto])
|
||||
|
||||
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto],
|
||||
[assembly optimizations to use (experimental: arm) [default=auto]])],[req_asm=$withval], [req_asm=auto])
|
||||
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm32|no|auto],
|
||||
[assembly optimizations to use (experimental: arm32) [default=auto]])],[req_asm=$withval], [req_asm=auto])
|
||||
|
||||
AC_ARG_WITH([ecmult-window], [AS_HELP_STRING([--with-ecmult-window=SIZE|auto],
|
||||
[window size for ecmult precomputation for verification, specified as integer in range [2..24].]
|
||||
|
@ -264,8 +272,8 @@ else
|
|||
fi
|
||||
|
||||
if test x"$req_asm" = x"auto"; then
|
||||
SECP_64BIT_ASM_CHECK
|
||||
if test x"$has_64bit_asm" = x"yes"; then
|
||||
SECP_X86_64_ASM_CHECK
|
||||
if test x"$has_x86_64_asm" = x"yes"; then
|
||||
set_asm=x86_64
|
||||
fi
|
||||
if test x"$set_asm" = x; then
|
||||
|
@ -275,12 +283,16 @@ else
|
|||
set_asm=$req_asm
|
||||
case $set_asm in
|
||||
x86_64)
|
||||
SECP_64BIT_ASM_CHECK
|
||||
if test x"$has_64bit_asm" != x"yes"; then
|
||||
SECP_X86_64_ASM_CHECK
|
||||
if test x"$has_x86_64_asm" != x"yes"; then
|
||||
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
|
||||
fi
|
||||
;;
|
||||
arm)
|
||||
arm32)
|
||||
SECP_ARM32_ASM_CHECK
|
||||
if test x"$has_arm32_asm" != x"yes"; then
|
||||
AC_MSG_ERROR([ARM32 assembly optimization requested but not available])
|
||||
fi
|
||||
;;
|
||||
no)
|
||||
;;
|
||||
|
@ -297,7 +309,7 @@ case $set_asm in
|
|||
x86_64)
|
||||
SECP_CONFIG_DEFINES="$SECP_CONFIG_DEFINES -DUSE_ASM_X86_64=1"
|
||||
;;
|
||||
arm)
|
||||
arm32)
|
||||
enable_external_asm=yes
|
||||
;;
|
||||
no)
|
||||
|
@ -394,6 +406,10 @@ if test x"$enable_module_schnorrsig" = x"yes"; then
|
|||
enable_module_extrakeys=yes
|
||||
fi
|
||||
|
||||
if test x"$enable_module_ellswift" = x"yes"; then
|
||||
AC_DEFINE(ENABLE_MODULE_ELLSWIFT, 1, [Define this symbol to enable the ElligatorSwift module])
|
||||
fi
|
||||
|
||||
# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
|
||||
# module to set enable_module_extrakeys=yes
|
||||
if test x"$enable_module_extrakeys" = x"yes"; then
|
||||
|
@ -414,8 +430,8 @@ if test x"$enable_experimental" = x"yes"; then
|
|||
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
|
||||
AC_MSG_NOTICE([******])
|
||||
else
|
||||
if test x"$set_asm" = x"arm"; then
|
||||
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
|
||||
if test x"$set_asm" = x"arm32"; then
|
||||
AC_MSG_ERROR([ARM32 assembly optimization is experimental. Use --enable-experimental to allow.])
|
||||
fi
|
||||
fi
|
||||
|
||||
|
@ -436,8 +452,9 @@ AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
|
|||
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
|
||||
AM_CONDITIONAL([ENABLE_MODULE_ELLSWIFT], [test x"$enable_module_ellswift" = x"yes"])
|
||||
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$enable_external_asm" = x"yes"])
|
||||
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
|
||||
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm32"])
|
||||
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
|
||||
AC_SUBST(LIB_VERSION_CURRENT, _LIB_VERSION_CURRENT)
|
||||
AC_SUBST(LIB_VERSION_REVISION, _LIB_VERSION_REVISION)
|
||||
|
@ -457,6 +474,7 @@ echo " module ecdh = $enable_module_ecdh"
|
|||
echo " module recovery = $enable_module_recovery"
|
||||
echo " module extrakeys = $enable_module_extrakeys"
|
||||
echo " module schnorrsig = $enable_module_schnorrsig"
|
||||
echo " module ellswift = $enable_module_ellswift"
|
||||
echo
|
||||
echo " asm = $set_asm"
|
||||
echo " ecmult window size = $set_ecmult_window"
|
||||
|
|
483
src/secp256k1/doc/ellswift.md
Normal file
483
src/secp256k1/doc/ellswift.md
Normal file
|
@ -0,0 +1,483 @@
|
|||
# ElligatorSwift for secp256k1 explained
|
||||
|
||||
In this document we explain how the `ellswift` module implementation is related to the
|
||||
construction in the
|
||||
["SwiftEC: Shallue–van de Woestijne Indifferentiable Function To Elliptic Curves"](https://eprint.iacr.org/2022/759)
|
||||
paper by Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
|
||||
|
||||
* [1. Introduction](#1-introduction)
|
||||
* [2. The decoding function](#2-the-decoding-function)
|
||||
+ [2.1 Decoding for `secp256k1`](#21-decoding-for-secp256k1)
|
||||
* [3. The encoding function](#3-the-encoding-function)
|
||||
+ [3.1 Switching to *v, w* coordinates](#31-switching-to-v-w-coordinates)
|
||||
+ [3.2 Avoiding computing all inverses](#32-avoiding-computing-all-inverses)
|
||||
+ [3.3 Finding the inverse](#33-finding-the-inverse)
|
||||
+ [3.4 Dealing with special cases](#34-dealing-with-special-cases)
|
||||
+ [3.5 Encoding for `secp256k1`](#35-encoding-for-secp256k1)
|
||||
* [4. Encoding and decoding full *(x, y)* coordinates](#4-encoding-and-decoding-full-x-y-coordinates)
|
||||
+ [4.1 Full *(x, y)* coordinates for `secp256k1`](#41-full-x-y-coordinates-for-secp256k1)
|
||||
|
||||
## 1. Introduction
|
||||
|
||||
The `ellswift` module effectively introduces a new 64-byte public key format, with the property
|
||||
that (uniformly random) public keys can be encoded as 64-byte arrays which are computationally
|
||||
indistinguishable from uniform byte arrays. The module provides functions to convert public keys
|
||||
from and to this format, as well as convenience functions for key generation and ECDH that operate
|
||||
directly on ellswift-encoded keys.
|
||||
|
||||
The encoding consists of the concatenation of two (32-byte big endian) encoded field elements $u$
|
||||
and $t.$ Together they encode an x-coordinate on the curve $x$, or (see further) a full point $(x, y)$ on
|
||||
the curve.
|
||||
|
||||
**Decoding** consists of decoding the field elements $u$ and $t$ (values above the field size $p$
|
||||
are taken modulo $p$), and then evaluating $F_u(t)$, which for every $u$ and $t$ results in a valid
|
||||
x-coordinate on the curve. The functions $F_u$ will be defined in [Section 2](#2-the-decoding-function).
|
||||
|
||||
**Encoding** a given $x$ coordinate is conceptually done as follows:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Compute the set $L = F_u^{-1}(x)$ of $t$ values for which $F_u(t) = x$, which may have up to *8* elements.
|
||||
* With probability $1 - \dfrac{\\#L}{8}$, restart the loop.
|
||||
* Select a uniformly random $t \in L$ and return $(u, t).$
|
||||
|
||||
This is the *ElligatorSwift* algorithm, here given for just x-coordinates. An extension to full
|
||||
$(x, y)$ points will be given in [Section 4](#4-encoding-and-decoding-full-x-y-coordinates).
|
||||
The algorithm finds a uniformly random $(u, t)$ among (almost all) those
|
||||
for which $F_u(t) = x.$ Section 3.2 in the paper proves that the number of such encodings for
|
||||
almost all x-coordinates on the curve (all but at most 39) is close to two times the field size
|
||||
(specifically, it lies in the range $2q \pm (22\sqrt{q} + O(1))$, where $q$ is the size of the field).
|
||||
|
||||
## 2. The decoding function
|
||||
|
||||
First some definitions:
|
||||
* $\mathbb{F}$ is the finite field of size $q$, of characteristic 5 or more, and $q \equiv 1 \mod 3.$
|
||||
* For `secp256k1`, $q = 2^{256} - 2^{32} - 977$, which satisfies that requirement.
|
||||
* Let $E$ be the elliptic curve of points $(x, y) \in \mathbb{F}^2$ for which $y^2 = x^3 + ax + b$, with $a$ and $b$
|
||||
public constants, for which $\Delta_E = -16(4a^3 + 27b^2)$ is a square, and at least one of $(-b \pm \sqrt{-3 \Delta_E} / 36)/2$ is a square.
|
||||
This implies that the order of $E$ is either odd, or a multiple of *4*.
|
||||
If $a=0$, this condition is always fulfilled.
|
||||
* For `secp256k1`, $a=0$ and $b=7.$
|
||||
* Let the function $g(x) = x^3 + ax + b$, so the $E$ curve equation is also $y^2 = g(x).$
|
||||
* Let the function $h(x) = 3x^3 + 4a.$
|
||||
* Define $V$ as the set of solutions $(x_1, x_2, x_3, z)$ to $z^2 = g(x_1)g(x_2)g(x_3).$
|
||||
* Define $S_u$ as the set of solutions $(X, Y)$ to $X^2 + h(u)Y^2 = -g(u)$ and $Y \neq 0.$
|
||||
* $P_u$ is a function from $\mathbb{F}$ to $S_u$ that will be defined below.
|
||||
* $\psi_u$ is a function from $S_u$ to $V$ that will be defined below.
|
||||
|
||||
**Note**: In the paper:
|
||||
* $F_u$ corresponds to $F_{0,u}$ there.
|
||||
* $P_u(t)$ is called $P$ there.
|
||||
* All $S_u$ sets together correspond to $S$ there.
|
||||
* All $\psi_u$ functions together (operating on elements of $S$) correspond to $\psi$ there.
|
||||
|
||||
Note that for $V$, the left hand side of the equation $z^2$ is square, and thus the right
|
||||
hand must also be square. As multiplying non-squares results in a square in $\mathbb{F}$,
|
||||
out of the three right-hand side factors an even number must be non-squares.
|
||||
This implies that exactly *1* or exactly *3* out of
|
||||
$\\{g(x_1), g(x_2), g(x_3)\\}$ must be square, and thus that for any $(x_1,x_2,x_3,z) \in V$,
|
||||
at least one of $\\{x_1, x_2, x_3\\}$ must be a valid x-coordinate on $E.$ There is one exception
|
||||
to this, namely when $z=0$, but even then one of the three values is a valid x-coordinate.
|
||||
|
||||
**Define** the decoding function $F_u(t)$ as:
|
||||
* Let $(x_1, x_2, x_3, z) = \psi_u(P_u(t)).$
|
||||
* Return the first element $x$ of $(x_3, x_2, x_1)$ which is a valid x-coordinate on $E$ (i.e., $g(x)$ is square).
|
||||
|
||||
$P_u(t) = (X(u, t), Y(u, t))$, where:
|
||||
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
X(u, t) & = & \left\\{\begin{array}{ll}
|
||||
\dfrac{g(u) - t^2}{2t} & a = 0 \\
|
||||
\dfrac{g(u) + h(u)(Y_0(u) + X_0(u)t)^2}{X_0(u)(1 + h(u)t^2)} & a \neq 0
|
||||
\end{array}\right. \\
|
||||
Y(u, t) & = & \left\\{\begin{array}{ll}
|
||||
\dfrac{X(u, t) + t}{u \sqrt{-3}} = \dfrac{g(u) + t^2}{2tu\sqrt{-3}} & a = 0 \\
|
||||
Y_0(u) + t(X(u, t) - X_0(u)) & a \neq 0
|
||||
\end{array}\right.
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
$P_u(t)$ is defined:
|
||||
* For $a=0$, unless:
|
||||
* $u = 0$ or $t = 0$ (division by zero)
|
||||
* $g(u) = -t^2$ (would give $Y=0$).
|
||||
* For $a \neq 0$, unless:
|
||||
* $X_0(u) = 0$ or $h(u)t^2 = -1$ (division by zero)
|
||||
* $Y_0(u) (1 - h(u)t^2) = 2X_0(u)t$ (would give $Y=0$).
|
||||
|
||||
The functions $X_0(u)$ and $Y_0(u)$ are defined in Appendix A of the paper, and depend on various properties of $E.$
|
||||
|
||||
The function $\psi_u$ is the same for all curves: $\psi_u(X, Y) = (x_1, x_2, x_3, z)$, where:
|
||||
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
x_1 & = & \dfrac{X}{2Y} - \dfrac{u}{2} && \\
|
||||
x_2 & = & -\dfrac{X}{2Y} - \dfrac{u}{2} && \\
|
||||
x_3 & = & u + 4Y^2 && \\
|
||||
z & = & \dfrac{g(x_3)}{2Y}(u^2 + ux_1 + x_1^2 + a) = \dfrac{-g(u)g(x_3)}{8Y^3}
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
### 2.1 Decoding for `secp256k1`
|
||||
|
||||
Put together and specialized for $a=0$ curves, decoding $(u, t)$ to an x-coordinate is:
|
||||
|
||||
**Define** $F_u(t)$ as:
|
||||
* Let $X = \dfrac{u^3 + b - t^2}{2t}.$
|
||||
* Let $Y = \dfrac{X + t}{u\sqrt{-3}}.$
|
||||
* Return the first $x$ in $(u + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u}{2}, \dfrac{X}{2Y} - \dfrac{u}{2})$ for which $g(x)$ is square.
|
||||
|
||||
To make sure that every input decodes to a valid x-coordinate, we remap the inputs in case
|
||||
$P_u$ is not defined (when $u=0$, $t=0$, or $g(u) = -t^2$):
|
||||
|
||||
**Define** $F_u(t)$ as:
|
||||
* Let $u'=u$ if $u \neq 0$; $1$ otherwise (guaranteeing $u' \neq 0$).
|
||||
* Let $t'=t$ if $t \neq 0$; $1$ otherwise (guaranteeing $t' \neq 0$).
|
||||
* Let $t''=t'$ if $g(u') \neq -t'^2$; $2t'$ otherwise (guaranteeing $t'' \neq 0$ and $g(u') \neq -t''^2$).
|
||||
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
|
||||
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
|
||||
* Return the first $x$ in $(u' + 4Y^2, \dfrac{-X}{2Y} - \dfrac{u'}{2}, \dfrac{X}{2Y} - \dfrac{u'}{2})$ for which $x^3 + b$ is square.
|
||||
|
||||
The choices here are not strictly necessary. Just returning a fixed constant in any of the undefined cases would suffice,
|
||||
but the approach here is simple enough and gives fairly uniform output even in these cases.
|
||||
|
||||
**Note**: in the paper these conditions result in $\infty$ as output, due to the use of projective coordinates there.
|
||||
We wish to avoid the need for callers to deal with this special case.
|
||||
|
||||
This is implemented in `secp256k1_ellswift_xswiftec_frac_var` (which decodes to an x-coordinate represented as a fraction), and
|
||||
in `secp256k1_ellswift_xswiftec_var` (which outputs the actual x-coordinate).
|
||||
|
||||
## 3. The encoding function
|
||||
|
||||
To implement $F_u^{-1}(x)$, the function to find the set of inverses $t$ for which $F_u(t) = x$, we have to reverse the process:
|
||||
* Find all the $(X, Y) \in S_u$ that could have given rise to $x$, through the $x_1$, $x_2$, or $x_3$ formulas in $\psi_u.$
|
||||
* Map those $(X, Y)$ solutions to $t$ values using $P_u^{-1}(X, Y).$
|
||||
* For each of the found $t$ values, verify that $F_u(t) = x.$
|
||||
* Return the remaining $t$ values.
|
||||
|
||||
The function $P_u^{-1}$, which finds $t$ given $(X, Y) \in S_u$, is significantly simpler than $P_u:$
|
||||
|
||||
$$
|
||||
P_u^{-1}(X, Y) = \left\\{\begin{array}{ll}
|
||||
Yu\sqrt{-3} - X & a = 0 \\
|
||||
\dfrac{Y-Y_0(u)}{X-X_0(u)} & a \neq 0 \land X \neq X_0(u) \\
|
||||
\dfrac{-X_0(u)}{h(u)Y_0(u)} & a \neq 0 \land X = X_0(u) \land Y = Y_0(u)
|
||||
\end{array}\right.
|
||||
$$
|
||||
|
||||
The third step above, verifying that $F_u(t) = x$, is necessary because for the $(X, Y)$ values found through the $x_1$ and $x_2$ expressions,
|
||||
it is possible that decoding through $\psi_u(X, Y)$ yields a valid $x_3$ on the curve, which would take precedence over the
|
||||
$x_1$ or $x_2$ decoding. These $(X, Y)$ solutions must be rejected.
|
||||
|
||||
Since we know that exactly one or exactly three out of $\\{x_1, x_2, x_3\\}$ are valid x-coordinates for any $t$,
|
||||
the case where either $x_1$ or $x_2$ is valid and in addition also $x_3$ is valid must mean that all three are valid.
|
||||
This means that instead of checking whether $x_3$ is on the curve, it is also possible to check whether the other one out of
|
||||
$x_1$ and $x_2$ is on the curve. This is significantly simpler, as it turns out.
|
||||
|
||||
Observe that $\psi_u$ guarantees that $x_1 + x_2 = -u.$ So given either $x = x_1$ or $x = x_2$, the other one of the two can be computed as
|
||||
$-u - x.$ Thus, when encoding $x$ through the $x_1$ or $x_2$ expressions, one can simply check whether $g(-u-x)$ is a square,
|
||||
and if so, not include the corresponding $t$ values in the returned set. As this does not need $X$, $Y$, or $t$, this condition can be determined
|
||||
before those values are computed.
|
||||
|
||||
It is not possible that an encoding found through the $x_1$ expression decodes to a different valid x-coordinate using $x_2$ (which would
|
||||
take precedence), for the same reason: if both $x_1$ and $x_2$ decodings were valid, $x_3$ would be valid as well, and thus take
|
||||
precedence over both. Because of this, the $g(-u-x)$ being square test for $x_1$ and $x_2$ is the only test necessary to guarantee the found $t$
|
||||
values round-trip back to the input $x$ correctly. This is the reason for choosing the $(x_3, x_2, x_1)$ precedence order in the decoder;
|
||||
any order which does not place $x_3$ first requires more complicated round-trip checks in the encoder.
|
||||
|
||||
### 3.1 Switching to *v, w* coordinates
|
||||
|
||||
Before working out the formulas for all this, we switch to different variables for $S_u.$ Let $v = (X/Y - u)/2$, and
|
||||
$w = 2Y.$ Or in the other direction, $X = w(u/2 + v)$ and $Y = w/2:$
|
||||
* $S_u'$ becomes the set of $(v, w)$ for which $w^2 (u^2 + uv + v^2 + a) = -g(u)$ and $w \neq 0.$
|
||||
* For $a=0$ curves, $P_u^{-1}$ can be stated for $(v,w)$ as $P_u^{'-1}(v, w) = w\left(\frac{\sqrt{-3}-1}{2}u - v\right).$
|
||||
* $\psi_u$ can be stated for $(v, w)$ as $\psi_u'(v, w) = (x_1, x_2, x_3, z)$, where
|
||||
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
x_1 & = & v \\
|
||||
x_2 & = & -u - v \\
|
||||
x_3 & = & u + w^2 \\
|
||||
z & = & \dfrac{g(x_3)}{w}(u^2 + uv + v^2 + a) = \dfrac{-g(u)g(x_3)}{w^3}
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
We can now write the expressions for finding $(v, w)$ given $x$ explicitly, by solving each of the $\\{x_1, x_2, x_3\\}$
|
||||
expressions for $v$ or $w$, and using the $S_u'$ equation to find the other variable:
|
||||
* Assuming $x = x_1$, we find $v = x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
|
||||
* Assuming $x = x_2$, we find $v = -u-x$ and $w = \pm\sqrt{-g(u)/(u^2 + uv + v^2 + a)}$ (two solutions).
|
||||
* Assuming $x = x_3$, we find $w = \pm\sqrt{x-u}$ and $v = -u/2 \pm \sqrt{-w^2(4g(u) + w^2h(u))}/(2w^2)$ (four solutions).
|
||||
|
||||
### 3.2 Avoiding computing all inverses
|
||||
|
||||
The *ElligatorSwift* algorithm as stated in Section 1 requires the computation of $L = F_u^{-1}(x)$ (the
|
||||
set of all $t$ such that $(u, t)$ decode to $x$) in full. This is unnecessary.
|
||||
|
||||
Observe that the procedure of restarting with probability $(1 - \frac{\\#L}{8})$ and otherwise returning a
|
||||
uniformly random element from $L$ is actually equivalent to always padding $L$ with $\bot$ values up to length 8,
|
||||
picking a uniformly random element from that, restarting whenever $\bot$ is picked:
|
||||
|
||||
**Define** *ElligatorSwift(x)* as:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Compute the set $L = F_u^{-1}(x).$
|
||||
* Let $T$ be the 8-element vector consisting of the elements of $L$, plus $8 - \\#L$ times $\\{\bot\\}.$
|
||||
* Select a uniformly random $t \in T.$
|
||||
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
|
||||
|
||||
Now notice that the order of elements in $T$ does not matter, as all we do is pick a uniformly
|
||||
random element in it, so we do not need to have all $\bot$ values at the end.
|
||||
As we have 8 distinct formulas for finding $(v, w)$ (taking the variants due to $\pm$ into account),
|
||||
we can associate every index in $T$ with exactly one of those formulas, making sure that:
|
||||
* Formulas that yield no solutions (due to division by zero or non-existing square roots) or invalid solutions are made to return $\bot.$
|
||||
* For the $x_1$ and $x_2$ cases, if $g(-u-x)$ is a square, $\bot$ is returned instead (the round-trip check).
|
||||
* In case multiple formulas would return the same non- $\bot$ result, all but one of those must be turned into $\bot$ to avoid biasing those.
|
||||
|
||||
The last condition above only occurs with negligible probability for cryptographically-sized curves, but is interesting
|
||||
to take into account as it allows exhaustive testing in small groups. See [Section 3.4](#34-dealing-with-special-cases)
|
||||
for an analysis of all the negligible cases.
|
||||
|
||||
If we define $T = (G_{0,u}(x), G_{1,u}(x), \ldots, G_{7,u}(x))$, with each $G_{i,u}$ matching one of the formulas,
|
||||
the loop can be simplified to only compute one of the inverses instead of all of them:
|
||||
|
||||
**Define** *ElligatorSwift(x)* as:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Pick a uniformly random integer $c$ in $[0,8).$
|
||||
* Let $t = G_{c,u}(x).$
|
||||
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
|
||||
|
||||
This is implemented in `secp256k1_ellswift_xelligatorswift_var`.
|
||||
|
||||
### 3.3 Finding the inverse
|
||||
|
||||
To implement $G_{c,u}$, we map $c=0$ to the $x_1$ formula, $c=1$ to the $x_2$ formula, and $c=2$ and $c=3$ to the $x_3$ formula.
|
||||
Those are then repeated as $c=4$ through $c=7$ for the other sign of $w$ (noting that in each formula, $w$ is a square root of some expression).
|
||||
Ignoring the negligible cases, we get:
|
||||
|
||||
**Define** $G_{c,u}(x)$ as:
|
||||
* If $c \in \\{0, 1, 4, 5\\}$ (for $x_1$ and $x_2$ formulas):
|
||||
* If $g(-u-x)$ is square, return $\bot$ (as $x_3$ would be valid and take precedence).
|
||||
* If $c \in \\{0, 4\\}$ (the $x_1$ formula) let $v = x$, otherwise let $v = -u-x$ (the $x_2$ formula)
|
||||
* Let $s = -g(u)/(u^2 + uv + v^2 + a)$ (using $s = w^2$ in what follows).
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}$ (for $x_3$ formulas):
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
|
||||
* Let $v = (r/s - u)/2$ if $c \in \\{3, 7\\}$; $(-r/s - u)/2$ otherwise.
|
||||
* Let $w = \sqrt{s}.$
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 1, 2, 3\\}:$ return $P_u^{'-1}(v, w).$
|
||||
* If $c \in \\{4, 5, 6, 7\\}:$ return $P_u^{'-1}(v, -w).$
|
||||
|
||||
Whenever a square root of a non-square is taken, $\bot$ is returned; for both square roots this happens with roughly
|
||||
50% on random inputs. Similarly, when a division by 0 would occur, $\bot$ is returned as well; this will only happen
|
||||
with negligible probability. A division by 0 in the first branch in fact cannot occur at all, because $u^2 + uv + v^2 + a = 0$
|
||||
implies $g(-u-x) = g(x)$ which would mean the $g(-u-x)$ is square condition has triggered
|
||||
and $\bot$ would have been returned already.
|
||||
|
||||
**Note**: In the paper, the $case$ variable corresponds roughly to the $c$ above, but only takes on 4 possible values (1 to 4).
|
||||
The conditional negation of $w$ at the end is done randomly, which is equivalent, but makes testing harder. We choose to
|
||||
have the $G_{c,u}$ be deterministic, and capture all choices in $c.$
|
||||
|
||||
Now observe that the $c \in \\{1, 5\\}$ and $c \in \\{3, 7\\}$ conditions effectively perform the same $v \rightarrow -u-v$
|
||||
transformation. Furthermore, that transformation has no effect on $s$ in the first branch
|
||||
as $u^2 + ux + x^2 + a = u^2 + u(-u-x) + (-u-x)^2 + a.$ Thus we can extract it out and move it down:
|
||||
|
||||
**Define** $G_{c,u}(x)$ as:
|
||||
* If $c \in \\{0, 1, 4, 5\\}:$
|
||||
* If $g(-u-x)$ is square, return $\bot.$
|
||||
* Let $s = -g(u)/(u^2 + ux + x^2 + a).$
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}.$
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w).$
|
||||
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w).$
|
||||
* If $c \in \\{4, 6\\}:$ return $P_u^{'-1}(v, -w).$
|
||||
* If $c \in \\{5, 7\\}:$ return $P_u^{'-1}(-u-v, -w).$
|
||||
|
||||
This shows there will always be exactly 0, 4, or 8 $t$ values for a given $(u, x)$ input.
|
||||
There can be 0, 1, or 2 $(v, w)$ pairs before invoking $P_u^{'-1}$, and each results in 4 distinct $t$ values.
|
||||
|
||||
### 3.4 Dealing with special cases
|
||||
|
||||
As mentioned before there are a few cases to deal with which only happen in a negligibly small subset of inputs.
|
||||
For cryptographically sized fields, if only random inputs are going to be considered, it is unnecessary to deal with these. Still, for completeness
|
||||
we analyse them here. They generally fall into two categories: cases in which the encoder would produce $t$ values that
|
||||
do not decode back to $x$ (or at least cannot guarantee that they do), and cases in which the encoder might produce the same
|
||||
$t$ value for multiple $c$ inputs (thereby biasing that encoding):
|
||||
|
||||
* In the branch for $x_1$ and $x_2$ (where $c \in \\{0, 1, 4, 5\\}$):
|
||||
* When $g(u) = 0$, we would have $s=w=Y=0$, which is not on $S_u.$ This is only possible on even-ordered curves.
|
||||
Excluding this also removes the one condition under which the simplified check for $x_3$ on the curve
|
||||
fails (namely when $g(x_1)=g(x_2)=0$ but $g(x_3)$ is not square).
|
||||
This does exclude some valid encodings: when both $g(u)=0$ and $u^2+ux+x^2+a=0$ (also implying $g(x)=0$),
|
||||
the $S_u'$ equation degenerates to $0 = 0$, and many valid $t$ values may exist. Yet, these cannot be targeted uniformly by the
|
||||
encoder anyway as there will generally be more than 8.
|
||||
* When $g(x) = 0$, the same $t$ would be produced as in the $x_3$ branch (where $c \in \\{2, 3, 6, 7\\}$) which we give precedence
|
||||
as it can deal with $g(u)=0$.
|
||||
This is again only possible on even-ordered curves.
|
||||
* In the branch for $x_3$ (where $c \in \\{2, 3, 6, 7\\}$):
|
||||
* When $s=0$, a division by zero would occur.
|
||||
* When $v = -u-v$ and $c \in \\{3, 7\\}$, the same $t$ would be returned as in the $c \in \\{2, 6\\}$ cases.
|
||||
It is equivalent to checking whether $r=0$.
|
||||
This cannot occur in the $x_1$ or $x_2$ branches, as it would trigger the $g(-u-x)$ is square condition.
|
||||
A similar concern for $w = -w$ does not exist, as $w=0$ is already impossible in both branches: in the first
|
||||
it requires $g(u)=0$ which is already outlawed on even-ordered curves and impossible on others; in the second it would trigger division by zero.
|
||||
* Curve-specific special cases also exist that need to be rejected, because they result in $(u,t)$ which is invalid to the decoder, or because of division by zero in the encoder:
|
||||
* For $a=0$ curves, when $u=0$ or when $t=0$. The latter can only be reached by the encoder when $g(u)=0$, which requires an even-ordered curve.
|
||||
* For $a \neq 0$ curves, when $X_0(u)=0$, when $h(u)t^2 = -1$, or when $2w(u + 2v) = 2X_0(u)$ while also either $w \neq 2Y_0(u)$ or $h(u)=0$.
|
||||
|
||||
**Define** a version of $G_{c,u}(x)$ which deals with all these cases:
|
||||
* If $a=0$ and $u=0$, return $\bot.$
|
||||
* If $a \neq 0$ and $X_0(u)=0$, return $\bot.$
|
||||
* If $c \in \\{0, 1, 4, 5\\}:$
|
||||
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
|
||||
* If $g(-u-x)$ is square, return $\bot.$
|
||||
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
|
||||
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
|
||||
* If $s = 0$, return $\bot.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}$; return $\bot$ if not square.
|
||||
* If $a \neq 0$ and $w(u+2v) = 2X_0(u)$ and either $w \neq 2Y_0(u)$ or $h(u) = 0$, return $\bot.$
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}$, let $t = P_u^{'-1}(v, w).$
|
||||
* If $c \in \\{1, 3\\}$, let $t = P_u^{'-1}(-u-v, w).$
|
||||
* If $c \in \\{4, 6\\}$, let $t = P_u^{'-1}(v, -w).$
|
||||
* If $c \in \\{5, 7\\}$, let $t = P_u^{'-1}(-u-v, -w).$
|
||||
* If $a=0$ and $t=0$, return $\bot$ (even curves only).
|
||||
* If $a \neq 0$ and $h(u)t^2 = -1$, return $\bot.$
|
||||
* Return $t.$
|
||||
|
||||
Given any $u$, using this algorithm over all $x$ and $c$ values, every $t$ value will be reached exactly once,
|
||||
for an $x$ for which $F_u(t) = x$ holds, except for these cases that will not be reached:
|
||||
* All cases where $P_u(t)$ is not defined:
|
||||
* For $a=0$ curves, when $u=0$, $t=0$, or $g(u) = -t^2.$
|
||||
* For $a \neq 0$ curves, when $h(u)t^2 = -1$, $X_0(u) = 0$, or $Y_0(u) (1 - h(u) t^2) = 2X_0(u)t.$
|
||||
* When $g(u)=0$, the potentially many $t$ values that decode to an $x$ satisfying $g(x)=0$ using the $x_2$ formula. These were excluded by the $g(u)=0$ condition in the $c \in \\{0, 1, 4, 5\\}$ branch.
|
||||
|
||||
These cases form a negligible subset of all $(u, t)$ for cryptographically sized curves.
|
||||
|
||||
### 3.5 Encoding for `secp256k1`
|
||||
|
||||
Specialized for odd-ordered $a=0$ curves:
|
||||
|
||||
**Define** $G_{c,u}(x)$ as:
|
||||
* If $u=0$, return $\bot.$
|
||||
* If $c \in \\{0, 1, 4, 5\\}:$
|
||||
* If $(-u-x)^3 + b$ is square, return $\bot$
|
||||
* Let $s = -(u^3 + b)/(u^2 + ux + x^2)$ (cannot cause division by 0).
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3, 6, 7\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4(u^3 + b) + 3su^2)}$; return $\bot$ if not square.
|
||||
* If $c \in \\{3, 7\\}$ and $r=0$, return $\bot.$
|
||||
* If $s = 0$, return $\bot.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}$; return $\bot$ if not square.
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}:$ return $w(\frac{\sqrt{-3}-1}{2}u - v).$
|
||||
* If $c \in \\{1, 3\\}:$ return $w(\frac{\sqrt{-3}+1}{2}u + v).$
|
||||
* If $c \in \\{4, 6\\}:$ return $w(\frac{-\sqrt{-3}+1}{2}u + v).$
|
||||
* If $c \in \\{5, 7\\}:$ return $w(\frac{-\sqrt{-3}-1}{2}u - v).$
|
||||
|
||||
This is implemented in `secp256k1_ellswift_xswiftec_inv_var`.
|
||||
|
||||
And the x-only ElligatorSwift encoding algorithm is still:
|
||||
|
||||
**Define** *ElligatorSwift(x)* as:
|
||||
* Loop:
|
||||
* Pick a uniformly random field element $u.$
|
||||
* Pick a uniformly random integer $c$ in $[0,8).$
|
||||
* Let $t = G_{c,u}(x).$
|
||||
* If $t \neq \bot$, return $(u, t)$; restart loop otherwise.
|
||||
|
||||
Note that this logic does not take the remapped $u=0$, $t=0$, and $g(u) = -t^2$ cases into account; it just avoids them.
|
||||
While it is not impossible to make the encoder target them, this would increase the maximum number of $t$ values for a given $(u, x)$
|
||||
combination beyond 8, and thereby slow down the ElligatorSwift loop proportionally, for a negligible gain in uniformity.
|
||||
|
||||
## 4. Encoding and decoding full *(x, y)* coordinates
|
||||
|
||||
So far we have only addressed encoding and decoding x-coordinates, but in some cases an encoding
|
||||
for full points with $(x, y)$ coordinates is desirable. It is possible to encode this information
|
||||
in $t$ as well.
|
||||
|
||||
Note that for any $(X, Y) \in S_u$, $(\pm X, \pm Y)$ are all on $S_u.$ Moreover, all of these are
|
||||
mapped to the same x-coordinate. Negating $X$ or negating $Y$ just results in $x_1$ and $x_2$
|
||||
being swapped, and does not affect $x_3.$ This will not change the outcome x-coordinate as the order
|
||||
of $x_1$ and $x_2$ only matters if both were to be valid, and in that case $x_3$ would be used instead.
|
||||
|
||||
Still, these four $(X, Y)$ combinations all correspond to distinct $t$ values, so we can encode
|
||||
the sign of the y-coordinate in the sign of $X$ or the sign of $Y.$ They correspond to the
|
||||
four distinct $P_u^{'-1}$ calls in the definition of $G_{u,c}.$
|
||||
|
||||
**Note**: In the paper, the sign of the y coordinate is encoded in a separately-coded bit.
|
||||
|
||||
To encode the sign of $y$ in the sign of $Y:$
|
||||
|
||||
**Define** *Decode(u, t)* for full $(x, y)$ as:
|
||||
* Let $(X, Y) = P_u(t).$
|
||||
* Let $x$ be the first value in $(u + 4Y^2, \frac{-X}{2Y} - \frac{u}{2}, \frac{X}{2Y} - \frac{u}{2})$ for which $g(x)$ is square.
|
||||
* Let $y = \sqrt{g(x)}.$
|
||||
* If $sign(y) = sign(Y)$, return $(x, y)$; otherwise return $(x, -y).$
|
||||
|
||||
And encoding would be done using a $G_{c,u}(x, y)$ function defined as:
|
||||
|
||||
**Define** $G_{c,u}(x, y)$ as:
|
||||
* If $c \in \\{0, 1\\}:$
|
||||
* If $g(u) = 0$ or $g(x) = 0$, return $\bot$ (even curves only).
|
||||
* If $g(-u-x)$ is square, return $\bot.$
|
||||
* Let $s = -g(u)/(u^2 + ux + x^2 + a)$ (cannot cause division by zero).
|
||||
* Let $v = x.$
|
||||
* Otherwise, when $c \in \\{2, 3\\}:$
|
||||
* Let $s = x-u.$
|
||||
* Let $r = \sqrt{-s(4g(u) + sh(u))}$; return $\bot$ if not square.
|
||||
* If $c = 3$ and $r = 0$, return $\bot.$
|
||||
* Let $v = (r/s - u)/2.$
|
||||
* Let $w = \sqrt{s}$; return $\bot$ if not square.
|
||||
* Let $w' = w$ if $sign(w/2) = sign(y)$; $-w$ otherwise.
|
||||
* Depending on $c:$
|
||||
* If $c \in \\{0, 2\\}:$ return $P_u^{'-1}(v, w').$
|
||||
* If $c \in \\{1, 3\\}:$ return $P_u^{'-1}(-u-v, w').$
|
||||
|
||||
Note that $c$ now only ranges $[0,4)$, as the sign of $w'$ is decided based on that of $y$, rather than on $c.$
|
||||
This change makes some valid encodings unreachable: when $y = 0$ and $sign(Y) \neq sign(0)$.
|
||||
|
||||
In the above logic, $sign$ can be implemented in several ways, such as parity of the integer representation
|
||||
of the input field element (for prime-sized fields) or the quadratic residuosity (for fields where
|
||||
$-1$ is not square). The choice does not matter, as long as it only takes on two possible values, and for $x \neq 0$ it holds that $sign(x) \neq sign(-x)$.
|
||||
|
||||
### 4.1 Full *(x, y)* coordinates for `secp256k1`
|
||||
|
||||
For $a=0$ curves, there is another option. Note that for those,
|
||||
the $P_u(t)$ function translates negations of $t$ to negations of (both) $X$ and $Y.$ Thus, we can use $sign(t)$ to
|
||||
encode the y-coordinate directly. Combined with the earlier remapping to guarantee all inputs land on the curve, we get
|
||||
as decoder:
|
||||
|
||||
**Define** *Decode(u, t)* as:
|
||||
* Let $u'=u$ if $u \neq 0$; $1$ otherwise.
|
||||
* Let $t'=t$ if $t \neq 0$; $1$ otherwise.
|
||||
* Let $t''=t'$ if $u'^3 + b + t'^2 \neq 0$; $2t'$ otherwise.
|
||||
* Let $X = \dfrac{u'^3 + b - t''^2}{2t''}.$
|
||||
* Let $Y = \dfrac{X + t''}{u'\sqrt{-3}}.$
|
||||
* Let $x$ be the first element of $(u' + 4Y^2, \frac{-X}{2Y} - \frac{u'}{2}, \frac{X}{2Y} - \frac{u'}{2})$ for which $g(x)$ is square.
|
||||
* Let $y = \sqrt{g(x)}.$
|
||||
* Return $(x, y)$ if $sign(y) = sign(t)$; $(x, -y)$ otherwise.
|
||||
|
||||
This is implemented in `secp256k1_ellswift_swiftec_var`. The used $sign(x)$ function is the parity of $x$ when represented as in integer in $[0,q).$
|
||||
|
||||
The corresponding encoder would invoke the x-only one, but negating the output $t$ if $sign(t) \neq sign(y).$
|
||||
|
||||
This is implemented in `secp256k1_ellswift_elligatorswift_var`.
|
||||
|
||||
Note that this is only intended for encoding points where both the x-coordinate and y-coordinate are unpredictable. When encoding x-only points
|
||||
where the y-coordinate is implicitly even (or implicitly square, or implicitly in $[0,q/2]$), the encoder in
|
||||
[Section 3.5](#35-encoding-for-secp256k1) must be used, or a bias is reintroduced that undoes all the benefit of using ElligatorSwift
|
||||
in the first place.
|
|
@ -12,12 +12,40 @@ It is best if the maintainers are present during the release, so they can help e
|
|||
|
||||
This process also assumes that there will be no minor releases for old major releases.
|
||||
|
||||
We aim to cut a regular release every 3-4 months, approximately twice as frequent as major Bitcoin Core releases. Every second release should be published one month before the feature freeze of the next major Bitcoin Core release, allowing sufficient time to update the library in Core.
|
||||
|
||||
## Sanity Checks
|
||||
Perform these checks before creating a release:
|
||||
|
||||
1. Ensure `make distcheck` doesn't fail.
|
||||
```shell
|
||||
./autogen.sh && ./configure --enable-dev-mode && make distcheck
|
||||
```
|
||||
2. Check installation with autotools:
|
||||
```shell
|
||||
dir=$(mktemp -d)
|
||||
./autogen.sh && ./configure --prefix=$dir && make clean && make install && ls -l $dir/include $dir/lib
|
||||
gcc -o ecdsa examples/ecdsa.c $(PKG_CONFIG_PATH=$dir/lib/pkgconfig pkg-config --cflags --libs libsecp256k1) -Wl,-rpath,"$dir/lib" && ./ecdsa
|
||||
```
|
||||
3. Check installation with CMake:
|
||||
```shell
|
||||
dir=$(mktemp -d)
|
||||
build=$(mktemp -d)
|
||||
cmake -B $build -DCMAKE_INSTALL_PREFIX=$dir && cmake --build $build --target install && ls -l $dir/include $dir/lib*
|
||||
gcc -o ecdsa examples/ecdsa.c -I $dir/include -L $dir/lib*/ -l secp256k1 -Wl,-rpath,"$dir/lib",-rpath,"$dir/lib64" && ./ecdsa
|
||||
```
|
||||
|
||||
## Regular release
|
||||
|
||||
1. Open a PR to the master branch with a commit (using message `"release: prepare for $MAJOR.$MINOR.$PATCH"`, for example) that
|
||||
* finalizes the release notes in [CHANGELOG.md](../CHANGELOG.md) (make sure to include an entry for `### ABI Compatibility`),
|
||||
* updates `_PKG_VERSION_*` and `_LIB_VERSION_*` and sets `_PKG_VERSION_IS_RELEASE` to `true` in `configure.ac`, and
|
||||
* updates `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_*` in `CMakeLists.txt`.
|
||||
* finalizes the release notes in [CHANGELOG.md](../CHANGELOG.md) by
|
||||
* adding a section for the release (make sure that the version number is a link to a diff between the previous and new version),
|
||||
* removing the `[Unreleased]` section header, and
|
||||
* including an entry for `### ABI Compatibility` if it doesn't exist that mentions the library soname of the release,
|
||||
* sets `_PKG_VERSION_IS_RELEASE` to `true` in `configure.ac`, and
|
||||
* if this is not a patch release
|
||||
* updates `_PKG_VERSION_*` and `_LIB_VERSION_*` in `configure.ac` and
|
||||
* updates `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_*` in `CMakeLists.txt`.
|
||||
2. After the PR is merged, tag the commit and push it:
|
||||
```
|
||||
RELEASE_COMMIT=<merge commit of step 1>
|
||||
|
@ -25,8 +53,9 @@ This process also assumes that there will be no minor releases for old major rel
|
|||
git push git@github.com:bitcoin-core/secp256k1.git v$MAJOR.$MINOR.$PATCH
|
||||
```
|
||||
3. Open a PR to the master branch with a commit (using message `"release cleanup: bump version after $MAJOR.$MINOR.$PATCH"`, for example) that
|
||||
* sets `_PKG_VERSION_IS_RELEASE` to `false` and increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`, and
|
||||
* increments the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`.
|
||||
* sets `_PKG_VERSION_IS_RELEASE` to `false` and increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`,
|
||||
* increments the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`, and
|
||||
* adds an `[Unreleased]` section header to the [CHANGELOG.md](../CHANGELOG.md).
|
||||
|
||||
If other maintainers are not present to approve the PR, it can be merged without ACKs.
|
||||
4. Create a new GitHub release with a link to the corresponding entry in [CHANGELOG.md](../CHANGELOG.md).
|
||||
|
@ -35,14 +64,14 @@ This process also assumes that there will be no minor releases for old major rel
|
|||
|
||||
Note that bugfixes only need to be backported to releases for which no compatible release without the bug exists.
|
||||
|
||||
1. If `$PATCH = 1`, create maintenance branch `$MAJOR.$MINOR`:
|
||||
1. If there's no maintenance branch `$MAJOR.$MINOR`, create one:
|
||||
```
|
||||
git checkout -b $MAJOR.$MINOR v$MAJOR.$MINOR.0
|
||||
git checkout -b $MAJOR.$MINOR v$MAJOR.$MINOR.$((PATCH - 1))
|
||||
git push git@github.com:bitcoin-core/secp256k1.git $MAJOR.$MINOR
|
||||
```
|
||||
2. Open a pull request to the `$MAJOR.$MINOR` branch that
|
||||
* includes the bugfixes,
|
||||
* finalizes the release notes,
|
||||
* finalizes the release notes similar to a regular release,
|
||||
* increments `_PKG_VERSION_PATCH` and `_LIB_VERSION_REVISION` in `configure.ac`
|
||||
and the `$PATCH` component of `project(libsecp256k1 VERSION ...)` and `${PROJECT_NAME}_LIB_VERSION_REVISION` in `CMakeLists.txt`
|
||||
(with commit message `"release: bump versions for $MAJOR.$MINOR.$PATCH"`, for example).
|
||||
|
|
|
@ -2,33 +2,26 @@ add_library(example INTERFACE)
|
|||
target_include_directories(example INTERFACE
|
||||
${PROJECT_SOURCE_DIR}/include
|
||||
)
|
||||
target_compile_options(example INTERFACE
|
||||
$<$<C_COMPILER_ID:MSVC>:/wd4005>
|
||||
)
|
||||
target_link_libraries(example INTERFACE
|
||||
secp256k1
|
||||
$<$<PLATFORM_ID:Windows>:bcrypt>
|
||||
)
|
||||
if(SECP256K1_BUILD_SHARED)
|
||||
target_link_libraries(example INTERFACE secp256k1)
|
||||
elseif(SECP256K1_BUILD_STATIC)
|
||||
target_link_libraries(example INTERFACE secp256k1_static)
|
||||
if(MSVC)
|
||||
target_link_options(example INTERFACE /IGNORE:4217)
|
||||
endif()
|
||||
if(NOT BUILD_SHARED_LIBS AND MSVC)
|
||||
target_link_options(example INTERFACE /IGNORE:4217)
|
||||
endif()
|
||||
|
||||
add_executable(ecdsa_example ecdsa.c)
|
||||
target_link_libraries(ecdsa_example example)
|
||||
add_test(ecdsa_example ecdsa_example)
|
||||
add_test(NAME ecdsa_example COMMAND ecdsa_example)
|
||||
|
||||
if(SECP256K1_ENABLE_MODULE_ECDH)
|
||||
add_executable(ecdh_example ecdh.c)
|
||||
target_link_libraries(ecdh_example example)
|
||||
add_test(ecdh_example ecdh_example)
|
||||
add_test(NAME ecdh_example COMMAND ecdh_example)
|
||||
endif()
|
||||
|
||||
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
|
||||
add_executable(schnorr_example schnorr.c)
|
||||
target_link_libraries(schnorr_example example)
|
||||
add_test(schnorr_example schnorr_example)
|
||||
add_test(NAME schnorr_example COMMAND schnorr_example)
|
||||
endif()
|
||||
|
|
|
@ -17,7 +17,13 @@
|
|||
*/
|
||||
|
||||
#if defined(_WIN32)
|
||||
/*
|
||||
* The defined WIN32_NO_STATUS macro disables return code definitions in
|
||||
* windows.h, which avoids "macro redefinition" MSVC warnings in ntstatus.h.
|
||||
*/
|
||||
#define WIN32_NO_STATUS
|
||||
#include <windows.h>
|
||||
#undef WIN32_NO_STATUS
|
||||
#include <ntstatus.h>
|
||||
#include <bcrypt.h>
|
||||
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
|
||||
|
@ -77,7 +83,7 @@ static void print_hex(unsigned char* data, size_t size) {
|
|||
#include <Windows.h>
|
||||
#endif
|
||||
/* Cleanses memory to prevent leaking sensitive info. Won't be optimized out. */
|
||||
static SECP256K1_INLINE void secure_erase(void *ptr, size_t len) {
|
||||
static void secure_erase(void *ptr, size_t len) {
|
||||
#if defined(_MSC_VER)
|
||||
/* SecureZeroMemory is guaranteed not to be optimized out by MSVC. */
|
||||
SecureZeroMemory(ptr, len);
|
||||
|
|
|
@ -122,18 +122,6 @@ typedef int (*secp256k1_nonce_function)(
|
|||
# endif
|
||||
# endif
|
||||
|
||||
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
|
||||
# if SECP256K1_GNUC_PREREQ(2,7)
|
||||
# define SECP256K1_INLINE __inline__
|
||||
# elif (defined(_MSC_VER))
|
||||
# define SECP256K1_INLINE __inline
|
||||
# else
|
||||
# define SECP256K1_INLINE
|
||||
# endif
|
||||
# else
|
||||
# define SECP256K1_INLINE inline
|
||||
# endif
|
||||
|
||||
/* When this header is used at build-time the SECP256K1_BUILD define needs to be set
|
||||
* to correctly setup export attributes and nullness checks. This is normally done
|
||||
* by secp256k1.c but to guard against this header being included before secp256k1.c
|
||||
|
|
198
src/secp256k1/include/secp256k1_ellswift.h
Normal file
198
src/secp256k1/include/secp256k1_ellswift.h
Normal file
|
@ -0,0 +1,198 @@
|
|||
#ifndef SECP256K1_ELLSWIFT_H
|
||||
#define SECP256K1_ELLSWIFT_H
|
||||
|
||||
#include "secp256k1.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* This module provides an implementation of ElligatorSwift as well as a
|
||||
* version of x-only ECDH using it (including compatibility with BIP324).
|
||||
*
|
||||
* ElligatorSwift is described in https://eprint.iacr.org/2022/759 by
|
||||
* Chavez-Saab, Rodriguez-Henriquez, and Tibouchi. It permits encoding
|
||||
* uniformly chosen public keys as 64-byte arrays which are indistinguishable
|
||||
* from uniformly random arrays.
|
||||
*
|
||||
* Let f be the function from pairs of field elements to point X coordinates,
|
||||
* defined as follows (all operations modulo p = 2^256 - 2^32 - 977)
|
||||
* f(u,t):
|
||||
* - Let C = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852,
|
||||
* a square root of -3.
|
||||
* - If u=0, set u=1 instead.
|
||||
* - If t=0, set t=1 instead.
|
||||
* - If u^3 + t^2 + 7 = 0, multiply t by 2.
|
||||
* - Let X = (u^3 + 7 - t^2) / (2 * t)
|
||||
* - Let Y = (X + t) / (C * u)
|
||||
* - Return the first in [u + 4 * Y^2, (-X/Y - u) / 2, (X/Y - u) / 2] that is an
|
||||
* X coordinate on the curve (at least one of them is, for any u and t).
|
||||
*
|
||||
* Then an ElligatorSwift encoding of x consists of the 32-byte big-endian
|
||||
* encodings of field elements u and t concatenated, where f(u,t) = x.
|
||||
* The encoding algorithm is described in the paper, and effectively picks a
|
||||
* uniformly random pair (u,t) among those which encode x.
|
||||
*
|
||||
* If the Y coordinate is relevant, it is given the same parity as t.
|
||||
*
|
||||
* Changes w.r.t. the the paper:
|
||||
* - The u=0, t=0, and u^3+t^2+7=0 conditions result in decoding to the point
|
||||
* at infinity in the paper. Here they are remapped to finite points.
|
||||
* - The paper uses an additional encoding bit for the parity of y. Here the
|
||||
* parity of t is used (negating t does not affect the decoded x coordinate,
|
||||
* so this is possible).
|
||||
*/
|
||||
|
||||
/** A pointer to a function used by secp256k1_ellswift_xdh to hash the shared X
|
||||
* coordinate along with the encoded public keys to a uniform shared secret.
|
||||
*
|
||||
* Returns: 1 if a shared secret was successfully computed.
|
||||
* 0 will cause secp256k1_ellswift_xdh to fail and return 0.
|
||||
* Other return values are not allowed, and the behaviour of
|
||||
* secp256k1_ellswift_xdh is undefined for other return values.
|
||||
* Out: output: pointer to an array to be filled by the function
|
||||
* In: x32: pointer to the 32-byte serialized X coordinate
|
||||
* of the resulting shared point (will not be NULL)
|
||||
* ell_a64: pointer to the 64-byte encoded public key of party A
|
||||
* (will not be NULL)
|
||||
* ell_b64: pointer to the 64-byte encoded public key of party B
|
||||
* (will not be NULL)
|
||||
* data: arbitrary data pointer that is passed through
|
||||
*/
|
||||
typedef int (*secp256k1_ellswift_xdh_hash_function)(
|
||||
unsigned char *output,
|
||||
const unsigned char *x32,
|
||||
const unsigned char *ell_a64,
|
||||
const unsigned char *ell_b64,
|
||||
void *data
|
||||
);
|
||||
|
||||
/** An implementation of an secp256k1_ellswift_xdh_hash_function which uses
|
||||
* SHA256(prefix64 || ell_a64 || ell_b64 || x32), where prefix64 is the 64-byte
|
||||
* array pointed to by data. */
|
||||
SECP256K1_API_VAR const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix;
|
||||
|
||||
/** An implementation of an secp256k1_ellswift_xdh_hash_function compatible with
|
||||
* BIP324. It returns H_tag(ell_a64 || ell_b64 || x32), where H_tag is the
|
||||
* BIP340 tagged hash function with tag "bip324_ellswift_xonly_ecdh". Equivalent
|
||||
* to secp256k1_ellswift_xdh_hash_function_prefix with prefix64 set to
|
||||
* SHA256("bip324_ellswift_xonly_ecdh")||SHA256("bip324_ellswift_xonly_ecdh").
|
||||
* The data argument is ignored. */
|
||||
SECP256K1_API_VAR const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324;
|
||||
|
||||
/** Construct a 64-byte ElligatorSwift encoding of a given pubkey.
|
||||
*
|
||||
* Returns: 1 always.
|
||||
* Args: ctx: pointer to a context object
|
||||
* Out: ell64: pointer to a 64-byte array to be filled
|
||||
* In: pubkey: a pointer to a secp256k1_pubkey containing an
|
||||
* initialized public key
|
||||
* rnd32: pointer to 32 bytes of randomness
|
||||
*
|
||||
* It is recommended that rnd32 consists of 32 uniformly random bytes, not
|
||||
* known to any adversary trying to detect whether public keys are being
|
||||
* encoded, though 16 bytes of randomness (padded to an array of 32 bytes,
|
||||
* e.g., with zeros) suffice to make the result indistinguishable from
|
||||
* uniform. The randomness in rnd32 must not be a deterministic function of
|
||||
* the pubkey (it can be derived from the private key, though).
|
||||
*
|
||||
* It is not guaranteed that the computed encoding is stable across versions
|
||||
* of the library, even if all arguments to this function (including rnd32)
|
||||
* are the same.
|
||||
*
|
||||
* This function runs in variable time.
|
||||
*/
|
||||
SECP256K1_API int secp256k1_ellswift_encode(
|
||||
const secp256k1_context *ctx,
|
||||
unsigned char *ell64,
|
||||
const secp256k1_pubkey *pubkey,
|
||||
const unsigned char *rnd32
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
||||
|
||||
/** Decode a 64-bytes ElligatorSwift encoded public key.
|
||||
*
|
||||
* Returns: always 1
|
||||
* Args: ctx: pointer to a context object
|
||||
* Out: pubkey: pointer to a secp256k1_pubkey that will be filled
|
||||
* In: ell64: pointer to a 64-byte array to decode
|
||||
*
|
||||
* This function runs in variable time.
|
||||
*/
|
||||
SECP256K1_API int secp256k1_ellswift_decode(
|
||||
const secp256k1_context *ctx,
|
||||
secp256k1_pubkey *pubkey,
|
||||
const unsigned char *ell64
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
/** Compute an ElligatorSwift public key for a secret key.
|
||||
*
|
||||
* Returns: 1: secret was valid, public key was stored.
|
||||
* 0: secret was invalid, try again.
|
||||
* Args: ctx: pointer to a context object
|
||||
* Out: ell64: pointer to a 64-byte array to receive the ElligatorSwift
|
||||
* public key
|
||||
* In: seckey32: pointer to a 32-byte secret key
|
||||
* auxrnd32: (optional) pointer to 32 bytes of randomness
|
||||
*
|
||||
* Constant time in seckey and auxrnd32, but not in the resulting public key.
|
||||
*
|
||||
* It is recommended that auxrnd32 contains 32 uniformly random bytes, though
|
||||
* it is optional (and does result in encodings that are indistinguishable from
|
||||
* uniform even without any auxrnd32). It differs from the (mandatory) rnd32
|
||||
* argument to secp256k1_ellswift_encode in this regard.
|
||||
*
|
||||
* This function can be used instead of calling secp256k1_ec_pubkey_create
|
||||
* followed by secp256k1_ellswift_encode. It is safer, as it uses the secret
|
||||
* key as entropy for the encoding (supplemented with auxrnd32, if provided).
|
||||
*
|
||||
* Like secp256k1_ellswift_encode, this function does not guarantee that the
|
||||
* computed encoding is stable across versions of the library, even if all
|
||||
* arguments (including auxrnd32) are the same.
|
||||
*/
|
||||
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(
|
||||
const secp256k1_context *ctx,
|
||||
unsigned char *ell64,
|
||||
const unsigned char *seckey32,
|
||||
const unsigned char *auxrnd32
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
/** Given a private key, and ElligatorSwift public keys sent in both directions,
|
||||
* compute a shared secret using x-only Elliptic Curve Diffie-Hellman (ECDH).
|
||||
*
|
||||
* Returns: 1: shared secret was succesfully computed
|
||||
* 0: secret was invalid or hashfp returned 0
|
||||
* Args: ctx: pointer to a context object.
|
||||
* Out: output: pointer to an array to be filled by hashfp.
|
||||
* In: ell_a64: pointer to the 64-byte encoded public key of party A
|
||||
* (will not be NULL)
|
||||
* ell_b64: pointer to the 64-byte encoded public key of party B
|
||||
* (will not be NULL)
|
||||
* seckey32: a pointer to our 32-byte secret key
|
||||
* party: boolean indicating which party we are: zero if we are
|
||||
* party A, non-zero if we are party B. seckey32 must be
|
||||
* the private key corresponding to that party's ell_?64.
|
||||
* This correspondence is not checked.
|
||||
* hashfp: pointer to a hash function.
|
||||
* data: arbitrary data pointer passed through to hashfp.
|
||||
*
|
||||
* Constant time in seckey32.
|
||||
*
|
||||
* This function is more efficient than decoding the public keys, and performing
|
||||
* ECDH on them.
|
||||
*/
|
||||
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(
|
||||
const secp256k1_context *ctx,
|
||||
unsigned char *output,
|
||||
const unsigned char *ell_a64,
|
||||
const unsigned char *ell_b64,
|
||||
const unsigned char *seckey32,
|
||||
int party,
|
||||
secp256k1_ellswift_xdh_hash_function hashfp,
|
||||
void *data
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* SECP256K1_ELLSWIFT_H */
|
|
@ -185,9 +185,8 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_sec(
|
|||
/** Get the public key from a keypair.
|
||||
*
|
||||
* Returns: 1 always.
|
||||
* Args: ctx: pointer to a context object.
|
||||
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to
|
||||
* the keypair public key. If not, it's set to an invalid value.
|
||||
* Args: ctx: pointer to a context object.
|
||||
* Out: pubkey: pointer to a pubkey object, set to the keypair public key.
|
||||
* In: keypair: pointer to a keypair.
|
||||
*/
|
||||
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
|
||||
|
@ -203,9 +202,8 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
|
|||
*
|
||||
* Returns: 1 always.
|
||||
* Args: ctx: pointer to a context object.
|
||||
* Out: pubkey: pointer to an xonly_pubkey object. If 1 is returned, it is set
|
||||
* to the keypair public key after converting it to an
|
||||
* xonly_pubkey. If not, it's set to an invalid value.
|
||||
* Out: pubkey: pointer to an xonly_pubkey object, set to the keypair
|
||||
* public key after converting it to an xonly_pubkey.
|
||||
* pk_parity: Ignored if NULL. Otherwise, pointer to an integer that will be set to the
|
||||
* pk_parity argument of secp256k1_xonly_pubkey_from_pubkey.
|
||||
* In: keypair: pointer to a keypair.
|
||||
|
|
|
@ -141,12 +141,20 @@ SECP256K1_API int secp256k1_schnorrsig_sign(
|
|||
* variable length messages and accepts a pointer to an extraparams object that
|
||||
* allows customizing signing by passing additional arguments.
|
||||
*
|
||||
* Creates the same signatures as schnorrsig_sign if msglen is 32 and the
|
||||
* extraparams.ndata is the same as aux_rand32.
|
||||
* Equivalent to secp256k1_schnorrsig_sign32(..., aux_rand32) if msglen is 32
|
||||
* and extraparams is initialized as follows:
|
||||
* ```
|
||||
* secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT;
|
||||
* extraparams.ndata = (unsigned char*)aux_rand32;
|
||||
* ```
|
||||
*
|
||||
* Returns 1 on success, 0 on failure.
|
||||
* Args: ctx: pointer to a context object (not secp256k1_context_static).
|
||||
* Out: sig64: pointer to a 64-byte array to store the serialized signature.
|
||||
* In: msg: the message being signed. Can only be NULL if msglen is 0.
|
||||
* msglen: length of the message
|
||||
* extraparams: pointer to a extraparams object (can be NULL)
|
||||
* msglen: length of the message.
|
||||
* keypair: pointer to an initialized keypair.
|
||||
* extraparams: pointer to an extraparams object (can be NULL).
|
||||
*/
|
||||
SECP256K1_API int secp256k1_schnorrsig_sign_custom(
|
||||
const secp256k1_context *ctx,
|
||||
|
|
|
@ -1,151 +1,165 @@
|
|||
# Must be included before CMAKE_INSTALL_INCLUDEDIR is used.
|
||||
include(GNUInstallDirs)
|
||||
set(${PROJECT_NAME}_installables "")
|
||||
|
||||
if(SECP256K1_ASM STREQUAL "arm")
|
||||
add_library(common OBJECT
|
||||
asm/field_10x26_arm.s
|
||||
)
|
||||
set(common_obj "$<TARGET_OBJECTS:common>")
|
||||
else()
|
||||
set(common_obj "")
|
||||
endif()
|
||||
|
||||
add_library(precomputed OBJECT
|
||||
add_library(secp256k1_precomputed OBJECT EXCLUDE_FROM_ALL
|
||||
precomputed_ecmult.c
|
||||
precomputed_ecmult_gen.c
|
||||
)
|
||||
set(internal_obj "$<TARGET_OBJECTS:precomputed>" "${common_obj}")
|
||||
|
||||
add_library(secp256k1 SHARED EXCLUDE_FROM_ALL
|
||||
secp256k1.c
|
||||
${internal_obj}
|
||||
)
|
||||
target_include_directories(secp256k1 INTERFACE
|
||||
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
|
||||
)
|
||||
target_compile_definitions(secp256k1 PRIVATE
|
||||
$<$<PLATFORM_ID:Windows>:DLL_EXPORT>
|
||||
)
|
||||
set_target_properties(secp256k1 PROPERTIES
|
||||
VERSION "${${PROJECT_NAME}_LIB_VERSION_CURRENT}.${${PROJECT_NAME}_LIB_VERSION_AGE}.${${PROJECT_NAME}_LIB_VERSION_REVISION}"
|
||||
SOVERSION "${${PROJECT_NAME}_LIB_VERSION_CURRENT}"
|
||||
)
|
||||
if(SECP256K1_BUILD_SHARED)
|
||||
get_target_property(use_pic secp256k1 POSITION_INDEPENDENT_CODE)
|
||||
set_target_properties(precomputed PROPERTIES POSITION_INDEPENDENT_CODE ${use_pic})
|
||||
set_target_properties(secp256k1 PROPERTIES EXCLUDE_FROM_ALL FALSE)
|
||||
list(APPEND ${PROJECT_NAME}_installables secp256k1)
|
||||
endif()
|
||||
# Add objects explicitly rather than linking to the object libs to keep them
|
||||
# from being exported.
|
||||
add_library(secp256k1 secp256k1.c $<TARGET_OBJECTS:secp256k1_precomputed>)
|
||||
|
||||
add_library(secp256k1_static STATIC EXCLUDE_FROM_ALL
|
||||
secp256k1.c
|
||||
${internal_obj}
|
||||
)
|
||||
target_include_directories(secp256k1_static INTERFACE
|
||||
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
|
||||
)
|
||||
if(NOT MSVC)
|
||||
set_target_properties(secp256k1_static PROPERTIES
|
||||
OUTPUT_NAME secp256k1
|
||||
add_library(secp256k1_asm INTERFACE)
|
||||
if(SECP256K1_ASM STREQUAL "arm32")
|
||||
add_library(secp256k1_asm_arm OBJECT EXCLUDE_FROM_ALL)
|
||||
target_sources(secp256k1_asm_arm PUBLIC
|
||||
asm/field_10x26_arm.s
|
||||
)
|
||||
endif()
|
||||
if(SECP256K1_BUILD_STATIC)
|
||||
set_target_properties(secp256k1_static PROPERTIES EXCLUDE_FROM_ALL FALSE)
|
||||
list(APPEND ${PROJECT_NAME}_installables secp256k1_static)
|
||||
target_sources(secp256k1 PRIVATE $<TARGET_OBJECTS:secp256k1_asm_arm>)
|
||||
target_link_libraries(secp256k1_asm INTERFACE secp256k1_asm_arm)
|
||||
endif()
|
||||
|
||||
add_library(binary_interface INTERFACE)
|
||||
target_compile_definitions(binary_interface INTERFACE
|
||||
$<$<C_COMPILER_ID:MSVC>:_CRT_SECURE_NO_WARNINGS>
|
||||
# Define our export symbol only for Win32 and only for shared libs.
|
||||
# This matches libtool's usage of DLL_EXPORT
|
||||
if(WIN32)
|
||||
set_target_properties(secp256k1 PROPERTIES DEFINE_SYMBOL "DLL_EXPORT")
|
||||
endif()
|
||||
|
||||
# Object libs don't know if they're being built for a shared or static lib.
|
||||
# Grab the PIC property from secp256k1 which knows.
|
||||
get_target_property(use_pic secp256k1 POSITION_INDEPENDENT_CODE)
|
||||
set_target_properties(secp256k1_precomputed PROPERTIES POSITION_INDEPENDENT_CODE ${use_pic})
|
||||
|
||||
target_include_directories(secp256k1 INTERFACE
|
||||
# Add the include path for parent projects so that they don't have to manually add it.
|
||||
$<BUILD_INTERFACE:$<$<NOT:$<BOOL:${PROJECT_IS_TOP_LEVEL}>>:${PROJECT_SOURCE_DIR}/include>>
|
||||
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
|
||||
)
|
||||
|
||||
add_library(link_library INTERFACE)
|
||||
if(SECP256K1_BUILD_SHARED)
|
||||
target_link_libraries(link_library INTERFACE secp256k1)
|
||||
elseif(SECP256K1_BUILD_STATIC)
|
||||
target_link_libraries(link_library INTERFACE secp256k1_static)
|
||||
# This emulates Libtool to make sure Libtool and CMake agree on the ABI version,
|
||||
# see below "Calculate the version variables" in build-aux/ltmain.sh.
|
||||
math(EXPR ${PROJECT_NAME}_soversion "${${PROJECT_NAME}_LIB_VERSION_CURRENT} - ${${PROJECT_NAME}_LIB_VERSION_AGE}")
|
||||
set_target_properties(secp256k1 PROPERTIES
|
||||
SOVERSION ${${PROJECT_NAME}_soversion}
|
||||
)
|
||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||
set_target_properties(secp256k1 PROPERTIES
|
||||
VERSION ${${PROJECT_NAME}_soversion}.${${PROJECT_NAME}_LIB_VERSION_AGE}.${${PROJECT_NAME}_LIB_VERSION_REVISION}
|
||||
)
|
||||
elseif(APPLE)
|
||||
if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.17)
|
||||
math(EXPR ${PROJECT_NAME}_compatibility_version "${${PROJECT_NAME}_LIB_VERSION_CURRENT} + 1")
|
||||
set_target_properties(secp256k1 PROPERTIES
|
||||
MACHO_COMPATIBILITY_VERSION ${${PROJECT_NAME}_compatibility_version}
|
||||
MACHO_CURRENT_VERSION ${${PROJECT_NAME}_compatibility_version}.${${PROJECT_NAME}_LIB_VERSION_REVISION}
|
||||
)
|
||||
unset(${PROJECT_NAME}_compatibility_version)
|
||||
elseif(BUILD_SHARED_LIBS)
|
||||
message(WARNING
|
||||
"The 'compatibility version' and 'current version' values of the DYLIB "
|
||||
"will diverge from the values set by the GNU Libtool. To ensure "
|
||||
"compatibility, it is recommended to upgrade CMake to at least version 3.17."
|
||||
)
|
||||
endif()
|
||||
elseif(CMAKE_SYSTEM_NAME STREQUAL "Windows")
|
||||
set(${PROJECT_NAME}_windows "secp256k1")
|
||||
if(MSVC)
|
||||
set(${PROJECT_NAME}_windows "${PROJECT_NAME}")
|
||||
endif()
|
||||
set_target_properties(secp256k1 PROPERTIES
|
||||
ARCHIVE_OUTPUT_NAME "${${PROJECT_NAME}_windows}"
|
||||
RUNTIME_OUTPUT_NAME "${${PROJECT_NAME}_windows}-${${PROJECT_NAME}_soversion}"
|
||||
)
|
||||
unset(${PROJECT_NAME}_windows)
|
||||
endif()
|
||||
unset(${PROJECT_NAME}_soversion)
|
||||
|
||||
if(SECP256K1_BUILD_BENCHMARK)
|
||||
add_executable(bench bench.c)
|
||||
target_link_libraries(bench binary_interface link_library)
|
||||
add_executable(bench_internal bench_internal.c ${internal_obj})
|
||||
target_link_libraries(bench_internal binary_interface)
|
||||
add_executable(bench_ecmult bench_ecmult.c ${internal_obj})
|
||||
target_link_libraries(bench_ecmult binary_interface)
|
||||
target_link_libraries(bench secp256k1)
|
||||
add_executable(bench_internal bench_internal.c)
|
||||
target_link_libraries(bench_internal secp256k1_precomputed secp256k1_asm)
|
||||
add_executable(bench_ecmult bench_ecmult.c)
|
||||
target_link_libraries(bench_ecmult secp256k1_precomputed secp256k1_asm)
|
||||
endif()
|
||||
|
||||
if(SECP256K1_BUILD_TESTS)
|
||||
add_executable(noverify_tests tests.c ${internal_obj})
|
||||
target_link_libraries(noverify_tests binary_interface)
|
||||
add_test(noverify_tests noverify_tests)
|
||||
add_executable(noverify_tests tests.c)
|
||||
target_link_libraries(noverify_tests secp256k1_precomputed secp256k1_asm)
|
||||
add_test(NAME noverify_tests COMMAND noverify_tests)
|
||||
if(NOT CMAKE_BUILD_TYPE STREQUAL "Coverage")
|
||||
add_executable(tests tests.c ${internal_obj})
|
||||
add_executable(tests tests.c)
|
||||
target_compile_definitions(tests PRIVATE VERIFY)
|
||||
target_link_libraries(tests binary_interface)
|
||||
add_test(tests tests)
|
||||
target_link_libraries(tests secp256k1_precomputed secp256k1_asm)
|
||||
add_test(NAME tests COMMAND tests)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(SECP256K1_BUILD_EXHAUSTIVE_TESTS)
|
||||
# Note: do not include $<TARGET_OBJECTS:precomputed> in exhaustive_tests (it uses runtime-generated tables).
|
||||
add_executable(exhaustive_tests tests_exhaustive.c ${common_obj})
|
||||
# Note: do not include secp256k1_precomputed in exhaustive_tests (it uses runtime-generated tables).
|
||||
add_executable(exhaustive_tests tests_exhaustive.c)
|
||||
target_link_libraries(exhaustive_tests secp256k1_asm)
|
||||
target_compile_definitions(exhaustive_tests PRIVATE $<$<NOT:$<CONFIG:Coverage>>:VERIFY>)
|
||||
target_link_libraries(exhaustive_tests binary_interface)
|
||||
add_test(exhaustive_tests exhaustive_tests)
|
||||
add_test(NAME exhaustive_tests COMMAND exhaustive_tests)
|
||||
endif()
|
||||
|
||||
if(SECP256K1_BUILD_CTIME_TESTS)
|
||||
add_executable(ctime_tests ctime_tests.c)
|
||||
target_link_libraries(ctime_tests binary_interface link_library)
|
||||
target_link_libraries(ctime_tests secp256k1)
|
||||
endif()
|
||||
|
||||
install(TARGETS ${${PROJECT_NAME}_installables}
|
||||
EXPORT ${PROJECT_NAME}-targets
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
)
|
||||
set(${PROJECT_NAME}_headers
|
||||
"${PROJECT_SOURCE_DIR}/include/secp256k1.h"
|
||||
"${PROJECT_SOURCE_DIR}/include/secp256k1_preallocated.h"
|
||||
)
|
||||
if(SECP256K1_ENABLE_MODULE_ECDH)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_ecdh.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_RECOVERY)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_recovery.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_extrakeys.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_schnorrsig.h")
|
||||
endif()
|
||||
install(FILES ${${PROJECT_NAME}_headers}
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
if(SECP256K1_INSTALL)
|
||||
install(TARGETS secp256k1
|
||||
EXPORT ${PROJECT_NAME}-targets
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
|
||||
)
|
||||
set(${PROJECT_NAME}_headers
|
||||
"${PROJECT_SOURCE_DIR}/include/secp256k1.h"
|
||||
"${PROJECT_SOURCE_DIR}/include/secp256k1_preallocated.h"
|
||||
)
|
||||
if(SECP256K1_ENABLE_MODULE_ECDH)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_ecdh.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_RECOVERY)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_recovery.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_EXTRAKEYS)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_extrakeys.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_SCHNORRSIG)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_schnorrsig.h")
|
||||
endif()
|
||||
if(SECP256K1_ENABLE_MODULE_ELLSWIFT)
|
||||
list(APPEND ${PROJECT_NAME}_headers "${PROJECT_SOURCE_DIR}/include/secp256k1_ellswift.h")
|
||||
endif()
|
||||
install(FILES ${${PROJECT_NAME}_headers}
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
)
|
||||
|
||||
install(EXPORT ${PROJECT_NAME}-targets
|
||||
FILE ${PROJECT_NAME}-targets.cmake
|
||||
NAMESPACE ${PROJECT_NAME}::
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
|
||||
)
|
||||
install(EXPORT ${PROJECT_NAME}-targets
|
||||
FILE ${PROJECT_NAME}-targets.cmake
|
||||
NAMESPACE ${PROJECT_NAME}::
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
|
||||
)
|
||||
|
||||
include(CMakePackageConfigHelpers)
|
||||
configure_package_config_file(
|
||||
${PROJECT_SOURCE_DIR}/cmake/config.cmake.in
|
||||
${PROJECT_NAME}-config.cmake
|
||||
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
|
||||
NO_SET_AND_CHECK_MACRO
|
||||
)
|
||||
write_basic_package_version_file(${PROJECT_NAME}-config-version.cmake
|
||||
COMPATIBILITY SameMajorVersion
|
||||
)
|
||||
install(
|
||||
FILES
|
||||
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
|
||||
include(CMakePackageConfigHelpers)
|
||||
configure_package_config_file(
|
||||
${PROJECT_SOURCE_DIR}/cmake/config.cmake.in
|
||||
${PROJECT_NAME}-config.cmake
|
||||
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
|
||||
NO_SET_AND_CHECK_MACRO
|
||||
)
|
||||
write_basic_package_version_file(${PROJECT_NAME}-config-version.cmake
|
||||
COMPATIBILITY SameMinorVersion
|
||||
)
|
||||
|
||||
install(
|
||||
FILES
|
||||
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}-config-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
|
||||
)
|
||||
endif()
|
||||
|
|
|
@ -38,6 +38,8 @@ static void help(int default_iters) {
|
|||
printf(" ecdsa : all ECDSA algorithms--sign, verify, recovery (if enabled)\n");
|
||||
printf(" ecdsa_sign : ECDSA siging algorithm\n");
|
||||
printf(" ecdsa_verify : ECDSA verification algorithm\n");
|
||||
printf(" ec : all EC public key algorithms (keygen)\n");
|
||||
printf(" ec_keygen : EC public key generation\n");
|
||||
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
printf(" ecdsa_recover : ECDSA public key recovery algorithm\n");
|
||||
|
@ -53,6 +55,14 @@ static void help(int default_iters) {
|
|||
printf(" schnorrsig_verify : Schnorr verification algorithm\n");
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
printf(" ellswift : all ElligatorSwift benchmarks (encode, decode, keygen, ecdh)\n");
|
||||
printf(" ellswift_encode : ElligatorSwift encoding\n");
|
||||
printf(" ellswift_decode : ElligatorSwift decoding\n");
|
||||
printf(" ellswift_keygen : ElligatorSwift key generation\n");
|
||||
printf(" ellswift_ecdh : ECDH on ElligatorSwift keys\n");
|
||||
#endif
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
@ -64,11 +74,11 @@ typedef struct {
|
|||
size_t siglen;
|
||||
unsigned char pubkey[33];
|
||||
size_t pubkeylen;
|
||||
} bench_verify_data;
|
||||
} bench_data;
|
||||
|
||||
static void bench_verify(void* arg, int iters) {
|
||||
int i;
|
||||
bench_verify_data* data = (bench_verify_data*)arg;
|
||||
bench_data* data = (bench_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
secp256k1_pubkey pubkey;
|
||||
|
@ -85,15 +95,9 @@ static void bench_verify(void* arg, int iters) {
|
|||
}
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context* ctx;
|
||||
unsigned char msg[32];
|
||||
unsigned char key[32];
|
||||
} bench_sign_data;
|
||||
|
||||
static void bench_sign_setup(void* arg) {
|
||||
int i;
|
||||
bench_sign_data *data = (bench_sign_data*)arg;
|
||||
bench_data *data = (bench_data*)arg;
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
data->msg[i] = i + 1;
|
||||
|
@ -105,7 +109,7 @@ static void bench_sign_setup(void* arg) {
|
|||
|
||||
static void bench_sign_run(void* arg, int iters) {
|
||||
int i;
|
||||
bench_sign_data *data = (bench_sign_data*)arg;
|
||||
bench_data *data = (bench_data*)arg;
|
||||
|
||||
unsigned char sig[74];
|
||||
for (i = 0; i < iters; i++) {
|
||||
|
@ -121,6 +125,30 @@ static void bench_sign_run(void* arg, int iters) {
|
|||
}
|
||||
}
|
||||
|
||||
static void bench_keygen_setup(void* arg) {
|
||||
int i;
|
||||
bench_data *data = (bench_data*)arg;
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
data->key[i] = i + 65;
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_keygen_run(void *arg, int iters) {
|
||||
int i;
|
||||
bench_data *data = (bench_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
unsigned char pub33[33];
|
||||
size_t len = 33;
|
||||
secp256k1_pubkey pubkey;
|
||||
CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->key));
|
||||
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pub33, &len, &pubkey, SECP256K1_EC_COMPRESSED));
|
||||
memcpy(data->key, pub33 + 1, 32);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef ENABLE_MODULE_ECDH
|
||||
# include "modules/ecdh/bench_impl.h"
|
||||
#endif
|
||||
|
@ -133,11 +161,15 @@ static void bench_sign_run(void* arg, int iters) {
|
|||
# include "modules/schnorrsig/bench_impl.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
# include "modules/ellswift/bench_impl.h"
|
||||
#endif
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
int i;
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
bench_verify_data data;
|
||||
bench_data data;
|
||||
|
||||
int d = argc == 1;
|
||||
int default_iters = 20000;
|
||||
|
@ -145,7 +177,9 @@ int main(int argc, char** argv) {
|
|||
|
||||
/* Check for invalid user arguments */
|
||||
char* valid_args[] = {"ecdsa", "verify", "ecdsa_verify", "sign", "ecdsa_sign", "ecdh", "recover",
|
||||
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign"};
|
||||
"ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign", "ec",
|
||||
"keygen", "ec_keygen", "ellswift", "encode", "ellswift_encode", "decode",
|
||||
"ellswift_decode", "ellswift_keygen", "ellswift_ecdh"};
|
||||
size_t valid_args_size = sizeof(valid_args)/sizeof(valid_args[0]);
|
||||
int invalid_args = have_invalid_args(argc, argv, valid_args, valid_args_size);
|
||||
|
||||
|
@ -187,6 +221,16 @@ int main(int argc, char** argv) {
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifndef ENABLE_MODULE_ELLSWIFT
|
||||
if (have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ellswift_encode") || have_flag(argc, argv, "ellswift_decode") ||
|
||||
have_flag(argc, argv, "encode") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_keygen") ||
|
||||
have_flag(argc, argv, "ellswift_ecdh")) {
|
||||
fprintf(stderr, "./bench: ElligatorSwift module not enabled.\n");
|
||||
fprintf(stderr, "Use ./configure --enable-module-ellswift.\n\n");
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ECDSA benchmark */
|
||||
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||||
|
||||
|
@ -207,6 +251,7 @@ int main(int argc, char** argv) {
|
|||
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "verify") || have_flag(argc, argv, "ecdsa_verify")) run_benchmark("ecdsa_verify", bench_verify, NULL, NULL, &data, 10, iters);
|
||||
|
||||
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "sign") || have_flag(argc, argv, "ecdsa_sign")) run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ec") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ec_keygen")) run_benchmark("ec_keygen", bench_keygen_run, bench_keygen_setup, NULL, &data, 10, iters);
|
||||
|
||||
secp256k1_context_destroy(data.ctx);
|
||||
|
||||
|
@ -225,5 +270,10 @@ int main(int argc, char** argv) {
|
|||
run_schnorrsig_bench(iters, argc, argv);
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
/* ElligatorSwift benchmarks */
|
||||
run_ellswift_bench(iters, argc, argv);
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
#if (defined(_MSC_VER) && _MSC_VER >= 1900)
|
||||
# include <time.h>
|
||||
#else
|
||||
# include "sys/time.h"
|
||||
# include <sys/time.h>
|
||||
#endif
|
||||
|
||||
static int64_t gettime_i64(void) {
|
||||
|
|
|
@ -113,7 +113,7 @@ static void bench_ecmult_const(void* arg, int iters) {
|
|||
int i;
|
||||
|
||||
for (i = 0; i < iters; ++i) {
|
||||
secp256k1_ecmult_const(&data->output[i], &data->pubkeys[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], 256);
|
||||
secp256k1_ecmult_const(&data->output[i], &data->pubkeys[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -138,12 +138,10 @@ static void bench_ecmult_1p_teardown(void* arg, int iters) {
|
|||
|
||||
static void bench_ecmult_0p_g(void* arg, int iters) {
|
||||
bench_data* data = (bench_data*)arg;
|
||||
secp256k1_scalar zero;
|
||||
int i;
|
||||
|
||||
secp256k1_scalar_set_int(&zero, 0);
|
||||
for (i = 0; i < iters; ++i) {
|
||||
secp256k1_ecmult(&data->output[i], NULL, &zero, &data->scalars[(data->offset1+i) % POINTS]);
|
||||
secp256k1_ecmult(&data->output[i], NULL, &secp256k1_scalar_zero, &data->scalars[(data->offset1+i) % POINTS]);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -65,10 +65,10 @@ static void bench_setup(void* arg) {
|
|||
|
||||
secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
|
||||
secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
|
||||
secp256k1_fe_set_b32(&data->fe[0], init[0]);
|
||||
secp256k1_fe_set_b32(&data->fe[1], init[1]);
|
||||
secp256k1_fe_set_b32(&data->fe[2], init[2]);
|
||||
secp256k1_fe_set_b32(&data->fe[3], init[3]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[0], init[0]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[1], init[1]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[2], init[2]);
|
||||
secp256k1_fe_set_b32_limit(&data->fe[3], init[3]);
|
||||
CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
|
||||
CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
|
||||
secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
|
||||
|
|
|
@ -30,6 +30,10 @@
|
|||
#include "../include/secp256k1_schnorrsig.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
#include "../include/secp256k1_ellswift.h"
|
||||
#endif
|
||||
|
||||
static void run_tests(secp256k1_context *ctx, unsigned char *key);
|
||||
|
||||
int main(void) {
|
||||
|
@ -80,6 +84,10 @@ static void run_tests(secp256k1_context *ctx, unsigned char *key) {
|
|||
#ifdef ENABLE_MODULE_EXTRAKEYS
|
||||
secp256k1_keypair keypair;
|
||||
#endif
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
unsigned char ellswift[64];
|
||||
static const unsigned char prefix[64] = {'t', 'e', 's', 't'};
|
||||
#endif
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
msg[i] = i + 1;
|
||||
|
@ -171,4 +179,31 @@ static void run_tests(secp256k1_context *ctx, unsigned char *key) {
|
|||
SECP256K1_CHECKMEM_DEFINE(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_ellswift_create(ctx, ellswift, key, NULL);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_ellswift_create(ctx, ellswift, key, ellswift);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ellswift, sizeof(ellswift));
|
||||
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ellswift, sizeof(ellswift));
|
||||
ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, i, secp256k1_ellswift_xdh_hash_function_prefix, (void *)prefix);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
CHECK(ret == 1);
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -239,7 +239,8 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar *sigr, const secp25
|
|||
}
|
||||
#else
|
||||
secp256k1_scalar_get_b32(c, sigr);
|
||||
secp256k1_fe_set_b32(&xr, c);
|
||||
/* we can ignore the fe_set_b32_limit return value, because we know the input is in range */
|
||||
(void)secp256k1_fe_set_b32_limit(&xr, c);
|
||||
|
||||
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
|
||||
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
|
||||
|
|
|
@ -17,10 +17,10 @@
|
|||
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
|
||||
if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) {
|
||||
secp256k1_fe x;
|
||||
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
|
||||
return secp256k1_fe_set_b32_limit(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
|
||||
} else if (size == 65 && (pub[0] == SECP256K1_TAG_PUBKEY_UNCOMPRESSED || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
|
||||
secp256k1_fe x, y;
|
||||
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
|
||||
if (!secp256k1_fe_set_b32_limit(&x, pub+1) || !secp256k1_fe_set_b32_limit(&y, pub+33)) {
|
||||
return 0;
|
||||
}
|
||||
secp256k1_ge_set_xy(elem, &x, &y);
|
||||
|
@ -59,10 +59,8 @@ static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp25
|
|||
|
||||
static int secp256k1_eckey_pubkey_tweak_add(secp256k1_ge *key, const secp256k1_scalar *tweak) {
|
||||
secp256k1_gej pt;
|
||||
secp256k1_scalar one;
|
||||
secp256k1_gej_set_ge(&pt, key);
|
||||
secp256k1_scalar_set_int(&one, 1);
|
||||
secp256k1_ecmult(&pt, &pt, &one, tweak);
|
||||
secp256k1_ecmult(&pt, &pt, &secp256k1_scalar_one, tweak);
|
||||
|
||||
if (secp256k1_gej_is_infinity(&pt)) {
|
||||
return 0;
|
||||
|
@ -80,15 +78,13 @@ static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp25
|
|||
}
|
||||
|
||||
static int secp256k1_eckey_pubkey_tweak_mul(secp256k1_ge *key, const secp256k1_scalar *tweak) {
|
||||
secp256k1_scalar zero;
|
||||
secp256k1_gej pt;
|
||||
if (secp256k1_scalar_is_zero(tweak)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
secp256k1_scalar_set_int(&zero, 0);
|
||||
secp256k1_gej_set_ge(&pt, key);
|
||||
secp256k1_ecmult(&pt, &pt, tweak, &zero);
|
||||
secp256k1_ecmult(&pt, &pt, tweak, &secp256k1_scalar_zero);
|
||||
secp256k1_ge_set_gej(key, &pt);
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -11,12 +11,9 @@
|
|||
#include "group.h"
|
||||
|
||||
/**
|
||||
* Multiply: R = q*A (in constant-time)
|
||||
* Here `bits` should be set to the maximum bitlength of the _absolute value_ of `q`, plus
|
||||
* one because we internally sometimes add 2 to the number during the WNAF conversion.
|
||||
* A must not be infinity.
|
||||
* Multiply: R = q*A (in constant-time for q)
|
||||
*/
|
||||
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits);
|
||||
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
|
||||
|
||||
/**
|
||||
* Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point
|
||||
|
@ -35,7 +32,6 @@ static int secp256k1_ecmult_const_xonly(
|
|||
const secp256k1_fe *n,
|
||||
const secp256k1_fe *d,
|
||||
const secp256k1_scalar *q,
|
||||
int bits,
|
||||
int known_on_curve
|
||||
);
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p
|
|||
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
|
||||
int m = 0; \
|
||||
/* Extract the sign-bit for a constant time absolute-value. */ \
|
||||
int mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \
|
||||
int volatile mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \
|
||||
int abs_n = ((n) + mask) ^ mask; \
|
||||
int idx_n = abs_n >> 1; \
|
||||
secp256k1_fe neg_y; \
|
||||
|
@ -130,7 +130,7 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w
|
|||
return skew;
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar, int size) {
|
||||
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
|
||||
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_ge tmpa;
|
||||
secp256k1_fe Z;
|
||||
|
@ -144,20 +144,17 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
|||
|
||||
int i;
|
||||
|
||||
/* build wnaf representation for q. */
|
||||
int rsize = size;
|
||||
if (size > 128) {
|
||||
rsize = 128;
|
||||
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
|
||||
secp256k1_scalar_split_lambda(&q_1, &q_lam, scalar);
|
||||
skew_1 = secp256k1_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128);
|
||||
skew_lam = secp256k1_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128);
|
||||
} else
|
||||
{
|
||||
skew_1 = secp256k1_wnaf_const(wnaf_1, scalar, WINDOW_A - 1, size);
|
||||
skew_lam = 0;
|
||||
if (secp256k1_ge_is_infinity(a)) {
|
||||
secp256k1_gej_set_infinity(r);
|
||||
return;
|
||||
}
|
||||
|
||||
/* build wnaf representation for q. */
|
||||
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
|
||||
secp256k1_scalar_split_lambda(&q_1, &q_lam, scalar);
|
||||
skew_1 = secp256k1_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128);
|
||||
skew_lam = secp256k1_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128);
|
||||
|
||||
/* Calculate odd multiples of a.
|
||||
* All multiples are brought to the same Z 'denominator', which is stored
|
||||
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
|
||||
|
@ -170,28 +167,23 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
|||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||
secp256k1_fe_normalize_weak(&pre_a[i].y);
|
||||
}
|
||||
if (size > 128) {
|
||||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
|
||||
}
|
||||
|
||||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
|
||||
}
|
||||
|
||||
/* first loop iteration (separated out so we can directly set r, rather
|
||||
* than having it start at infinity, get doubled several times, then have
|
||||
* its new value added to it) */
|
||||
i = wnaf_1[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)];
|
||||
i = wnaf_1[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
|
||||
VERIFY_CHECK(i != 0);
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
|
||||
secp256k1_gej_set_ge(r, &tmpa);
|
||||
if (size > 128) {
|
||||
i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)];
|
||||
VERIFY_CHECK(i != 0);
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
}
|
||||
i = wnaf_lam[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
|
||||
VERIFY_CHECK(i != 0);
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
/* remaining loop iterations */
|
||||
for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) {
|
||||
for (i = WNAF_SIZE_BITS(128, WINDOW_A - 1) - 1; i >= 0; i--) {
|
||||
int n;
|
||||
int j;
|
||||
for (j = 0; j < WINDOW_A - 1; ++j) {
|
||||
|
@ -202,12 +194,10 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
|||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
|
||||
VERIFY_CHECK(n != 0);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
if (size > 128) {
|
||||
n = wnaf_lam[i];
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
|
||||
VERIFY_CHECK(n != 0);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
}
|
||||
n = wnaf_lam[i];
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
|
||||
VERIFY_CHECK(n != 0);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
}
|
||||
|
||||
{
|
||||
|
@ -218,17 +208,15 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
|||
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
|
||||
secp256k1_gej_cmov(r, &tmpj, skew_1);
|
||||
|
||||
if (size > 128) {
|
||||
secp256k1_ge_neg(&tmpa, &pre_a_lam[0]);
|
||||
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
|
||||
secp256k1_gej_cmov(r, &tmpj, skew_lam);
|
||||
}
|
||||
secp256k1_ge_neg(&tmpa, &pre_a_lam[0]);
|
||||
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
|
||||
secp256k1_gej_cmov(r, &tmpj, skew_lam);
|
||||
}
|
||||
|
||||
secp256k1_fe_mul(&r->z, &r->z, &Z);
|
||||
}
|
||||
|
||||
static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int bits, int known_on_curve) {
|
||||
static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int known_on_curve) {
|
||||
|
||||
/* This algorithm is a generalization of Peter Dettman's technique for
|
||||
* avoiding the square root in a random-basepoint x-only multiplication
|
||||
|
@ -346,7 +334,7 @@ static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n,
|
|||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_scalar_is_zero(q));
|
||||
#endif
|
||||
secp256k1_ecmult_const(&rj, &p, q, bits);
|
||||
secp256k1_ecmult_const(&rj, &p, q);
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_gej_is_infinity(&rj));
|
||||
#endif
|
||||
|
|
|
@ -31,7 +31,7 @@ static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, cons
|
|||
secp256k1_fe nums_x;
|
||||
secp256k1_ge nums_ge;
|
||||
int r;
|
||||
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
|
||||
r = secp256k1_fe_set_b32_limit(&nums_x, nums_b32);
|
||||
(void)r;
|
||||
VERIFY_CHECK(r);
|
||||
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
|
||||
|
|
|
@ -87,7 +87,6 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
|
|||
secp256k1_fe s;
|
||||
unsigned char nonce32[32];
|
||||
secp256k1_rfc6979_hmac_sha256 rng;
|
||||
int overflow;
|
||||
unsigned char keydata[64];
|
||||
if (seed32 == NULL) {
|
||||
/* When seed is NULL, reset the initial point and blinding value. */
|
||||
|
@ -106,11 +105,9 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
|
|||
memcpy(keydata + 32, seed32, 32);
|
||||
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64);
|
||||
memset(keydata, 0, sizeof(keydata));
|
||||
/* Accept unobservably small non-uniformity. */
|
||||
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
|
||||
overflow = !secp256k1_fe_set_b32(&s, nonce32);
|
||||
overflow |= secp256k1_fe_is_zero(&s);
|
||||
secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
|
||||
secp256k1_fe_set_b32_mod(&s, nonce32);
|
||||
secp256k1_fe_cmov(&s, &secp256k1_fe_one, secp256k1_fe_normalizes_to_zero(&s));
|
||||
/* Randomize the projection to defend against multiplier sidechannels.
|
||||
Do this before our own call to secp256k1_ecmult_gen below. */
|
||||
secp256k1_gej_rescale(&ctx->initial, &s);
|
||||
|
|
|
@ -279,9 +279,6 @@ static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *
|
|||
*/
|
||||
tmp = a[np];
|
||||
if (no) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_normalize_var(&Z);
|
||||
#endif
|
||||
secp256k1_gej_rescale(&tmp, &Z);
|
||||
}
|
||||
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->pre_a + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &Z, &tmp);
|
||||
|
@ -683,7 +680,7 @@ static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_call
|
|||
}
|
||||
state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
|
||||
state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
|
||||
buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, (1<<bucket_window) * sizeof(*buckets));
|
||||
buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets));
|
||||
if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
|
||||
secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
|
||||
return 0;
|
||||
|
@ -773,14 +770,12 @@ static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_cal
|
|||
* require a scratch space */
|
||||
static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
|
||||
size_t point_idx;
|
||||
secp256k1_scalar szero;
|
||||
secp256k1_gej tmpj;
|
||||
|
||||
secp256k1_scalar_set_int(&szero, 0);
|
||||
secp256k1_gej_set_infinity(r);
|
||||
secp256k1_gej_set_infinity(&tmpj);
|
||||
/* r = inp_g_sc*G */
|
||||
secp256k1_ecmult(r, &tmpj, &szero, inp_g_sc);
|
||||
secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc);
|
||||
for (point_idx = 0; point_idx < n_points; point_idx++) {
|
||||
secp256k1_ge point;
|
||||
secp256k1_gej pointj;
|
||||
|
@ -828,9 +823,7 @@ static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback,
|
|||
if (inp_g_sc == NULL && n == 0) {
|
||||
return 1;
|
||||
} else if (n == 0) {
|
||||
secp256k1_scalar szero;
|
||||
secp256k1_scalar_set_int(&szero, 0);
|
||||
secp256k1_ecmult(r, r, &szero, inp_g_sc);
|
||||
secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc);
|
||||
return 1;
|
||||
}
|
||||
if (scratch == NULL) {
|
||||
|
|
|
@ -7,19 +7,36 @@
|
|||
#ifndef SECP256K1_FIELD_H
|
||||
#define SECP256K1_FIELD_H
|
||||
|
||||
/** Field element module.
|
||||
*
|
||||
* Field elements can be represented in several ways, but code accessing
|
||||
* it (and implementations) need to take certain properties into account:
|
||||
* - Each field element can be normalized or not.
|
||||
* - Each field element has a magnitude, which represents how far away
|
||||
* its representation is away from normalization. Normalized elements
|
||||
* always have a magnitude of 0 or 1, but a magnitude of 1 doesn't
|
||||
* imply normality.
|
||||
*/
|
||||
|
||||
#include "util.h"
|
||||
|
||||
/* This file defines the generic interface for working with secp256k1_fe
|
||||
* objects, which represent field elements (integers modulo 2^256 - 2^32 - 977).
|
||||
*
|
||||
* The actual definition of the secp256k1_fe type depends on the chosen field
|
||||
* implementation; see the field_5x52.h and field_10x26.h files for details.
|
||||
*
|
||||
* All secp256k1_fe objects have implicit properties that determine what
|
||||
* operations are permitted on it. These are purely a function of what
|
||||
* secp256k1_fe_ operations are applied on it, generally (implicitly) fixed at
|
||||
* compile time, and do not depend on the chosen field implementation. Despite
|
||||
* that, what these properties actually entail for the field representation
|
||||
* values depends on the chosen field implementation. These properties are:
|
||||
* - magnitude: an integer in [0,32]
|
||||
* - normalized: 0 or 1; normalized=1 implies magnitude <= 1.
|
||||
*
|
||||
* In VERIFY mode, they are materialized explicitly as fields in the struct,
|
||||
* allowing run-time verification of these properties. In that case, the field
|
||||
* implementation also provides a secp256k1_fe_verify routine to verify that
|
||||
* these fields match the run-time value and perform internal consistency
|
||||
* checks. */
|
||||
#ifdef VERIFY
|
||||
# define SECP256K1_FE_VERIFY_FIELDS \
|
||||
int magnitude; \
|
||||
int normalized;
|
||||
#else
|
||||
# define SECP256K1_FE_VERIFY_FIELDS
|
||||
#endif
|
||||
|
||||
#if defined(SECP256K1_WIDEMUL_INT128)
|
||||
#include "field_5x52.h"
|
||||
#elif defined(SECP256K1_WIDEMUL_INT64)
|
||||
|
@ -28,117 +45,297 @@
|
|||
#error "Please select wide multiplication implementation"
|
||||
#endif
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Magnitude and normalized value for constants. */
|
||||
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0) \
|
||||
/* Magnitude is 0 for constant 0; 1 otherwise. */ \
|
||||
, (((d7) | (d6) | (d5) | (d4) | (d3) | (d2) | (d1) | (d0)) != 0) \
|
||||
/* Normalized is 1 unless sum(d_i<<(32*i) for i=0..7) exceeds field modulus. */ \
|
||||
, (!(((d7) & (d6) & (d5) & (d4) & (d3) & (d2)) == 0xfffffffful && ((d1) == 0xfffffffful || ((d1) == 0xfffffffe && (d0 >= 0xfffffc2f)))))
|
||||
#else
|
||||
#define SECP256K1_FE_VERIFY_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
|
||||
#endif
|
||||
|
||||
/** This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p.
|
||||
*
|
||||
* It has magnitude 1, unless d_i are all 0, in which case the magnitude is 0.
|
||||
* It is normalized, unless sum(2^(i*32) * d_i, i=0..7) >= p.
|
||||
*
|
||||
* SECP256K1_FE_CONST_INNER is provided by the implementation.
|
||||
*/
|
||||
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) SECP256K1_FE_VERIFY_CONST((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)) }
|
||||
|
||||
static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
||||
static const secp256k1_fe secp256k1_const_beta = SECP256K1_FE_CONST(
|
||||
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
|
||||
0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
|
||||
);
|
||||
|
||||
/** Normalize a field element. This brings the field element to a canonical representation, reduces
|
||||
* its magnitude to 1, and reduces it modulo field size `p`.
|
||||
#ifndef VERIFY
|
||||
/* In non-VERIFY mode, we #define the fe operations to be identical to their
|
||||
* internal field implementation, to avoid the potential overhead of a
|
||||
* function call (even though presumably inlinable). */
|
||||
# define secp256k1_fe_normalize secp256k1_fe_impl_normalize
|
||||
# define secp256k1_fe_normalize_weak secp256k1_fe_impl_normalize_weak
|
||||
# define secp256k1_fe_normalize_var secp256k1_fe_impl_normalize_var
|
||||
# define secp256k1_fe_normalizes_to_zero secp256k1_fe_impl_normalizes_to_zero
|
||||
# define secp256k1_fe_normalizes_to_zero_var secp256k1_fe_impl_normalizes_to_zero_var
|
||||
# define secp256k1_fe_set_int secp256k1_fe_impl_set_int
|
||||
# define secp256k1_fe_clear secp256k1_fe_impl_clear
|
||||
# define secp256k1_fe_is_zero secp256k1_fe_impl_is_zero
|
||||
# define secp256k1_fe_is_odd secp256k1_fe_impl_is_odd
|
||||
# define secp256k1_fe_cmp_var secp256k1_fe_impl_cmp_var
|
||||
# define secp256k1_fe_set_b32_mod secp256k1_fe_impl_set_b32_mod
|
||||
# define secp256k1_fe_set_b32_limit secp256k1_fe_impl_set_b32_limit
|
||||
# define secp256k1_fe_get_b32 secp256k1_fe_impl_get_b32
|
||||
# define secp256k1_fe_negate secp256k1_fe_impl_negate
|
||||
# define secp256k1_fe_mul_int secp256k1_fe_impl_mul_int
|
||||
# define secp256k1_fe_add secp256k1_fe_impl_add
|
||||
# define secp256k1_fe_mul secp256k1_fe_impl_mul
|
||||
# define secp256k1_fe_sqr secp256k1_fe_impl_sqr
|
||||
# define secp256k1_fe_cmov secp256k1_fe_impl_cmov
|
||||
# define secp256k1_fe_to_storage secp256k1_fe_impl_to_storage
|
||||
# define secp256k1_fe_from_storage secp256k1_fe_impl_from_storage
|
||||
# define secp256k1_fe_inv secp256k1_fe_impl_inv
|
||||
# define secp256k1_fe_inv_var secp256k1_fe_impl_inv_var
|
||||
# define secp256k1_fe_get_bounds secp256k1_fe_impl_get_bounds
|
||||
# define secp256k1_fe_half secp256k1_fe_impl_half
|
||||
# define secp256k1_fe_add_int secp256k1_fe_impl_add_int
|
||||
# define secp256k1_fe_is_square_var secp256k1_fe_impl_is_square_var
|
||||
#endif /* !defined(VERIFY) */
|
||||
|
||||
/** Normalize a field element.
|
||||
*
|
||||
* On input, r must be a valid field element.
|
||||
* On output, r represents the same value but has normalized=1 and magnitude=1.
|
||||
*/
|
||||
static void secp256k1_fe_normalize(secp256k1_fe *r);
|
||||
|
||||
/** Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize. */
|
||||
/** Give a field element magnitude 1.
|
||||
*
|
||||
* On input, r must be a valid field element.
|
||||
* On output, r represents the same value but has magnitude=1. Normalized is unchanged.
|
||||
*/
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
|
||||
|
||||
/** Normalize a field element, without constant-time guarantee. */
|
||||
/** Normalize a field element, without constant-time guarantee.
|
||||
*
|
||||
* Identical in behavior to secp256k1_fe_normalize, but not constant time in r.
|
||||
*/
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
|
||||
|
||||
/** Verify whether a field element represents zero i.e. would normalize to a zero value. */
|
||||
/** Determine whether r represents field element 0.
|
||||
*
|
||||
* On input, r must be a valid field element.
|
||||
* Returns whether r = 0 (mod p).
|
||||
*/
|
||||
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r);
|
||||
|
||||
/** Verify whether a field element represents zero i.e. would normalize to a zero value,
|
||||
* without constant-time guarantee. */
|
||||
/** Determine whether r represents field element 0, without constant-time guarantee.
|
||||
*
|
||||
* Identical in behavior to secp256k1_normalizes_to_zero, but not constant time in r.
|
||||
*/
|
||||
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r);
|
||||
|
||||
/** Set a field element equal to a small (not greater than 0x7FFF), non-negative integer.
|
||||
* Resulting field element is normalized; it has magnitude 0 if a == 0, and magnitude 1 otherwise.
|
||||
/** Set a field element to an integer in range [0,0x7FFF].
|
||||
*
|
||||
* On input, r does not need to be initialized, a must be in [0,0x7FFF].
|
||||
* On output, r represents value a, is normalized and has magnitude (a!=0).
|
||||
*/
|
||||
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
|
||||
|
||||
/** Sets a field element equal to zero, initializing all fields. */
|
||||
/** Set a field element to 0.
|
||||
*
|
||||
* On input, a does not need to be initialized.
|
||||
* On output, a represents 0, is normalized and has magnitude 0.
|
||||
*/
|
||||
static void secp256k1_fe_clear(secp256k1_fe *a);
|
||||
|
||||
/** Verify whether a field element is zero. Requires the input to be normalized. */
|
||||
/** Determine whether a represents field element 0.
|
||||
*
|
||||
* On input, a must be a valid normalized field element.
|
||||
* Returns whether a = 0 (mod p).
|
||||
*
|
||||
* This behaves identical to secp256k1_normalizes_to_zero{,_var}, but requires
|
||||
* normalized input (and is much faster).
|
||||
*/
|
||||
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
|
||||
|
||||
/** Check the "oddness" of a field element. Requires the input to be normalized. */
|
||||
/** Determine whether a (mod p) is odd.
|
||||
*
|
||||
* On input, a must be a valid normalized field element.
|
||||
* Returns (int(a) mod p) & 1.
|
||||
*/
|
||||
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
|
||||
|
||||
/** Compare two field elements. Requires magnitude-1 inputs. */
|
||||
/** Determine whether two field elements are equal.
|
||||
*
|
||||
* On input, a and b must be valid field elements with magnitudes not exceeding
|
||||
* 1 and 31, respectively.
|
||||
* Returns a = b (mod p).
|
||||
*/
|
||||
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
|
||||
/** Same as secp256k1_fe_equal, but may be variable time. */
|
||||
/** Determine whether two field elements are equal, without constant-time guarantee.
|
||||
*
|
||||
* Identical in behavior to secp256k1_fe_equal, but not constant time in either a or b.
|
||||
*/
|
||||
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
|
||||
/** Compare two field elements. Requires both inputs to be normalized */
|
||||
/** Compare the values represented by 2 field elements, without constant-time guarantee.
|
||||
*
|
||||
* On input, a and b must be valid normalized field elements.
|
||||
* Returns 1 if a > b, -1 if a < b, and 0 if a = b (comparisons are done as integers
|
||||
* in range 0..p-1).
|
||||
*/
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
|
||||
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
|
||||
/** Set a field element equal to a provided 32-byte big endian value, reducing it.
|
||||
*
|
||||
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
|
||||
* On output, r = a (mod p). It will have magnitude 1, and not be normalized.
|
||||
*/
|
||||
static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
|
||||
|
||||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
||||
/** Set a field element equal to a provided 32-byte big endian value, checking for overflow.
|
||||
*
|
||||
* On input, r does not need to be initalized. a must be a pointer to an initialized 32-byte array.
|
||||
* On output, r = a if (a < p), it will be normalized with magnitude 1, and 1 is returned.
|
||||
* If a >= p, 0 is returned, and r will be made invalid (and must not be used without overwriting).
|
||||
*/
|
||||
static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
|
||||
|
||||
/** Convert a field element to 32-byte big endian byte array.
|
||||
* On input, a must be a valid normalized field element, and r a pointer to a 32-byte array.
|
||||
* On output, r = a (mod p).
|
||||
*/
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
|
||||
|
||||
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
|
||||
* as an argument. The magnitude of the output is one higher. */
|
||||
/** Negate a field element.
|
||||
*
|
||||
* On input, r does not need to be initialized. a must be a valid field element with
|
||||
* magnitude not exceeding m. m must be an integer in [0,31].
|
||||
* Performs {r = -a}.
|
||||
* On output, r will not be normalized, and will have magnitude m+1.
|
||||
*/
|
||||
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
|
||||
|
||||
/** Adds a small integer (up to 0x7FFF) to r. The resulting magnitude increases by one. */
|
||||
/** Add a small integer to a field element.
|
||||
*
|
||||
* Performs {r += a}. The magnitude of r increases by 1, and normalized is cleared.
|
||||
* a must be in range [0,0x7FFF].
|
||||
*/
|
||||
static void secp256k1_fe_add_int(secp256k1_fe *r, int a);
|
||||
|
||||
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
|
||||
* small integer. */
|
||||
/** Multiply a field element with a small integer.
|
||||
*
|
||||
* On input, r must be a valid field element. a must be an integer in [0,32].
|
||||
* The magnitude of r times a must not exceed 32.
|
||||
* Performs {r *= a}.
|
||||
* On output, r's magnitude is multiplied by a, and r will not be normalized.
|
||||
*/
|
||||
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
|
||||
|
||||
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
|
||||
/** Increment a field element by another.
|
||||
*
|
||||
* On input, r and a must be valid field elements, not necessarily normalized.
|
||||
* The sum of their magnitudes must not exceed 32.
|
||||
* Performs {r += a}.
|
||||
* On output, r will not be normalized, and will have magnitude incremented by a's.
|
||||
*/
|
||||
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
|
||||
* The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
/** Multiply two field elements.
|
||||
*
|
||||
* On input, a and b must be valid field elements; r does not need to be initialized.
|
||||
* r and a may point to the same object, but neither can be equal to b. The magnitudes
|
||||
* of a and b must not exceed 8.
|
||||
* Performs {r = a * b}
|
||||
* On output, r will have magnitude 1, but won't be normalized.
|
||||
*/
|
||||
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
|
||||
|
||||
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
|
||||
* The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
/** Square a field element.
|
||||
*
|
||||
* On input, a must be a valid field element; r does not need to be initialized. The magnitude
|
||||
* of a must not exceed 8.
|
||||
* Performs {r = a**2}
|
||||
* On output, r will have magnitude 1, but won't be normalized.
|
||||
*/
|
||||
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** If a has a square root, it is computed in r and 1 is returned. If a does not
|
||||
* have a square root, the root of its negation is computed and 0 is returned.
|
||||
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
|
||||
* guaranteed to be normalized). The result in r will always be a square
|
||||
* itself. */
|
||||
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
/** Compute a square root of a field element.
|
||||
*
|
||||
* On input, a must be a valid field element with magnitude<=8; r need not be initialized.
|
||||
* Performs {r = sqrt(a)} or {r = sqrt(-a)}, whichever exists. The resulting value
|
||||
* represented by r will be a square itself. Variables r and a must not point to the same object.
|
||||
* On output, r will have magnitude 1 but will not be normalized.
|
||||
*/
|
||||
static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a);
|
||||
|
||||
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
|
||||
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
/** Compute the modular inverse of a field element.
|
||||
*
|
||||
* On input, a must be a valid field element; r need not be initialized.
|
||||
* Performs {r = a**(p-2)} (which maps 0 to 0, and every other element to its
|
||||
* inverse).
|
||||
* On output, r will have magnitude (a.magnitude != 0) and be normalized.
|
||||
*/
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
|
||||
/** Compute the modular inverse of a field element, without constant-time guarantee.
|
||||
*
|
||||
* Behaves identically to secp256k1_fe_inv, but is not constant-time in a.
|
||||
*/
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Convert a field element to the storage type. */
|
||||
/** Convert a field element to secp256k1_fe_storage.
|
||||
*
|
||||
* On input, a must be a valid normalized field element.
|
||||
* Performs {r = a}.
|
||||
*/
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
|
||||
|
||||
/** Convert a field element back from the storage type. */
|
||||
/** Convert a field element back from secp256k1_fe_storage.
|
||||
*
|
||||
* On input, r need not be initialized.
|
||||
* Performs {r = a}.
|
||||
* On output, r will be normalized and will have magnitude 1.
|
||||
*/
|
||||
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
|
||||
|
||||
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
|
||||
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
|
||||
|
||||
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
|
||||
/** Conditionally move a field element in constant time.
|
||||
*
|
||||
* On input, both r and a must be valid field elements. Flag must be 0 or 1.
|
||||
* Performs {r = flag ? a : r}.
|
||||
*
|
||||
* On output, r's magnitude will be the maximum of both input magnitudes.
|
||||
* It will be normalized if and only if both inputs were normalized.
|
||||
*/
|
||||
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
|
||||
|
||||
/** Halves the value of a field element modulo the field prime. Constant-time.
|
||||
* For an input magnitude 'm', the output magnitude is set to 'floor(m/2) + 1'.
|
||||
* The output is not guaranteed to be normalized, regardless of the input. */
|
||||
/** Halve the value of a field element modulo the field prime in constant-time.
|
||||
*
|
||||
* On input, r must be a valid field element.
|
||||
* On output, r will be normalized and have magnitude floor(m/2) + 1 where m is
|
||||
* the magnitude of r on input.
|
||||
*/
|
||||
static void secp256k1_fe_half(secp256k1_fe *r);
|
||||
|
||||
/** Sets each limb of 'r' to its upper bound at magnitude 'm'. The output will also have its
|
||||
* magnitude set to 'm' and is normalized if (and only if) 'm' is zero. */
|
||||
/** Sets r to a field element with magnitude m, normalized if (and only if) m==0.
|
||||
* The value is chosen so that it is likely to trigger edge cases related to
|
||||
* internal overflows. */
|
||||
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
|
||||
|
||||
/** Determine whether a is a square (modulo p). */
|
||||
/** Determine whether a is a square (modulo p).
|
||||
*
|
||||
* On input, a must be a valid field element.
|
||||
*/
|
||||
static int secp256k1_fe_is_square_var(const secp256k1_fe *a);
|
||||
|
||||
/** Check invariants on a field element (no-op unless VERIFY is enabled). */
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a);
|
||||
|
||||
#endif /* SECP256K1_FIELD_H */
|
||||
|
|
|
@ -9,15 +9,28 @@
|
|||
|
||||
#include <stdint.h>
|
||||
|
||||
/** This field implementation represents the value as 10 uint32_t limbs in base
|
||||
* 2^26. */
|
||||
typedef struct {
|
||||
/* X = sum(i=0..9, n[i]*2^(i*26)) mod p
|
||||
* where p = 2^256 - 0x1000003D1
|
||||
*/
|
||||
/* A field element f represents the sum(i=0..9, f.n[i] << (i*26)) mod p,
|
||||
* where p is the field modulus, 2^256 - 2^32 - 977.
|
||||
*
|
||||
* The individual limbs f.n[i] can exceed 2^26; the field's magnitude roughly
|
||||
* corresponds to how much excess is allowed. The value
|
||||
* sum(i=0..9, f.n[i] << (i*26)) may exceed p, unless the field element is
|
||||
* normalized. */
|
||||
uint32_t n[10];
|
||||
#ifdef VERIFY
|
||||
int magnitude;
|
||||
int normalized;
|
||||
#endif
|
||||
/*
|
||||
* Magnitude m requires:
|
||||
* n[i] <= 2 * m * (2^26 - 1) for i=0..8
|
||||
* n[9] <= 2 * m * (2^22 - 1)
|
||||
*
|
||||
* Normalized requires:
|
||||
* n[i] <= (2^26 - 1) for i=0..8
|
||||
* sum(i=0..9, n[i] << (i*26)) < p
|
||||
* (together these imply n[9] <= 2^22 - 1)
|
||||
*/
|
||||
SECP256K1_FE_VERIFY_FIELDS
|
||||
} secp256k1_fe;
|
||||
|
||||
/* Unpacks a constant into a overlapping multi-limbed FE element. */
|
||||
|
@ -34,12 +47,6 @@ typedef struct {
|
|||
(((uint32_t)d7) >> 10) \
|
||||
}
|
||||
|
||||
#ifdef VERIFY
|
||||
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
|
||||
#else
|
||||
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
uint32_t n[8];
|
||||
} secp256k1_fe_storage;
|
||||
|
|
|
@ -12,47 +12,32 @@
|
|||
#include "field.h"
|
||||
#include "modinv32_impl.h"
|
||||
|
||||
/** See the comment at the top of field_5x52_impl.h for more details.
|
||||
*
|
||||
* Here, we represent field elements as 10 uint32_t's in base 2^26, least significant first,
|
||||
* where limbs can contain >26 bits.
|
||||
* A magnitude M means:
|
||||
* - 2*M*(2^22-1) is the max (inclusive) of the most significant limb
|
||||
* - 2*M*(2^26-1) is the max (inclusive) of the remaining limbs
|
||||
*/
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
static void secp256k1_fe_impl_verify(const secp256k1_fe *a) {
|
||||
const uint32_t *d = a->n;
|
||||
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
|
||||
r &= (d[0] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[1] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[2] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[3] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[4] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[5] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[6] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[7] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[8] <= 0x3FFFFFFUL * m);
|
||||
r &= (d[9] <= 0x03FFFFFUL * m);
|
||||
r &= (a->magnitude >= 0);
|
||||
r &= (a->magnitude <= 32);
|
||||
int m = a->normalized ? 1 : 2 * a->magnitude;
|
||||
VERIFY_CHECK(d[0] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[1] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[2] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[3] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[4] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[5] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[6] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[7] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[8] <= 0x3FFFFFFUL * m);
|
||||
VERIFY_CHECK(d[9] <= 0x03FFFFFUL * m);
|
||||
if (a->normalized) {
|
||||
r &= (a->magnitude <= 1);
|
||||
if (r && (d[9] == 0x03FFFFFUL)) {
|
||||
if (d[9] == 0x03FFFFFUL) {
|
||||
uint32_t mid = d[8] & d[7] & d[6] & d[5] & d[4] & d[3] & d[2];
|
||||
if (mid == 0x3FFFFFFUL) {
|
||||
r &= ((d[1] + 0x40UL + ((d[0] + 0x3D1UL) >> 26)) <= 0x3FFFFFFUL);
|
||||
VERIFY_CHECK((d[1] + 0x40UL + ((d[0] + 0x3D1UL) >> 26)) <= 0x3FFFFFFUL);
|
||||
}
|
||||
}
|
||||
}
|
||||
VERIFY_CHECK(r == 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m) {
|
||||
VERIFY_CHECK(m >= 0);
|
||||
VERIFY_CHECK(m <= 2048);
|
||||
static void secp256k1_fe_impl_get_bounds(secp256k1_fe *r, int m) {
|
||||
r->n[0] = 0x3FFFFFFUL * 2 * m;
|
||||
r->n[1] = 0x3FFFFFFUL * 2 * m;
|
||||
r->n[2] = 0x3FFFFFFUL * 2 * m;
|
||||
|
@ -63,14 +48,9 @@ static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m) {
|
|||
r->n[7] = 0x3FFFFFFUL * 2 * m;
|
||||
r->n[8] = 0x3FFFFFFUL * 2 * m;
|
||||
r->n[9] = 0x03FFFFFUL * 2 * m;
|
||||
#ifdef VERIFY
|
||||
r->magnitude = m;
|
||||
r->normalized = (m == 0);
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
||||
static void secp256k1_fe_impl_normalize(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -117,15 +97,9 @@ static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
|||
|
||||
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
||||
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
||||
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -149,14 +123,9 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
|||
|
||||
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
||||
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
||||
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -204,15 +173,9 @@ static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
|||
|
||||
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
||||
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
|
||||
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
|
||||
|
@ -241,7 +204,7 @@ static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
|
|||
return (z0 == 0) | (z1 == 0x3FFFFFFUL);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
|
||||
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r) {
|
||||
uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
|
||||
uint32_t z0, z1;
|
||||
uint32_t x;
|
||||
|
@ -293,53 +256,29 @@ static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
|
|||
return (z0 == 0) | (z1 == 0x3FFFFFFUL);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
|
||||
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] = a;
|
||||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
|
||||
#ifdef VERIFY
|
||||
r->magnitude = (a != 0);
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
|
||||
SECP256K1_INLINE static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a) {
|
||||
const uint32_t *t = a->n;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
return (t[0] | t[1] | t[2] | t[3] | t[4] | t[5] | t[6] | t[7] | t[8] | t[9]) == 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
SECP256K1_INLINE static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a) {
|
||||
return a->n[0] & 1;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_clear(secp256k1_fe *a) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
a->magnitude = 0;
|
||||
a->normalized = 1;
|
||||
#endif
|
||||
for (i=0; i<10; i++) {
|
||||
a->n[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
VERIFY_CHECK(b->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
#endif
|
||||
for (i = 9; i >= 0; i--) {
|
||||
if (a->n[i] > b->n[i]) {
|
||||
return 1;
|
||||
|
@ -351,8 +290,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
int ret;
|
||||
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
|
||||
r->n[0] = (uint32_t)a[31] | ((uint32_t)a[30] << 8) | ((uint32_t)a[29] << 16) | ((uint32_t)(a[28] & 0x3) << 24);
|
||||
r->n[1] = (uint32_t)((a[28] >> 2) & 0x3f) | ((uint32_t)a[27] << 6) | ((uint32_t)a[26] << 14) | ((uint32_t)(a[25] & 0xf) << 22);
|
||||
r->n[2] = (uint32_t)((a[25] >> 4) & 0xf) | ((uint32_t)a[24] << 4) | ((uint32_t)a[23] << 12) | ((uint32_t)(a[22] & 0x3f) << 20);
|
||||
|
@ -363,26 +301,15 @@ static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
|||
r->n[7] = (uint32_t)((a[9] >> 6) & 0x3) | ((uint32_t)a[8] << 2) | ((uint32_t)a[7] << 10) | ((uint32_t)a[6] << 18);
|
||||
r->n[8] = (uint32_t)a[5] | ((uint32_t)a[4] << 8) | ((uint32_t)a[3] << 16) | ((uint32_t)(a[2] & 0x3) << 24);
|
||||
r->n[9] = (uint32_t)((a[2] >> 2) & 0x3f) | ((uint32_t)a[1] << 6) | ((uint32_t)a[0] << 14);
|
||||
}
|
||||
|
||||
ret = !((r->n[9] == 0x3FFFFFUL) & ((r->n[8] & r->n[7] & r->n[6] & r->n[5] & r->n[4] & r->n[3] & r->n[2]) == 0x3FFFFFFUL) & ((r->n[1] + 0x40UL + ((r->n[0] + 0x3D1UL) >> 26)) > 0x3FFFFFFUL));
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
if (ret) {
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
} else {
|
||||
r->normalized = 0;
|
||||
}
|
||||
#endif
|
||||
return ret;
|
||||
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
|
||||
secp256k1_fe_impl_set_b32_mod(r, a);
|
||||
return !((r->n[9] == 0x3FFFFFUL) & ((r->n[8] & r->n[7] & r->n[6] & r->n[5] & r->n[4] & r->n[3] & r->n[2]) == 0x3FFFFFFUL) & ((r->n[1] + 0x40UL + ((r->n[0] + 0x3D1UL) >> 26)) > 0x3FFFFFFUL));
|
||||
}
|
||||
|
||||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
||||
r[0] = (a->n[9] >> 14) & 0xff;
|
||||
r[1] = (a->n[9] >> 6) & 0xff;
|
||||
r[2] = ((a->n[9] & 0x3F) << 2) | ((a->n[8] >> 24) & 0x3);
|
||||
|
@ -417,15 +344,15 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
|||
r[31] = a->n[0] & 0xff;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= m);
|
||||
secp256k1_fe_verify(a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
||||
/* For all legal values of m (0..31), the following properties hold: */
|
||||
VERIFY_CHECK(0x3FFFC2FUL * 2 * (m + 1) >= 0x3FFFFFFUL * 2 * m);
|
||||
VERIFY_CHECK(0x3FFFFBFUL * 2 * (m + 1) >= 0x3FFFFFFUL * 2 * m);
|
||||
VERIFY_CHECK(0x3FFFFFFUL * 2 * (m + 1) >= 0x3FFFFFFUL * 2 * m);
|
||||
VERIFY_CHECK(0x03FFFFFUL * 2 * (m + 1) >= 0x03FFFFFUL * 2 * m);
|
||||
#endif
|
||||
|
||||
/* Due to the properties above, the left hand in the subtractions below is never less than
|
||||
* the right hand. */
|
||||
r->n[0] = 0x3FFFC2FUL * 2 * (m + 1) - a->n[0];
|
||||
r->n[1] = 0x3FFFFBFUL * 2 * (m + 1) - a->n[1];
|
||||
r->n[2] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[2];
|
||||
|
@ -436,14 +363,9 @@ SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k
|
|||
r->n[7] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[7];
|
||||
r->n[8] = 0x3FFFFFFUL * 2 * (m + 1) - a->n[8];
|
||||
r->n[9] = 0x03FFFFFUL * 2 * (m + 1) - a->n[9];
|
||||
#ifdef VERIFY
|
||||
r->magnitude = m + 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] *= a;
|
||||
r->n[1] *= a;
|
||||
r->n[2] *= a;
|
||||
|
@ -454,17 +376,9 @@ SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
|
|||
r->n[7] *= a;
|
||||
r->n[8] *= a;
|
||||
r->n[9] *= a;
|
||||
#ifdef VERIFY
|
||||
r->magnitude *= a;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
r->n[0] += a->n[0];
|
||||
r->n[1] += a->n[1];
|
||||
r->n[2] += a->n[2];
|
||||
|
@ -475,25 +389,10 @@ SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_f
|
|||
r->n[7] += a->n[7];
|
||||
r->n[8] += a->n[8];
|
||||
r->n[9] += a->n[9];
|
||||
#ifdef VERIFY
|
||||
r->magnitude += a->magnitude;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(r);
|
||||
VERIFY_CHECK(a >= 0);
|
||||
VERIFY_CHECK(a <= 0x7FFF);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] += a;
|
||||
#ifdef VERIFY
|
||||
r->magnitude += 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(USE_EXTERNAL_ASM)
|
||||
|
@ -1115,37 +1014,15 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t
|
|||
}
|
||||
#endif
|
||||
|
||||
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
VERIFY_CHECK(b->magnitude <= 8);
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
VERIFY_CHECK(r != b);
|
||||
VERIFY_CHECK(a != b);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
||||
secp256k1_fe_mul_inner(r->n, a->n, b->n);
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe_sqr_inner(r->n, a->n);
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
||||
uint32_t mask0, mask1;
|
||||
volatile int vflag = flag;
|
||||
SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
|
||||
|
@ -1161,25 +1038,14 @@ static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_
|
|||
r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1);
|
||||
r->n[8] = (r->n[8] & mask0) | (a->n[8] & mask1);
|
||||
r->n[9] = (r->n[9] & mask0) | (a->n[9] & mask1);
|
||||
#ifdef VERIFY
|
||||
if (flag) {
|
||||
r->magnitude = a->magnitude;
|
||||
r->normalized = a->normalized;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_half(secp256k1_fe *r) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_impl_half(secp256k1_fe *r) {
|
||||
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
|
||||
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
|
||||
uint32_t one = (uint32_t)1;
|
||||
uint32_t mask = -(t0 & one) >> 6;
|
||||
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(r);
|
||||
VERIFY_CHECK(r->magnitude < 32);
|
||||
#endif
|
||||
|
||||
/* Bounds analysis (over the rationals).
|
||||
*
|
||||
* Let m = r->magnitude
|
||||
|
@ -1226,10 +1092,8 @@ static SECP256K1_INLINE void secp256k1_fe_half(secp256k1_fe *r) {
|
|||
*
|
||||
* Current bounds: t0..t8 <= C * (m/2 + 1/2)
|
||||
* t9 <= D * (m/2 + 1/4)
|
||||
*/
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Therefore the output magnitude (M) has to be set such that:
|
||||
*
|
||||
* Therefore the output magnitude (M) has to be set such that:
|
||||
* t0..t8: C * M >= C * (m/2 + 1/2)
|
||||
* t9: D * M >= D * (m/2 + 1/4)
|
||||
*
|
||||
|
@ -1239,10 +1103,6 @@ static SECP256K1_INLINE void secp256k1_fe_half(secp256k1_fe *r) {
|
|||
* and since we want the smallest such integer value for M:
|
||||
* M == floor(m/2) + 1
|
||||
*/
|
||||
r->magnitude = (r->magnitude >> 1) + 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
|
||||
|
@ -1261,10 +1121,7 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r,
|
|||
r->n[7] = (r->n[7] & mask0) | (a->n[7] & mask1);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
||||
r->n[0] = a->n[0] | a->n[1] << 26;
|
||||
r->n[1] = a->n[1] >> 6 | a->n[2] << 20;
|
||||
r->n[2] = a->n[2] >> 12 | a->n[3] << 14;
|
||||
|
@ -1275,7 +1132,7 @@ static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe
|
|||
r->n[7] = a->n[8] >> 16 | a->n[9] << 10;
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
||||
r->n[0] = a->n[0] & 0x3FFFFFFUL;
|
||||
r->n[1] = a->n[0] >> 26 | ((a->n[1] << 6) & 0x3FFFFFFUL);
|
||||
r->n[2] = a->n[1] >> 20 | ((a->n[2] << 12) & 0x3FFFFFFUL);
|
||||
|
@ -1286,11 +1143,6 @@ static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const se
|
|||
r->n[7] = a->n[5] >> 22 | ((a->n[6] << 10) & 0x3FFFFFFUL);
|
||||
r->n[8] = a->n[6] >> 16 | ((a->n[7] << 16) & 0x3FFFFFFUL);
|
||||
r->n[9] = a->n[7] >> 10;
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_from_signed30(secp256k1_fe *r, const secp256k1_modinv32_signed30 *a) {
|
||||
|
@ -1321,12 +1173,6 @@ static void secp256k1_fe_from_signed30(secp256k1_fe *r, const secp256k1_modinv32
|
|||
r->n[7] = (a6 >> 2 ) & M26;
|
||||
r->n[8] = (a6 >> 28 | a7 << 2) & M26;
|
||||
r->n[9] = (a7 >> 24 | a8 << 6);
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_fe *a) {
|
||||
|
@ -1334,10 +1180,6 @@ static void secp256k1_fe_to_signed30(secp256k1_modinv32_signed30 *r, const secp2
|
|||
const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4],
|
||||
a5 = a->n[5], a6 = a->n[6], a7 = a->n[7], a8 = a->n[8], a9 = a->n[9];
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
|
||||
r->v[0] = (a0 | a1 << 26) & M30;
|
||||
r->v[1] = (a1 >> 4 | a2 << 22) & M30;
|
||||
r->v[2] = (a2 >> 8 | a3 << 18) & M30;
|
||||
|
@ -1355,37 +1197,27 @@ static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_fe = {
|
|||
0x2DDACACFL
|
||||
};
|
||||
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp = *x;
|
||||
secp256k1_modinv32_signed30 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize(&tmp);
|
||||
secp256k1_fe_to_signed30(&s, &tmp);
|
||||
secp256k1_modinv32(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed30(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp = *x;
|
||||
secp256k1_modinv32_signed30 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize_var(&tmp);
|
||||
secp256k1_fe_to_signed30(&s, &tmp);
|
||||
secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed30(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
|
||||
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv32_signed30 s;
|
||||
int jac, ret;
|
||||
|
@ -1403,10 +1235,6 @@ static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
|
|||
secp256k1_fe dummy;
|
||||
ret = secp256k1_fe_sqrt(&dummy, &tmp);
|
||||
} else {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe dummy;
|
||||
VERIFY_CHECK(jac == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
|
||||
#endif
|
||||
ret = jac >= 0;
|
||||
}
|
||||
return ret;
|
||||
|
|
|
@ -9,15 +9,28 @@
|
|||
|
||||
#include <stdint.h>
|
||||
|
||||
/** This field implementation represents the value as 5 uint64_t limbs in base
|
||||
* 2^52. */
|
||||
typedef struct {
|
||||
/* X = sum(i=0..4, n[i]*2^(i*52)) mod p
|
||||
* where p = 2^256 - 0x1000003D1
|
||||
*/
|
||||
/* A field element f represents the sum(i=0..4, f.n[i] << (i*52)) mod p,
|
||||
* where p is the field modulus, 2^256 - 2^32 - 977.
|
||||
*
|
||||
* The individual limbs f.n[i] can exceed 2^52; the field's magnitude roughly
|
||||
* corresponds to how much excess is allowed. The value
|
||||
* sum(i=0..4, f.n[i] << (i*52)) may exceed p, unless the field element is
|
||||
* normalized. */
|
||||
uint64_t n[5];
|
||||
#ifdef VERIFY
|
||||
int magnitude;
|
||||
int normalized;
|
||||
#endif
|
||||
/*
|
||||
* Magnitude m requires:
|
||||
* n[i] <= 2 * m * (2^52 - 1) for i=0..3
|
||||
* n[4] <= 2 * m * (2^48 - 1)
|
||||
*
|
||||
* Normalized requires:
|
||||
* n[i] <= (2^52 - 1) for i=0..3
|
||||
* sum(i=0..4, n[i] << (i*52)) < p
|
||||
* (together these imply n[4] <= 2^48 - 1)
|
||||
*/
|
||||
SECP256K1_FE_VERIFY_FIELDS
|
||||
} secp256k1_fe;
|
||||
|
||||
/* Unpacks a constant into a overlapping multi-limbed FE element. */
|
||||
|
@ -29,12 +42,6 @@ typedef struct {
|
|||
((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
|
||||
}
|
||||
|
||||
#ifdef VERIFY
|
||||
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
|
||||
#else
|
||||
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
uint64_t n[4];
|
||||
} secp256k1_fe_storage;
|
||||
|
|
|
@ -14,6 +14,8 @@
|
|||
#ifndef SECP256K1_FIELD_INNER5X52_IMPL_H
|
||||
#define SECP256K1_FIELD_INNER5X52_IMPL_H
|
||||
|
||||
#include "util.h"
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
|
||||
/**
|
||||
* Registers: rdx:rax = multiplication accumulator
|
||||
|
@ -278,7 +280,7 @@ __asm__ __volatile__(
|
|||
"addq %%rsi,%%r8\n"
|
||||
/* r[4] = c */
|
||||
"movq %%r8,32(%%rdi)\n"
|
||||
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
|
||||
: "+S"(a), "=&m"(tmp1), "=&m"(tmp2), "=&m"(tmp3)
|
||||
: "b"(b), "D"(r)
|
||||
: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
|
||||
);
|
||||
|
@ -493,7 +495,7 @@ __asm__ __volatile__(
|
|||
"addq %%rsi,%%r8\n"
|
||||
/* r[4] = c */
|
||||
"movq %%r8,32(%%rdi)\n"
|
||||
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
|
||||
: "+S"(a), "=&m"(tmp1), "=&m"(tmp2), "=&m"(tmp3)
|
||||
: "D"(r)
|
||||
: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
|
||||
);
|
||||
|
|
|
@ -18,59 +18,33 @@
|
|||
#include "field_5x52_int128_impl.h"
|
||||
#endif
|
||||
|
||||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
||||
* represented as 5 uint64_t's in base 2^52, least significant first. Note that the limbs are allowed to
|
||||
* contain >52 bits each.
|
||||
*
|
||||
* Each field element has a 'magnitude' associated with it. Internally, a magnitude M means:
|
||||
* - 2*M*(2^48-1) is the max (inclusive) of the most significant limb
|
||||
* - 2*M*(2^52-1) is the max (inclusive) of the remaining limbs
|
||||
*
|
||||
* Operations have different rules for propagating magnitude to their outputs. If an operation takes a
|
||||
* magnitude M as a parameter, that means the magnitude of input field elements can be at most M (inclusive).
|
||||
*
|
||||
* Each field element also has a 'normalized' flag. A field element is normalized if its magnitude is either
|
||||
* 0 or 1, and its value is already reduced modulo the order of the field.
|
||||
*/
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
static void secp256k1_fe_impl_verify(const secp256k1_fe *a) {
|
||||
const uint64_t *d = a->n;
|
||||
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
|
||||
int m = a->normalized ? 1 : 2 * a->magnitude;
|
||||
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
||||
r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
|
||||
r &= (a->magnitude >= 0);
|
||||
r &= (a->magnitude <= 2048);
|
||||
VERIFY_CHECK(d[0] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
VERIFY_CHECK(d[1] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
VERIFY_CHECK(d[2] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
VERIFY_CHECK(d[3] <= 0xFFFFFFFFFFFFFULL * m);
|
||||
VERIFY_CHECK(d[4] <= 0x0FFFFFFFFFFFFULL * m);
|
||||
if (a->normalized) {
|
||||
r &= (a->magnitude <= 1);
|
||||
if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
|
||||
r &= (d[0] < 0xFFFFEFFFFFC2FULL);
|
||||
if ((d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
|
||||
VERIFY_CHECK(d[0] < 0xFFFFEFFFFFC2FULL);
|
||||
}
|
||||
}
|
||||
VERIFY_CHECK(r == 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m) {
|
||||
VERIFY_CHECK(m >= 0);
|
||||
VERIFY_CHECK(m <= 2048);
|
||||
static void secp256k1_fe_impl_get_bounds(secp256k1_fe *r, int m) {
|
||||
r->n[0] = 0xFFFFFFFFFFFFFULL * 2 * m;
|
||||
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * m;
|
||||
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * m;
|
||||
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * m;
|
||||
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * m;
|
||||
#ifdef VERIFY
|
||||
r->magnitude = m;
|
||||
r->normalized = (m == 0);
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
||||
static void secp256k1_fe_impl_normalize(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
||||
|
@ -105,15 +79,9 @@ static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
|||
t4 &= 0x0FFFFFFFFFFFFULL;
|
||||
|
||||
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
||||
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
||||
|
@ -130,14 +98,9 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
|||
VERIFY_CHECK(t4 >> 49 == 0);
|
||||
|
||||
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
||||
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
||||
|
@ -173,15 +136,9 @@ static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
|||
}
|
||||
|
||||
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
|
||||
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
|
||||
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
|
||||
|
@ -204,7 +161,7 @@ static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
|
|||
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
|
||||
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r) {
|
||||
uint64_t t0, t1, t2, t3, t4;
|
||||
uint64_t z0, z1;
|
||||
uint64_t x;
|
||||
|
@ -245,53 +202,29 @@ static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
|
|||
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
|
||||
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] = a;
|
||||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
||||
#ifdef VERIFY
|
||||
r->magnitude = (a != 0);
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
|
||||
SECP256K1_INLINE static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a) {
|
||||
const uint64_t *t = a->n;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
SECP256K1_INLINE static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a) {
|
||||
return a->n[0] & 1;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_clear(secp256k1_fe *a) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
a->magnitude = 0;
|
||||
a->normalized = 1;
|
||||
#endif
|
||||
for (i=0; i<5; i++) {
|
||||
a->n[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
int i;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
VERIFY_CHECK(b->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
#endif
|
||||
for (i = 4; i >= 0; i--) {
|
||||
if (a->n[i] > b->n[i]) {
|
||||
return 1;
|
||||
|
@ -303,8 +236,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
||||
int ret;
|
||||
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
|
||||
r->n[0] = (uint64_t)a[31]
|
||||
| ((uint64_t)a[30] << 8)
|
||||
| ((uint64_t)a[29] << 16)
|
||||
|
@ -339,25 +271,15 @@ static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
|||
| ((uint64_t)a[2] << 24)
|
||||
| ((uint64_t)a[1] << 32)
|
||||
| ((uint64_t)a[0] << 40);
|
||||
ret = !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
if (ret) {
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
} else {
|
||||
r->normalized = 0;
|
||||
}
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
|
||||
secp256k1_fe_impl_set_b32_mod(r, a);
|
||||
return !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
|
||||
}
|
||||
|
||||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
||||
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
||||
r[0] = (a->n[4] >> 40) & 0xFF;
|
||||
r[1] = (a->n[4] >> 32) & 0xFF;
|
||||
r[2] = (a->n[4] >> 24) & 0xFF;
|
||||
|
@ -392,100 +314,50 @@ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
|||
r[31] = a->n[0] & 0xFF;
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= m);
|
||||
secp256k1_fe_verify(a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
||||
/* For all legal values of m (0..31), the following properties hold: */
|
||||
VERIFY_CHECK(0xFFFFEFFFFFC2FULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
|
||||
VERIFY_CHECK(0xFFFFFFFFFFFFFULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
|
||||
VERIFY_CHECK(0x0FFFFFFFFFFFFULL * 2 * (m + 1) >= 0x0FFFFFFFFFFFFULL * 2 * m);
|
||||
#endif
|
||||
|
||||
/* Due to the properties above, the left hand in the subtractions below is never less than
|
||||
* the right hand. */
|
||||
r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
|
||||
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
|
||||
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
|
||||
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
|
||||
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
|
||||
#ifdef VERIFY
|
||||
r->magnitude = m + 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] *= a;
|
||||
r->n[1] *= a;
|
||||
r->n[2] *= a;
|
||||
r->n[3] *= a;
|
||||
r->n[4] *= a;
|
||||
#ifdef VERIFY
|
||||
r->magnitude *= a;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(r);
|
||||
VERIFY_CHECK(a >= 0);
|
||||
VERIFY_CHECK(a <= 0x7FFF);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a) {
|
||||
r->n[0] += a;
|
||||
#ifdef VERIFY
|
||||
r->magnitude += 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
r->n[0] += a->n[0];
|
||||
r->n[1] += a->n[1];
|
||||
r->n[2] += a->n[2];
|
||||
r->n[3] += a->n[3];
|
||||
r->n[4] += a->n[4];
|
||||
#ifdef VERIFY
|
||||
r->magnitude += a->magnitude;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
VERIFY_CHECK(b->magnitude <= 8);
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
VERIFY_CHECK(r != b);
|
||||
VERIFY_CHECK(a != b);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
||||
secp256k1_fe_mul_inner(r->n, a->n, b->n);
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
secp256k1_fe_verify(a);
|
||||
#endif
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe_sqr_inner(r->n, a->n);
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
||||
SECP256K1_INLINE static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
||||
uint64_t mask0, mask1;
|
||||
volatile int vflag = flag;
|
||||
SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
|
||||
|
@ -496,24 +368,13 @@ static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_
|
|||
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
|
||||
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
|
||||
r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
|
||||
#ifdef VERIFY
|
||||
if (flag) {
|
||||
r->magnitude = a->magnitude;
|
||||
r->normalized = a->normalized;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_half(secp256k1_fe *r) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_impl_half(secp256k1_fe *r) {
|
||||
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
||||
uint64_t one = (uint64_t)1;
|
||||
uint64_t mask = -(t0 & one) >> 12;
|
||||
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(r);
|
||||
VERIFY_CHECK(r->magnitude < 32);
|
||||
#endif
|
||||
|
||||
/* Bounds analysis (over the rationals).
|
||||
*
|
||||
* Let m = r->magnitude
|
||||
|
@ -550,10 +411,8 @@ static SECP256K1_INLINE void secp256k1_fe_half(secp256k1_fe *r) {
|
|||
*
|
||||
* Current bounds: t0..t3 <= C * (m/2 + 1/2)
|
||||
* t4 <= D * (m/2 + 1/4)
|
||||
*/
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Therefore the output magnitude (M) has to be set such that:
|
||||
*
|
||||
* Therefore the output magnitude (M) has to be set such that:
|
||||
* t0..t3: C * M >= C * (m/2 + 1/2)
|
||||
* t4: D * M >= D * (m/2 + 1/4)
|
||||
*
|
||||
|
@ -563,10 +422,6 @@ static SECP256K1_INLINE void secp256k1_fe_half(secp256k1_fe *r) {
|
|||
* and since we want the smallest such integer value for M:
|
||||
* M == floor(m/2) + 1
|
||||
*/
|
||||
r->magnitude = (r->magnitude >> 1) + 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
|
||||
|
@ -581,27 +436,19 @@ static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r,
|
|||
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
||||
r->n[0] = a->n[0] | a->n[1] << 52;
|
||||
r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
|
||||
r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
|
||||
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
||||
static SECP256K1_INLINE void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
||||
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
|
||||
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
|
||||
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
|
||||
r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
|
||||
r->n[4] = a->n[3] >> 16;
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a) {
|
||||
|
@ -622,22 +469,12 @@ static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64
|
|||
r->n[2] = (a1 >> 42 | a2 << 20) & M52;
|
||||
r->n[3] = (a2 >> 32 | a3 << 30) & M52;
|
||||
r->n[4] = (a3 >> 22 | a4 << 40);
|
||||
|
||||
#ifdef VERIFY
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a) {
|
||||
const uint64_t M62 = UINT64_MAX >> 2;
|
||||
const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4];
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(a->normalized);
|
||||
#endif
|
||||
|
||||
r->v[0] = (a0 | a1 << 52) & M62;
|
||||
r->v[1] = (a1 >> 10 | a2 << 42) & M62;
|
||||
r->v[2] = (a2 >> 20 | a3 << 32) & M62;
|
||||
|
@ -650,37 +487,27 @@ static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe = {
|
|||
0x27C7F6E22DDACACFLL
|
||||
};
|
||||
|
||||
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp = *x;
|
||||
secp256k1_modinv64_signed62 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize(&tmp);
|
||||
secp256k1_fe_to_signed62(&s, &tmp);
|
||||
secp256k1_modinv64(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed62(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp = *x;
|
||||
secp256k1_modinv64_signed62 s;
|
||||
|
||||
tmp = *x;
|
||||
secp256k1_fe_normalize_var(&tmp);
|
||||
secp256k1_fe_to_signed62(&s, &tmp);
|
||||
secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_fe);
|
||||
secp256k1_fe_from_signed62(r, &s);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
|
||||
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x) {
|
||||
secp256k1_fe tmp;
|
||||
secp256k1_modinv64_signed62 s;
|
||||
int jac, ret;
|
||||
|
@ -698,10 +525,6 @@ static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
|
|||
secp256k1_fe dummy;
|
||||
ret = secp256k1_fe_sqrt(&dummy, &tmp);
|
||||
} else {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe dummy;
|
||||
VERIFY_CHECK(jac == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
|
||||
#endif
|
||||
ret = jac >= 0;
|
||||
}
|
||||
return ret;
|
||||
|
|
|
@ -10,6 +10,7 @@
|
|||
#include <stdint.h>
|
||||
|
||||
#include "int128.h"
|
||||
#include "util.h"
|
||||
|
||||
#ifdef VERIFY
|
||||
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
#ifndef SECP256K1_FIELD_IMPL_H
|
||||
#define SECP256K1_FIELD_IMPL_H
|
||||
|
||||
#include "field.h"
|
||||
#include "util.h"
|
||||
|
||||
#if defined(SECP256K1_WIDEMUL_INT128)
|
||||
|
@ -19,6 +20,12 @@
|
|||
|
||||
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
secp256k1_fe na;
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
VERIFY_CHECK(a->magnitude <= 1);
|
||||
VERIFY_CHECK(b->magnitude <= 31);
|
||||
#endif
|
||||
secp256k1_fe_negate(&na, a, 1);
|
||||
secp256k1_fe_add(&na, b);
|
||||
return secp256k1_fe_normalizes_to_zero(&na);
|
||||
|
@ -26,6 +33,12 @@ SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp
|
|||
|
||||
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
secp256k1_fe na;
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
VERIFY_CHECK(a->magnitude <= 1);
|
||||
VERIFY_CHECK(b->magnitude <= 31);
|
||||
#endif
|
||||
secp256k1_fe_negate(&na, a, 1);
|
||||
secp256k1_fe_add(&na, b);
|
||||
return secp256k1_fe_normalizes_to_zero_var(&na);
|
||||
|
@ -42,9 +55,13 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
|
|||
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
|
||||
*/
|
||||
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
||||
int j;
|
||||
int j, ret;
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(r != a);
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
#endif
|
||||
|
||||
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
|
||||
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
|
||||
|
@ -128,7 +145,286 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
|
|||
/* Check that a square root was actually calculated */
|
||||
|
||||
secp256k1_fe_sqr(&t1, r);
|
||||
return secp256k1_fe_equal(&t1, a);
|
||||
ret = secp256k1_fe_equal(&t1, a);
|
||||
|
||||
#ifdef VERIFY
|
||||
if (!ret) {
|
||||
secp256k1_fe_negate(&t1, &t1, 1);
|
||||
secp256k1_fe_normalize_var(&t1);
|
||||
VERIFY_CHECK(secp256k1_fe_equal_var(&t1, a));
|
||||
}
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifndef VERIFY
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; }
|
||||
#else
|
||||
static void secp256k1_fe_impl_verify(const secp256k1_fe *a);
|
||||
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
||||
/* Magnitude between 0 and 32. */
|
||||
VERIFY_CHECK((a->magnitude >= 0) && (a->magnitude <= 32));
|
||||
/* Normalized is 0 or 1. */
|
||||
VERIFY_CHECK((a->normalized == 0) || (a->normalized == 1));
|
||||
/* If normalized, magnitude must be 0 or 1. */
|
||||
if (a->normalized) VERIFY_CHECK(a->magnitude <= 1);
|
||||
/* Invoke implementation-specific checks. */
|
||||
secp256k1_fe_impl_verify(a);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_normalize(secp256k1_fe *r);
|
||||
SECP256K1_INLINE static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
||||
secp256k1_fe_verify(r);
|
||||
secp256k1_fe_impl_normalize(r);
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r);
|
||||
SECP256K1_INLINE static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
||||
secp256k1_fe_verify(r);
|
||||
secp256k1_fe_impl_normalize_weak(r);
|
||||
r->magnitude = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r);
|
||||
SECP256K1_INLINE static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
||||
secp256k1_fe_verify(r);
|
||||
secp256k1_fe_impl_normalize_var(r);
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r);
|
||||
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
|
||||
secp256k1_fe_verify(r);
|
||||
return secp256k1_fe_impl_normalizes_to_zero(r);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r);
|
||||
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
|
||||
secp256k1_fe_verify(r);
|
||||
return secp256k1_fe_impl_normalizes_to_zero_var(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
|
||||
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
|
||||
secp256k1_fe_impl_set_int(r, a);
|
||||
r->magnitude = (a != 0);
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) {
|
||||
VERIFY_CHECK(0 <= a && a <= 0x7FFF);
|
||||
secp256k1_fe_verify(r);
|
||||
secp256k1_fe_impl_add_int(r, a);
|
||||
r->magnitude += 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_clear(secp256k1_fe *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
|
||||
a->magnitude = 0;
|
||||
a->normalized = 1;
|
||||
secp256k1_fe_impl_clear(a);
|
||||
secp256k1_fe_verify(a);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a);
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(a->normalized);
|
||||
return secp256k1_fe_impl_is_zero(a);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a);
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(a->normalized);
|
||||
return secp256k1_fe_impl_is_odd(a);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
|
||||
SECP256K1_INLINE static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
VERIFY_CHECK(a->normalized);
|
||||
VERIFY_CHECK(b->normalized);
|
||||
return secp256k1_fe_impl_cmp_var(a, b);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
|
||||
secp256k1_fe_impl_set_b32_mod(r, a);
|
||||
r->magnitude = 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
|
||||
SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
|
||||
if (secp256k1_fe_impl_set_b32_limit(r, a)) {
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
return 1;
|
||||
} else {
|
||||
/* Mark the output field element as invalid. */
|
||||
r->magnitude = -1;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_impl_get_b32(r, a);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
|
||||
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(m >= 0 && m <= 31);
|
||||
VERIFY_CHECK(a->magnitude <= m);
|
||||
secp256k1_fe_impl_negate(r, a, m);
|
||||
r->magnitude = m + 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_mul_int(secp256k1_fe *r, int a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
|
||||
secp256k1_fe_verify(r);
|
||||
VERIFY_CHECK(a >= 0 && a <= 32);
|
||||
VERIFY_CHECK(a*r->magnitude <= 32);
|
||||
secp256k1_fe_impl_mul_int(r, a);
|
||||
r->magnitude *= a;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe_verify(r);
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(r->magnitude + a->magnitude <= 32);
|
||||
secp256k1_fe_impl_add(r, a);
|
||||
r->magnitude += a->magnitude;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
|
||||
SECP256K1_INLINE static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(b);
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
VERIFY_CHECK(b->magnitude <= 8);
|
||||
VERIFY_CHECK(r != b);
|
||||
VERIFY_CHECK(a != b);
|
||||
secp256k1_fe_impl_mul(r, a, b);
|
||||
r->magnitude = 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(a->magnitude <= 8);
|
||||
secp256k1_fe_impl_sqr(r, a);
|
||||
r->magnitude = 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
|
||||
SECP256K1_INLINE static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
||||
VERIFY_CHECK(flag == 0 || flag == 1);
|
||||
secp256k1_fe_verify(a);
|
||||
secp256k1_fe_verify(r);
|
||||
secp256k1_fe_impl_cmov(r, a, flag);
|
||||
if (a->magnitude > r->magnitude) r->magnitude = a->magnitude;
|
||||
if (!a->normalized) r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
||||
secp256k1_fe_verify(a);
|
||||
VERIFY_CHECK(a->normalized);
|
||||
secp256k1_fe_impl_to_storage(r, a);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
|
||||
SECP256K1_INLINE static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
||||
secp256k1_fe_impl_from_storage(r, a);
|
||||
r->magnitude = 1;
|
||||
r->normalized = 1;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x);
|
||||
SECP256K1_INLINE static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
|
||||
secp256k1_fe_verify(x);
|
||||
secp256k1_fe_impl_inv(r, x);
|
||||
r->magnitude = x->magnitude > 0;
|
||||
r->normalized = 1;
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x);
|
||||
SECP256K1_INLINE static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
|
||||
int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
|
||||
secp256k1_fe_verify(x);
|
||||
secp256k1_fe_impl_inv_var(r, x);
|
||||
r->magnitude = x->magnitude > 0;
|
||||
r->normalized = 1;
|
||||
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x);
|
||||
SECP256K1_INLINE static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
|
||||
int ret;
|
||||
secp256k1_fe tmp = *x, sqrt;
|
||||
secp256k1_fe_verify(x);
|
||||
ret = secp256k1_fe_impl_is_square_var(x);
|
||||
secp256k1_fe_normalize_weak(&tmp);
|
||||
VERIFY_CHECK(ret == secp256k1_fe_sqrt(&sqrt, &tmp));
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_get_bounds(secp256k1_fe* r, int m);
|
||||
SECP256K1_INLINE static void secp256k1_fe_get_bounds(secp256k1_fe* r, int m) {
|
||||
VERIFY_CHECK(m >= 0);
|
||||
VERIFY_CHECK(m <= 32);
|
||||
secp256k1_fe_impl_get_bounds(r, m);
|
||||
r->magnitude = m;
|
||||
r->normalized = (m == 0);
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_fe_impl_half(secp256k1_fe *r);
|
||||
SECP256K1_INLINE static void secp256k1_fe_half(secp256k1_fe *r) {
|
||||
secp256k1_fe_verify(r);
|
||||
VERIFY_CHECK(r->magnitude < 32);
|
||||
secp256k1_fe_impl_half(r);
|
||||
r->magnitude = (r->magnitude >> 1) + 1;
|
||||
r->normalized = 0;
|
||||
secp256k1_fe_verify(r);
|
||||
}
|
||||
|
||||
#endif /* defined(VERIFY) */
|
||||
|
||||
#endif /* SECP256K1_FIELD_IMPL_H */
|
||||
|
|
|
@ -51,6 +51,12 @@ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const se
|
|||
* for Y. Return value indicates whether the result is valid. */
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
|
||||
|
||||
/** Determine whether x is a valid X coordinate on the curve. */
|
||||
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
|
||||
|
||||
/** Determine whether fraction xn/xd is a valid X coordinate on the curve (xd != 0). */
|
||||
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
|
||||
|
||||
/** Check whether a group element is the point at infinity. */
|
||||
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
|
||||
|
||||
|
@ -164,4 +170,10 @@ static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
|
|||
*/
|
||||
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
|
||||
|
||||
/** Check invariants on an affine group element (no-op unless VERIFY is enabled). */
|
||||
static void secp256k1_ge_verify(const secp256k1_ge *a);
|
||||
|
||||
/** Check invariants on a Jacobian group element (no-op unless VERIFY is enabled). */
|
||||
static void secp256k1_gej_verify(const secp256k1_gej *a);
|
||||
|
||||
#endif /* SECP256K1_GROUP_H */
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include "field.h"
|
||||
#include "group.h"
|
||||
#include "util.h"
|
||||
|
||||
/* Begin of section generated by sage/gen_exhaustive_groups.sage. */
|
||||
#define SECP256K1_G_ORDER_7 SECP256K1_GE_CONST(\
|
||||
|
@ -72,37 +73,80 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G;
|
|||
#endif
|
||||
/* End of section generated by sage/gen_exhaustive_groups.sage. */
|
||||
|
||||
static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, SECP256K1_B);
|
||||
static void secp256k1_ge_verify(const secp256k1_ge *a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(&a->x);
|
||||
secp256k1_fe_verify(&a->y);
|
||||
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
||||
#endif
|
||||
(void)a;
|
||||
}
|
||||
|
||||
static void secp256k1_gej_verify(const secp256k1_gej *a) {
|
||||
#ifdef VERIFY
|
||||
secp256k1_fe_verify(&a->x);
|
||||
secp256k1_fe_verify(&a->y);
|
||||
secp256k1_fe_verify(&a->z);
|
||||
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
||||
#endif
|
||||
(void)a;
|
||||
}
|
||||
|
||||
/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
|
||||
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
|
||||
secp256k1_fe zi2;
|
||||
secp256k1_fe zi3;
|
||||
secp256k1_gej_verify(a);
|
||||
secp256k1_fe_verify(zi);
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
secp256k1_fe_sqr(&zi2, zi);
|
||||
secp256k1_fe_mul(&zi3, &zi2, zi);
|
||||
secp256k1_fe_mul(&r->x, &a->x, &zi2);
|
||||
secp256k1_fe_mul(&r->y, &a->y, &zi3);
|
||||
r->infinity = a->infinity;
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
|
||||
static void secp256k1_ge_set_ge_zinv(secp256k1_ge *r, const secp256k1_ge *a, const secp256k1_fe *zi) {
|
||||
secp256k1_fe zi2;
|
||||
secp256k1_fe zi3;
|
||||
secp256k1_ge_verify(a);
|
||||
secp256k1_fe_verify(zi);
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
secp256k1_fe_sqr(&zi2, zi);
|
||||
secp256k1_fe_mul(&zi3, &zi2, zi);
|
||||
secp256k1_fe_mul(&r->x, &a->x, &zi2);
|
||||
secp256k1_fe_mul(&r->y, &a->y, &zi3);
|
||||
r->infinity = a->infinity;
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
|
||||
secp256k1_fe_verify(x);
|
||||
secp256k1_fe_verify(y);
|
||||
r->infinity = 0;
|
||||
r->x = *x;
|
||||
r->y = *y;
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
|
||||
secp256k1_ge_verify(a);
|
||||
return a->infinity;
|
||||
}
|
||||
|
||||
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
|
||||
secp256k1_ge_verify(a);
|
||||
*r = *a;
|
||||
secp256k1_fe_normalize_weak(&r->y);
|
||||
secp256k1_fe_negate(&r->y, &r->y, 1);
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
|
||||
secp256k1_fe z2, z3;
|
||||
secp256k1_gej_verify(a);
|
||||
r->infinity = a->infinity;
|
||||
secp256k1_fe_inv(&a->z, &a->z);
|
||||
secp256k1_fe_sqr(&z2, &a->z);
|
||||
|
@ -112,14 +156,17 @@ static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
|
|||
secp256k1_fe_set_int(&a->z, 1);
|
||||
r->x = a->x;
|
||||
r->y = a->y;
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
|
||||
secp256k1_fe z2, z3;
|
||||
if (a->infinity) {
|
||||
secp256k1_gej_verify(a);
|
||||
if (secp256k1_gej_is_infinity(a)) {
|
||||
secp256k1_ge_set_infinity(r);
|
||||
return;
|
||||
}
|
||||
r->infinity = 0;
|
||||
secp256k1_fe_inv_var(&a->z, &a->z);
|
||||
secp256k1_fe_sqr(&z2, &a->z);
|
||||
secp256k1_fe_mul(&z3, &a->z, &z2);
|
||||
|
@ -127,6 +174,7 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
|
|||
secp256k1_fe_mul(&a->y, &a->y, &z3);
|
||||
secp256k1_fe_set_int(&a->z, 1);
|
||||
secp256k1_ge_set_xy(r, &a->x, &a->y);
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
|
||||
|
@ -135,6 +183,7 @@ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a
|
|||
size_t last_i = SIZE_MAX;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
secp256k1_gej_verify(&a[i]);
|
||||
if (a[i].infinity) {
|
||||
secp256k1_ge_set_infinity(&r[i]);
|
||||
} else {
|
||||
|
@ -168,6 +217,7 @@ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a
|
|||
if (!a[i].infinity) {
|
||||
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
|
||||
}
|
||||
secp256k1_ge_verify(&r[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -176,21 +226,25 @@ static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const se
|
|||
secp256k1_fe zs;
|
||||
|
||||
if (len > 0) {
|
||||
/* Verify inputs a[len-1] and zr[len-1]. */
|
||||
secp256k1_ge_verify(&a[i]);
|
||||
secp256k1_fe_verify(&zr[i]);
|
||||
/* Ensure all y values are in weak normal form for fast negation of points */
|
||||
secp256k1_fe_normalize_weak(&a[i].y);
|
||||
zs = zr[i];
|
||||
|
||||
/* Work our way backwards, using the z-ratios to scale the x/y values. */
|
||||
while (i > 0) {
|
||||
secp256k1_gej tmpa;
|
||||
/* Verify all inputs a[i] and zr[i]. */
|
||||
secp256k1_fe_verify(&zr[i]);
|
||||
secp256k1_ge_verify(&a[i]);
|
||||
if (i != len - 1) {
|
||||
secp256k1_fe_mul(&zs, &zs, &zr[i]);
|
||||
}
|
||||
i--;
|
||||
tmpa.x = a[i].x;
|
||||
tmpa.y = a[i].y;
|
||||
tmpa.infinity = 0;
|
||||
secp256k1_ge_set_gej_zinv(&a[i], &tmpa, &zs);
|
||||
secp256k1_ge_set_ge_zinv(&a[i], &a[i], &zs);
|
||||
/* Verify the output a[i]. */
|
||||
secp256k1_ge_verify(&a[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -200,12 +254,14 @@ static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
|
|||
secp256k1_fe_clear(&r->x);
|
||||
secp256k1_fe_clear(&r->y);
|
||||
secp256k1_fe_clear(&r->z);
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
|
||||
r->infinity = 1;
|
||||
secp256k1_fe_clear(&r->x);
|
||||
secp256k1_fe_clear(&r->y);
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_clear(secp256k1_gej *r) {
|
||||
|
@ -223,31 +279,35 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
|
|||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
secp256k1_fe x2, x3;
|
||||
int ret;
|
||||
secp256k1_fe_verify(x);
|
||||
r->x = *x;
|
||||
secp256k1_fe_sqr(&x2, x);
|
||||
secp256k1_fe_mul(&x3, x, &x2);
|
||||
r->infinity = 0;
|
||||
secp256k1_fe_add_int(&x3, SECP256K1_B);
|
||||
if (!secp256k1_fe_sqrt(&r->y, &x3)) {
|
||||
return 0;
|
||||
}
|
||||
ret = secp256k1_fe_sqrt(&r->y, &x3);
|
||||
secp256k1_fe_normalize_var(&r->y);
|
||||
if (secp256k1_fe_is_odd(&r->y) != odd) {
|
||||
secp256k1_fe_negate(&r->y, &r->y, 1);
|
||||
}
|
||||
return 1;
|
||||
|
||||
secp256k1_ge_verify(r);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
|
||||
secp256k1_ge_verify(a);
|
||||
r->infinity = a->infinity;
|
||||
r->x = a->x;
|
||||
r->y = a->y;
|
||||
secp256k1_fe_set_int(&r->z, 1);
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) {
|
||||
secp256k1_gej tmp;
|
||||
secp256k1_gej_verify(b);
|
||||
secp256k1_gej_verify(a);
|
||||
secp256k1_gej_neg(&tmp, a);
|
||||
secp256k1_gej_add_var(&tmp, &tmp, b, NULL);
|
||||
return secp256k1_gej_is_infinity(&tmp);
|
||||
|
@ -255,6 +315,8 @@ static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b)
|
|||
|
||||
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
|
||||
secp256k1_fe r, r2;
|
||||
secp256k1_fe_verify(x);
|
||||
secp256k1_gej_verify(a);
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
|
||||
r2 = a->x; secp256k1_fe_normalize_weak(&r2);
|
||||
|
@ -262,20 +324,24 @@ static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a)
|
|||
}
|
||||
|
||||
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
|
||||
secp256k1_gej_verify(a);
|
||||
r->infinity = a->infinity;
|
||||
r->x = a->x;
|
||||
r->y = a->y;
|
||||
r->z = a->z;
|
||||
secp256k1_fe_normalize_weak(&r->y);
|
||||
secp256k1_fe_negate(&r->y, &r->y, 1);
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
|
||||
secp256k1_gej_verify(a);
|
||||
return a->infinity;
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
|
||||
secp256k1_fe y2, x3;
|
||||
secp256k1_ge_verify(a);
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
|
@ -291,6 +357,7 @@ static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp25
|
|||
/* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */
|
||||
secp256k1_fe l, s, t;
|
||||
|
||||
secp256k1_gej_verify(a);
|
||||
r->infinity = a->infinity;
|
||||
|
||||
/* Formula used:
|
||||
|
@ -317,6 +384,7 @@ static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp25
|
|||
secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */
|
||||
secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */
|
||||
secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
|
||||
|
@ -330,6 +398,7 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
|
|||
* the infinity flag even though the point doubles to infinity, and the result
|
||||
* point will be gibberish (z = 0 but infinity = 0).
|
||||
*/
|
||||
secp256k1_gej_verify(a);
|
||||
if (a->infinity) {
|
||||
secp256k1_gej_set_infinity(r);
|
||||
if (rzr != NULL) {
|
||||
|
@ -344,12 +413,15 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s
|
|||
}
|
||||
|
||||
secp256k1_gej_double(r, a);
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
|
||||
/* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
|
||||
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t;
|
||||
|
||||
secp256k1_gej_verify(a);
|
||||
secp256k1_gej_verify(b);
|
||||
if (a->infinity) {
|
||||
VERIFY_CHECK(rzr == NULL);
|
||||
*r = *b;
|
||||
|
@ -404,11 +476,14 @@ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, cons
|
|||
secp256k1_fe_mul(&r->y, &t, &i);
|
||||
secp256k1_fe_mul(&h3, &h3, &s1);
|
||||
secp256k1_fe_add(&r->y, &h3);
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
|
||||
/* 8 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
|
||||
secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t;
|
||||
secp256k1_gej_verify(a);
|
||||
secp256k1_ge_verify(b);
|
||||
if (a->infinity) {
|
||||
VERIFY_CHECK(rzr == NULL);
|
||||
secp256k1_gej_set_ge(r, b);
|
||||
|
@ -461,12 +536,16 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
|
|||
secp256k1_fe_mul(&r->y, &t, &i);
|
||||
secp256k1_fe_mul(&h3, &h3, &s1);
|
||||
secp256k1_fe_add(&r->y, &h3);
|
||||
secp256k1_gej_verify(r);
|
||||
if (rzr != NULL) secp256k1_fe_verify(rzr);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
|
||||
/* 9 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
|
||||
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t;
|
||||
|
||||
secp256k1_ge_verify(b);
|
||||
secp256k1_fe_verify(bzinv);
|
||||
if (a->infinity) {
|
||||
secp256k1_fe bzinv2, bzinv3;
|
||||
r->infinity = b->infinity;
|
||||
|
@ -525,6 +604,7 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
|
|||
secp256k1_fe_mul(&r->y, &t, &i);
|
||||
secp256k1_fe_mul(&h3, &h3, &s1);
|
||||
secp256k1_fe_add(&r->y, &h3);
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
|
||||
|
@ -533,6 +613,8 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
|
|||
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
|
||||
secp256k1_fe m_alt, rr_alt;
|
||||
int degenerate;
|
||||
secp256k1_gej_verify(a);
|
||||
secp256k1_ge_verify(b);
|
||||
VERIFY_CHECK(!b->infinity);
|
||||
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
||||
|
||||
|
@ -658,21 +740,28 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
|
|||
* We have degenerate = false, r->z = (y1 + y2) * Z.
|
||||
* Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */
|
||||
r->infinity = secp256k1_fe_normalizes_to_zero(&r->z);
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
|
||||
/* Operations: 4 mul, 1 sqr */
|
||||
secp256k1_fe zz;
|
||||
VERIFY_CHECK(!secp256k1_fe_is_zero(s));
|
||||
secp256k1_gej_verify(r);
|
||||
secp256k1_fe_verify(s);
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(s));
|
||||
#endif
|
||||
secp256k1_fe_sqr(&zz, s);
|
||||
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
|
||||
secp256k1_fe_mul(&r->y, &r->y, &zz);
|
||||
secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
|
||||
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
|
||||
secp256k1_fe x, y;
|
||||
secp256k1_ge_verify(a);
|
||||
VERIFY_CHECK(!a->infinity);
|
||||
x = a->x;
|
||||
secp256k1_fe_normalize(&x);
|
||||
|
@ -686,14 +775,18 @@ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storag
|
|||
secp256k1_fe_from_storage(&r->x, &a->x);
|
||||
secp256k1_fe_from_storage(&r->y, &a->y);
|
||||
r->infinity = 0;
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) {
|
||||
secp256k1_gej_verify(r);
|
||||
secp256k1_gej_verify(a);
|
||||
secp256k1_fe_cmov(&r->x, &a->x, flag);
|
||||
secp256k1_fe_cmov(&r->y, &a->y, flag);
|
||||
secp256k1_fe_cmov(&r->z, &a->z, flag);
|
||||
|
||||
r->infinity ^= (r->infinity ^ a->infinity) & flag;
|
||||
secp256k1_gej_verify(r);
|
||||
}
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
|
||||
|
@ -703,7 +796,9 @@ static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r,
|
|||
|
||||
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
||||
*r = *a;
|
||||
secp256k1_ge_verify(a);
|
||||
secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta);
|
||||
secp256k1_ge_verify(r);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
|
||||
|
@ -711,6 +806,7 @@ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
|
|||
secp256k1_gej out;
|
||||
int i;
|
||||
|
||||
secp256k1_ge_verify(ge);
|
||||
/* A very simple EC multiplication ladder that avoids a dependency on ecmult. */
|
||||
secp256k1_gej_set_infinity(&out);
|
||||
for (i = 0; i < 32; ++i) {
|
||||
|
@ -727,4 +823,32 @@ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
|
|||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x) {
|
||||
secp256k1_fe c;
|
||||
secp256k1_fe_sqr(&c, x);
|
||||
secp256k1_fe_mul(&c, &c, x);
|
||||
secp256k1_fe_add_int(&c, SECP256K1_B);
|
||||
return secp256k1_fe_is_square_var(&c);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd) {
|
||||
/* We want to determine whether (xn/xd) is on the curve.
|
||||
*
|
||||
* (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square).
|
||||
*/
|
||||
secp256k1_fe r, t;
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(xd));
|
||||
#endif
|
||||
secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */
|
||||
secp256k1_fe_sqr(&t, xn); /* t = xn^2 */
|
||||
secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */
|
||||
secp256k1_fe_sqr(&t, xd); /* t = xd^2 */
|
||||
secp256k1_fe_sqr(&t, &t); /* t = xd^4 */
|
||||
VERIFY_CHECK(SECP256K1_B <= 31);
|
||||
secp256k1_fe_mul_int(&t, SECP256K1_B); /* t = 7*xd^4 */
|
||||
secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */
|
||||
return secp256k1_fe_is_square_var(&r);
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_GROUP_IMPL_H */
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#define SECP256K1_INT128_NATIVE_IMPL_H
|
||||
|
||||
#include "int128.h"
|
||||
#include "util.h"
|
||||
|
||||
static SECP256K1_INLINE void secp256k1_u128_load(secp256k1_uint128 *r, uint64_t hi, uint64_t lo) {
|
||||
*r = (((uint128_t)hi) << 64) + lo;
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#define SECP256K1_INT128_STRUCT_IMPL_H
|
||||
|
||||
#include "int128.h"
|
||||
#include "util.h"
|
||||
|
||||
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64)) /* MSVC */
|
||||
# include <intrin.h>
|
||||
|
|
|
@ -64,7 +64,7 @@ static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int3
|
|||
const int32_t M30 = (int32_t)(UINT32_MAX >> 2);
|
||||
int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4],
|
||||
r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8];
|
||||
int32_t cond_add, cond_negate;
|
||||
volatile int32_t cond_add, cond_negate;
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Verify that all limbs are in range (-2^30,2^30). */
|
||||
|
@ -186,7 +186,8 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_
|
|||
* being inside [-2^31,2^31) means that casting to signed works correctly.
|
||||
*/
|
||||
uint32_t u = 1, v = 0, q = 0, r = 1;
|
||||
uint32_t c1, c2, f = f0, g = g0, x, y, z;
|
||||
volatile uint32_t c1, c2;
|
||||
uint32_t mask1, mask2, f = f0, g = g0, x, y, z;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 30; ++i) {
|
||||
|
@ -195,23 +196,25 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_
|
|||
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
||||
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
|
||||
c1 = zeta >> 31;
|
||||
c2 = -(g & 1);
|
||||
mask1 = c1;
|
||||
c2 = g & 1;
|
||||
mask2 = -c2;
|
||||
/* Compute x,y,z, conditionally negated versions of f,u,v. */
|
||||
x = (f ^ c1) - c1;
|
||||
y = (u ^ c1) - c1;
|
||||
z = (v ^ c1) - c1;
|
||||
x = (f ^ mask1) - mask1;
|
||||
y = (u ^ mask1) - mask1;
|
||||
z = (v ^ mask1) - mask1;
|
||||
/* Conditionally add x,y,z to g,q,r. */
|
||||
g += x & c2;
|
||||
q += y & c2;
|
||||
r += z & c2;
|
||||
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
|
||||
c1 &= c2;
|
||||
g += x & mask2;
|
||||
q += y & mask2;
|
||||
r += z & mask2;
|
||||
/* In what follows, mask1 is a condition mask for (zeta < 0) and (g & 1). */
|
||||
mask1 &= mask2;
|
||||
/* Conditionally change zeta into -zeta-2 or zeta-1. */
|
||||
zeta = (zeta ^ c1) - 1;
|
||||
zeta = (zeta ^ mask1) - 1;
|
||||
/* Conditionally add g,q,r to f,u,v. */
|
||||
f += g & c1;
|
||||
u += q & c1;
|
||||
v += r & c1;
|
||||
f += g & mask1;
|
||||
u += q & mask1;
|
||||
v += r & mask1;
|
||||
/* Shifts */
|
||||
g >>= 1;
|
||||
u <<= 1;
|
||||
|
|
|
@ -88,7 +88,7 @@ static int secp256k1_modinv64_det_check_pow2(const secp256k1_modinv64_trans2x2 *
|
|||
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) {
|
||||
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
|
||||
int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
|
||||
int64_t cond_add, cond_negate;
|
||||
volatile int64_t cond_add, cond_negate;
|
||||
|
||||
#ifdef VERIFY
|
||||
/* Verify that all limbs are in range (-2^62,2^62). */
|
||||
|
@ -175,7 +175,8 @@ static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_
|
|||
* being inside [-2^63,2^63) means that casting to signed works correctly.
|
||||
*/
|
||||
uint64_t u = 8, v = 0, q = 0, r = 8;
|
||||
uint64_t c1, c2, f = f0, g = g0, x, y, z;
|
||||
volatile uint64_t c1, c2;
|
||||
uint64_t mask1, mask2, f = f0, g = g0, x, y, z;
|
||||
int i;
|
||||
|
||||
for (i = 3; i < 62; ++i) {
|
||||
|
@ -184,23 +185,25 @@ static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_
|
|||
VERIFY_CHECK((q * f0 + r * g0) == g << i);
|
||||
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
|
||||
c1 = zeta >> 63;
|
||||
c2 = -(g & 1);
|
||||
mask1 = c1;
|
||||
c2 = g & 1;
|
||||
mask2 = -c2;
|
||||
/* Compute x,y,z, conditionally negated versions of f,u,v. */
|
||||
x = (f ^ c1) - c1;
|
||||
y = (u ^ c1) - c1;
|
||||
z = (v ^ c1) - c1;
|
||||
x = (f ^ mask1) - mask1;
|
||||
y = (u ^ mask1) - mask1;
|
||||
z = (v ^ mask1) - mask1;
|
||||
/* Conditionally add x,y,z to g,q,r. */
|
||||
g += x & c2;
|
||||
q += y & c2;
|
||||
r += z & c2;
|
||||
g += x & mask2;
|
||||
q += y & mask2;
|
||||
r += z & mask2;
|
||||
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
|
||||
c1 &= c2;
|
||||
mask1 &= mask2;
|
||||
/* Conditionally change zeta into -zeta-2 or zeta-1. */
|
||||
zeta = (zeta ^ c1) - 1;
|
||||
zeta = (zeta ^ mask1) - 1;
|
||||
/* Conditionally add g,q,r to f,u,v. */
|
||||
f += g & c1;
|
||||
u += q & c1;
|
||||
v += r & c1;
|
||||
f += g & mask1;
|
||||
u += q & mask1;
|
||||
v += r & mask1;
|
||||
/* Shifts */
|
||||
g >>= 1;
|
||||
u <<= 1;
|
||||
|
|
|
@ -50,7 +50,7 @@ int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *output, const se
|
|||
overflow |= secp256k1_scalar_is_zero(&s);
|
||||
secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
|
||||
|
||||
secp256k1_ecmult_const(&res, &pt, &s, 256);
|
||||
secp256k1_ecmult_const(&res, &pt, &s);
|
||||
secp256k1_ge_set_gej(&pt, &res);
|
||||
|
||||
/* Compute a hash of the point */
|
||||
|
|
4
src/secp256k1/src/modules/ellswift/Makefile.am.include
Normal file
4
src/secp256k1/src/modules/ellswift/Makefile.am.include
Normal file
|
@ -0,0 +1,4 @@
|
|||
include_HEADERS += include/secp256k1_ellswift.h
|
||||
noinst_HEADERS += src/modules/ellswift/bench_impl.h
|
||||
noinst_HEADERS += src/modules/ellswift/main_impl.h
|
||||
noinst_HEADERS += src/modules/ellswift/tests_impl.h
|
106
src/secp256k1/src/modules/ellswift/bench_impl.h
Normal file
106
src/secp256k1/src/modules/ellswift/bench_impl.h
Normal file
|
@ -0,0 +1,106 @@
|
|||
/***********************************************************************
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODULE_ELLSWIFT_BENCH_H
|
||||
#define SECP256K1_MODULE_ELLSWIFT_BENCH_H
|
||||
|
||||
#include "../../../include/secp256k1_ellswift.h"
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context *ctx;
|
||||
secp256k1_pubkey point[256];
|
||||
unsigned char rnd64[64];
|
||||
} bench_ellswift_data;
|
||||
|
||||
static void bench_ellswift_setup(void *arg) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
static const unsigned char init[64] = {
|
||||
0x78, 0x1f, 0xb7, 0xd4, 0x67, 0x7f, 0x08, 0x68,
|
||||
0xdb, 0xe3, 0x1d, 0x7f, 0x1b, 0xb0, 0xf6, 0x9e,
|
||||
0x0a, 0x64, 0xca, 0x32, 0x9e, 0xc6, 0x20, 0x79,
|
||||
0x03, 0xf3, 0xd0, 0x46, 0x7a, 0x0f, 0xd2, 0x21,
|
||||
0xb0, 0x2c, 0x46, 0xd8, 0xba, 0xca, 0x26, 0x4f,
|
||||
0x8f, 0x8c, 0xd4, 0xdd, 0x2d, 0x04, 0xbe, 0x30,
|
||||
0x48, 0x51, 0x1e, 0xd4, 0x16, 0xfd, 0x42, 0x85,
|
||||
0x62, 0xc9, 0x02, 0xf9, 0x89, 0x84, 0xff, 0xdc
|
||||
};
|
||||
memcpy(data->rnd64, init, 64);
|
||||
for (i = 0; i < 256; ++i) {
|
||||
int j;
|
||||
CHECK(secp256k1_ellswift_decode(data->ctx, &data->point[i], data->rnd64));
|
||||
for (j = 0; j < 64; ++j) {
|
||||
data->rnd64[j] += 1;
|
||||
}
|
||||
}
|
||||
CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[255], init + 16));
|
||||
}
|
||||
|
||||
static void bench_ellswift_encode(void *arg, int iters) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[i & 255], data->rnd64 + 16));
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_ellswift_create(void *arg, int iters) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
unsigned char buf[64];
|
||||
CHECK(secp256k1_ellswift_create(data->ctx, buf, data->rnd64, data->rnd64 + 32));
|
||||
memcpy(data->rnd64, buf, 64);
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_ellswift_decode(void *arg, int iters) {
|
||||
int i;
|
||||
secp256k1_pubkey out;
|
||||
size_t len;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
CHECK(secp256k1_ellswift_decode(data->ctx, &out, data->rnd64) == 1);
|
||||
len = 33;
|
||||
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->rnd64 + (i % 32), &len, &out, SECP256K1_EC_COMPRESSED));
|
||||
}
|
||||
}
|
||||
|
||||
static void bench_ellswift_xdh(void *arg, int iters) {
|
||||
int i;
|
||||
bench_ellswift_data *data = (bench_ellswift_data*)arg;
|
||||
|
||||
for (i = 0; i < iters; i++) {
|
||||
int party = i & 1;
|
||||
CHECK(secp256k1_ellswift_xdh(data->ctx,
|
||||
data->rnd64 + (i % 33),
|
||||
data->rnd64,
|
||||
data->rnd64,
|
||||
data->rnd64 + ((i + 16) % 33),
|
||||
party,
|
||||
secp256k1_ellswift_xdh_hash_function_bip324,
|
||||
NULL) == 1);
|
||||
}
|
||||
}
|
||||
|
||||
void run_ellswift_bench(int iters, int argc, char **argv) {
|
||||
bench_ellswift_data data;
|
||||
int d = argc == 1;
|
||||
|
||||
/* create a context with signing capabilities */
|
||||
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
|
||||
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "encode") || have_flag(argc, argv, "ellswift_encode")) run_benchmark("ellswift_encode", bench_ellswift_encode, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_decode")) run_benchmark("ellswift_decode", bench_ellswift_decode, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ellswift_keygen")) run_benchmark("ellswift_keygen", bench_ellswift_create, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ecdh") || have_flag(argc, argv, "ellswift_ecdh")) run_benchmark("ellswift_ecdh", bench_ellswift_xdh, bench_ellswift_setup, NULL, &data, 10, iters);
|
||||
|
||||
secp256k1_context_destroy(data.ctx);
|
||||
}
|
||||
|
||||
#endif
|
589
src/secp256k1/src/modules/ellswift/main_impl.h
Normal file
589
src/secp256k1/src/modules/ellswift/main_impl.h
Normal file
|
@ -0,0 +1,589 @@
|
|||
/***********************************************************************
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
|
||||
#define SECP256K1_MODULE_ELLSWIFT_MAIN_H
|
||||
|
||||
#include "../../../include/secp256k1.h"
|
||||
#include "../../../include/secp256k1_ellswift.h"
|
||||
#include "../../eckey.h"
|
||||
#include "../../hash.h"
|
||||
|
||||
/** c1 = (sqrt(-3)-1)/2 */
|
||||
static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
|
||||
/** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
|
||||
static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
|
||||
/** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
|
||||
static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
|
||||
/** c4 = (sqrt(-3)+1)/2 = -c2 = c1+1 */
|
||||
static const secp256k1_fe secp256k1_ellswift_c4 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa41);
|
||||
|
||||
/** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
|
||||
static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe *xn, secp256k1_fe *xd, const secp256k1_fe *u, const secp256k1_fe *t) {
|
||||
/* The implemented algorithm is the following (all operations in GF(p)):
|
||||
*
|
||||
* - Let c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852.
|
||||
* - If u = 0, set u = 1.
|
||||
* - If t = 0, set t = 1.
|
||||
* - If u^3+7+t^2 = 0, set t = 2*t.
|
||||
* - Let X = (u^3+7-t^2)/(2*t).
|
||||
* - Let Y = (X+t)/(c0*u).
|
||||
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
|
||||
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
|
||||
* - Return x1 = (X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
|
||||
*
|
||||
* Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
|
||||
*
|
||||
* - Let c0 = ...
|
||||
* - If u = 0, set u = 1.
|
||||
* - If t = 0, set t = 1.
|
||||
* - Let s = t^2
|
||||
* - Let g = u^3+7
|
||||
* - If g+s = 0, set t = 2*t, s = 4*s
|
||||
* - Let X = (g-s)/(2*t).
|
||||
* - Let Y = (X+t)/(c0*u) = (g+s)/(2*c0*t*u).
|
||||
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
|
||||
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
|
||||
* - Return x1 = -(x2+u).
|
||||
*
|
||||
* Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s). This
|
||||
* means X and Y do not need to be evaluated explicitly anymore.
|
||||
*
|
||||
* - ...
|
||||
* - If g+s = 0, set s = 4*s.
|
||||
* - If x3 = u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
|
||||
* - If x2 = (-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
|
||||
* - Return x1 = -(x2+u).
|
||||
*
|
||||
* Simplifying x2 using 2 additional constants:
|
||||
*
|
||||
* - Let c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
|
||||
* - Let c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
|
||||
* - ...
|
||||
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
|
||||
* - ...
|
||||
*
|
||||
* Writing x3 as a fraction:
|
||||
*
|
||||
* - ...
|
||||
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) ...
|
||||
* - ...
|
||||
|
||||
* Overall, we get:
|
||||
*
|
||||
* - Let c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
|
||||
* - Let c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
|
||||
* - If u = 0, set u = 1.
|
||||
* - If t = 0, set s = 1, else set s = t^2.
|
||||
* - Let g = u^3+7.
|
||||
* - If g+s = 0, set s = 4*s.
|
||||
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
|
||||
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
|
||||
* - Return x1 = -(x2+u).
|
||||
*/
|
||||
secp256k1_fe u1, s, g, p, d, n, l;
|
||||
u1 = *u;
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
|
||||
secp256k1_fe_sqr(&s, t);
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
|
||||
secp256k1_fe_sqr(&l, &u1); /* l = u^2 */
|
||||
secp256k1_fe_mul(&g, &l, &u1); /* g = u^3 */
|
||||
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3 + 7 */
|
||||
p = g; /* p = g */
|
||||
secp256k1_fe_add(&p, &s); /* p = g+s */
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
|
||||
secp256k1_fe_mul_int(&s, 4);
|
||||
/* Recompute p = g+s */
|
||||
p = g; /* p = g */
|
||||
secp256k1_fe_add(&p, &s); /* p = g+s */
|
||||
}
|
||||
secp256k1_fe_mul(&d, &s, &l); /* d = s*u^2 */
|
||||
secp256k1_fe_mul_int(&d, 3); /* d = 3*s*u^2 */
|
||||
secp256k1_fe_sqr(&l, &p); /* l = (g+s)^2 */
|
||||
secp256k1_fe_negate(&l, &l, 1); /* l = -(g+s)^2 */
|
||||
secp256k1_fe_mul(&n, &d, &u1); /* n = 3*s*u^3 */
|
||||
secp256k1_fe_add(&n, &l); /* n = 3*s*u^3-(g+s)^2 */
|
||||
if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
|
||||
/* Return x3 = n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
|
||||
*xn = n;
|
||||
*xd = d;
|
||||
return;
|
||||
}
|
||||
*xd = p;
|
||||
secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s); /* l = c1*s */
|
||||
secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g); /* n = c2*g */
|
||||
secp256k1_fe_add(&n, &l); /* n = c1*s+c2*g */
|
||||
secp256k1_fe_mul(&n, &n, &u1); /* n = u*(c1*s+c2*g) */
|
||||
/* Possible optimization: in the invocation below, p^2 = (g+s)^2 is computed,
|
||||
* which we already have computed above. This could be deduplicated. */
|
||||
if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
|
||||
/* Return x2 = n/p = u*(c1*s+c2*g)/(g+s) */
|
||||
*xn = n;
|
||||
return;
|
||||
}
|
||||
secp256k1_fe_mul(&l, &p, &u1); /* l = u*(g+s) */
|
||||
secp256k1_fe_add(&n, &l); /* n = u*(c1*s+c2*g)+u*(g+s) */
|
||||
secp256k1_fe_negate(xn, &n, 2); /* n = -u*(c1*s+c2*g)-u*(g+s) */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
|
||||
#endif
|
||||
/* Return x3 = n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
|
||||
}
|
||||
|
||||
/** Decode ElligatorSwift encoding (u, t) to X coordinate. */
|
||||
static void secp256k1_ellswift_xswiftec_var(secp256k1_fe *x, const secp256k1_fe *u, const secp256k1_fe *t) {
|
||||
secp256k1_fe xn, xd;
|
||||
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
|
||||
secp256k1_fe_inv_var(&xd, &xd);
|
||||
secp256k1_fe_mul(x, &xn, &xd);
|
||||
}
|
||||
|
||||
/** Decode ElligatorSwift encoding (u, t) to point P. */
|
||||
static void secp256k1_ellswift_swiftec_var(secp256k1_ge *p, const secp256k1_fe *u, const secp256k1_fe *t) {
|
||||
secp256k1_fe x;
|
||||
secp256k1_ellswift_xswiftec_var(&x, u, t);
|
||||
secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
|
||||
}
|
||||
|
||||
/* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
|
||||
*
|
||||
* There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
|
||||
* fewer, or none at all. Each such partial inverse can be accessed individually using a
|
||||
* distinct input argument c (in range 0-7), and some or all of these may return failure.
|
||||
* The following guarantees exist:
|
||||
* - Given (x, u), no two distinct c values give the same successful result t.
|
||||
* - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
|
||||
* - Given (x, u), all t values that map back to x can be reached by combining the
|
||||
* successful results from this function over all c values, with the exception of:
|
||||
* - this function cannot be called with u=0
|
||||
* - no result with t=0 will be returned
|
||||
* - no result for which u^3 + t^2 + 7 = 0 will be returned.
|
||||
*
|
||||
* The rather unusual encoding of bits in c (a large "if" based on the middle bit, and then
|
||||
* using the low and high bits to pick signs of square roots) is to match the paper's
|
||||
* encoding more closely: c=0 through c=3 match branches 1..4 in the paper, while c=4 through
|
||||
* c=7 are copies of those with an additional negation of sqrt(w).
|
||||
*/
|
||||
static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe *t, const secp256k1_fe *x_in, const secp256k1_fe *u_in, int c) {
|
||||
/* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
|
||||
*
|
||||
* - If (c & 2) = 0:
|
||||
* - If (-x-u) is a valid X coordinate, fail.
|
||||
* - Let s=-(u^3+7)/(u^2+u*x+x^2).
|
||||
* - If s is not square, fail.
|
||||
* - Let v=x.
|
||||
* - If (c & 2) = 2:
|
||||
* - Let s=x-u.
|
||||
* - If s is not square, fail.
|
||||
* - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist.
|
||||
* - If (c & 1) = 1 and r = 0, fail.
|
||||
* - If s=0, fail.
|
||||
* - Let v=(r/s-u)/2.
|
||||
* - Let w=sqrt(s).
|
||||
* - If (c & 5) = 0: return -w*(c3*u + v).
|
||||
* - If (c & 5) = 1: return w*(c4*u + v).
|
||||
* - If (c & 5) = 4: return w*(c3*u + v).
|
||||
* - If (c & 5) = 5: return -w*(c4*u + v).
|
||||
*/
|
||||
secp256k1_fe x = *x_in, u = *u_in, g, v, s, m, r, q;
|
||||
int ret;
|
||||
|
||||
secp256k1_fe_normalize_weak(&x);
|
||||
secp256k1_fe_normalize_weak(&u);
|
||||
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(c >= 0 && c < 8);
|
||||
VERIFY_CHECK(secp256k1_ge_x_on_curve_var(&x));
|
||||
#endif
|
||||
|
||||
if (!(c & 2)) {
|
||||
/* c is in {0, 1, 4, 5}. In this case we look for an inverse under the x1 (if c=0 or
|
||||
* c=4) formula, or x2 (if c=1 or c=5) formula. */
|
||||
|
||||
/* If -u-x is a valid X coordinate, fail. This would yield an encoding that roundtrips
|
||||
* back under the x3 formula instead (which has priority over x1 and x2, so the decoding
|
||||
* would not match x). */
|
||||
m = x; /* m = x */
|
||||
secp256k1_fe_add(&m, &u); /* m = u+x */
|
||||
secp256k1_fe_negate(&m, &m, 2); /* m = -u-x */
|
||||
/* Test if (-u-x) is a valid X coordinate. If so, fail. */
|
||||
if (secp256k1_ge_x_on_curve_var(&m)) return 0;
|
||||
|
||||
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [first part] */
|
||||
secp256k1_fe_sqr(&s, &m); /* s = (u+x)^2 */
|
||||
secp256k1_fe_negate(&s, &s, 1); /* s = -(u+x)^2 */
|
||||
secp256k1_fe_mul(&m, &u, &x); /* m = u*x */
|
||||
secp256k1_fe_add(&s, &m); /* s = -(u^2 + u*x + x^2) */
|
||||
|
||||
/* Note that at this point, s = 0 is impossible. If it were the case:
|
||||
* s = -(u^2 + u*x + x^2) = 0
|
||||
* => u^2 + u*x + x^2 = 0
|
||||
* => (u + 2*x) * (u^2 + u*x + x^2) = 0
|
||||
* => 2*x^3 + 3*x^2*u + 3*x*u^2 + u^3 = 0
|
||||
* => (x + u)^3 + x^3 = 0
|
||||
* => x^3 = -(x + u)^3
|
||||
* => x^3 + B = (-u - x)^3 + B
|
||||
*
|
||||
* However, we know x^3 + B is square (because x is on the curve) and
|
||||
* that (-u-x)^3 + B is not square (the secp256k1_ge_x_on_curve_var(&m)
|
||||
* test above would have failed). This is a contradiction, and thus the
|
||||
* assumption s=0 is false. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&s));
|
||||
#endif
|
||||
|
||||
/* If s is not square, fail. We have not fully computed s yet, but s is square iff
|
||||
* -(u^3+7)*(u^2+u*x+x^2) is square (because a/b is square iff a*b is square and b is
|
||||
* nonzero). */
|
||||
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
|
||||
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
|
||||
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3+7 */
|
||||
secp256k1_fe_mul(&m, &s, &g); /* m = -(u^3 + 7)*(u^2 + u*x + x^2) */
|
||||
if (!secp256k1_fe_is_square_var(&m)) return 0;
|
||||
|
||||
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [second part] */
|
||||
secp256k1_fe_inv_var(&s, &s); /* s = -1/(u^2 + u*x + x^2) [no div by 0] */
|
||||
secp256k1_fe_mul(&s, &s, &g); /* s = -(u^3 + 7)/(u^2 + u*x + x^2) */
|
||||
|
||||
/* Let v = x. */
|
||||
v = x;
|
||||
} else {
|
||||
/* c is in {2, 3, 6, 7}. In this case we look for an inverse under the x3 formula. */
|
||||
|
||||
/* Let s = x-u. */
|
||||
secp256k1_fe_negate(&m, &u, 1); /* m = -u */
|
||||
s = m; /* s = -u */
|
||||
secp256k1_fe_add(&s, &x); /* s = x-u */
|
||||
|
||||
/* If s is not square, fail. */
|
||||
if (!secp256k1_fe_is_square_var(&s)) return 0;
|
||||
|
||||
/* Let r = sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist. */
|
||||
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
|
||||
secp256k1_fe_mul(&q, &s, &g); /* q = s*u^2 */
|
||||
secp256k1_fe_mul_int(&q, 3); /* q = 3*s*u^2 */
|
||||
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
|
||||
secp256k1_fe_mul_int(&g, 4); /* g = 4*u^3 */
|
||||
secp256k1_fe_add_int(&g, 4 * SECP256K1_B); /* g = 4*(u^3+7) */
|
||||
secp256k1_fe_add(&q, &g); /* q = 4*(u^3+7)+3*s*u^2 */
|
||||
secp256k1_fe_mul(&q, &q, &s); /* q = s*(4*(u^3+7)+3*u^2*s) */
|
||||
secp256k1_fe_negate(&q, &q, 1); /* q = -s*(4*(u^3+7)+3*u^2*s) */
|
||||
if (!secp256k1_fe_is_square_var(&q)) return 0;
|
||||
ret = secp256k1_fe_sqrt(&r, &q); /* r = sqrt(-s*(4*(u^3+7)+3*u^2*s)) */
|
||||
VERIFY_CHECK(ret);
|
||||
|
||||
/* If (c & 1) = 1 and r = 0, fail. */
|
||||
if (EXPECT((c & 1) && secp256k1_fe_normalizes_to_zero_var(&r), 0)) return 0;
|
||||
|
||||
/* If s = 0, fail. */
|
||||
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&s), 0)) return 0;
|
||||
|
||||
/* Let v = (r/s-u)/2. */
|
||||
secp256k1_fe_inv_var(&v, &s); /* v = 1/s [no div by 0] */
|
||||
secp256k1_fe_mul(&v, &v, &r); /* v = r/s */
|
||||
secp256k1_fe_add(&v, &m); /* v = r/s-u */
|
||||
secp256k1_fe_half(&v); /* v = (r/s-u)/2 */
|
||||
}
|
||||
|
||||
/* Let w = sqrt(s). */
|
||||
ret = secp256k1_fe_sqrt(&m, &s); /* m = sqrt(s) = w */
|
||||
VERIFY_CHECK(ret);
|
||||
|
||||
/* Return logic. */
|
||||
if ((c & 5) == 0 || (c & 5) == 5) {
|
||||
secp256k1_fe_negate(&m, &m, 1); /* m = -w */
|
||||
}
|
||||
/* Now m = {-w if c&5=0 or c&5=5; w otherwise}. */
|
||||
secp256k1_fe_mul(&u, &u, c&1 ? &secp256k1_ellswift_c4 : &secp256k1_ellswift_c3);
|
||||
/* u = {c4 if c&1=1; c3 otherwise}*u */
|
||||
secp256k1_fe_add(&u, &v); /* u = {c4 if c&1=1; c3 otherwise}*u + v */
|
||||
secp256k1_fe_mul(t, &m, &u);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** Use SHA256 as a PRNG, returning SHA256(hasher || cnt).
|
||||
*
|
||||
* hasher is a SHA256 object to which an incrementing 4-byte counter is written to generate randomness.
|
||||
* Writing 13 bytes (4 bytes for counter, plus 9 bytes for the SHA256 padding) cannot cross a
|
||||
* 64-byte block size boundary (to make sure it only triggers a single SHA256 compression). */
|
||||
static void secp256k1_ellswift_prng(unsigned char* out32, const secp256k1_sha256 *hasher, uint32_t cnt) {
|
||||
secp256k1_sha256 hash = *hasher;
|
||||
unsigned char buf4[4];
|
||||
#ifdef VERIFY
|
||||
size_t blocks = hash.bytes >> 6;
|
||||
#endif
|
||||
buf4[0] = cnt;
|
||||
buf4[1] = cnt >> 8;
|
||||
buf4[2] = cnt >> 16;
|
||||
buf4[3] = cnt >> 24;
|
||||
secp256k1_sha256_write(&hash, buf4, 4);
|
||||
secp256k1_sha256_finalize(&hash, out32);
|
||||
#ifdef VERIFY
|
||||
/* Writing and finalizing together should trigger exactly one SHA256 compression. */
|
||||
VERIFY_CHECK(((hash.bytes) >> 6) == (blocks + 1));
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Find an ElligatorSwift encoding (u, t) for X coordinate x, and random Y coordinate.
|
||||
*
|
||||
* u32 is the 32-byte big endian encoding of u; t is the output field element t that still
|
||||
* needs encoding.
|
||||
*
|
||||
* hasher is a hasher in the secp256k1_ellswift_prng sense, with the same restrictions. */
|
||||
static void secp256k1_ellswift_xelligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_fe *x, const secp256k1_sha256 *hasher) {
|
||||
/* Pool of 3-bit branch values. */
|
||||
unsigned char branch_hash[32];
|
||||
/* Number of 3-bit values in branch_hash left. */
|
||||
int branches_left = 0;
|
||||
/* Field elements u and branch values are extracted from RNG based on hasher for consecutive
|
||||
* values of cnt. cnt==0 is first used to populate a pool of 64 4-bit branch values. The 64
|
||||
* cnt values that follow are used to generate field elements u. cnt==65 (and multiples
|
||||
* thereof) are used to repopulate the pool and start over, if that were ever necessary.
|
||||
* On average, 4 iterations are needed. */
|
||||
uint32_t cnt = 0;
|
||||
while (1) {
|
||||
int branch;
|
||||
secp256k1_fe u;
|
||||
/* If the pool of branch values is empty, populate it. */
|
||||
if (branches_left == 0) {
|
||||
secp256k1_ellswift_prng(branch_hash, hasher, cnt++);
|
||||
branches_left = 64;
|
||||
}
|
||||
/* Take a 3-bit branch value from the branch pool (top bit is discarded). */
|
||||
--branches_left;
|
||||
branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
|
||||
/* Compute a new u value by hashing. */
|
||||
secp256k1_ellswift_prng(u32, hasher, cnt++);
|
||||
/* overflow is not a problem (we prefer uniform u32 over uniform u). */
|
||||
secp256k1_fe_set_b32_mod(&u, u32);
|
||||
/* Since u is the output of a hash, it should practically never be 0. We could apply the
|
||||
* u=0 to u=1 correction here too to deal with that case still, but it's such a low
|
||||
* probability event that we do not bother. */
|
||||
#ifdef VERIFY
|
||||
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&u));
|
||||
#endif
|
||||
/* Find a remainder t, and return it if found. */
|
||||
if (EXPECT(secp256k1_ellswift_xswiftec_inv_var(t, x, &u, branch), 0)) break;
|
||||
}
|
||||
}
|
||||
|
||||
/** Find an ElligatorSwift encoding (u, t) for point P.
|
||||
*
|
||||
* This is similar secp256k1_ellswift_xelligatorswift_var, except it takes a full group element p
|
||||
* as input, and returns an encoding that matches the provided Y coordinate rather than a random
|
||||
* one.
|
||||
*/
|
||||
static void secp256k1_ellswift_elligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_ge *p, const secp256k1_sha256 *hasher) {
|
||||
secp256k1_ellswift_xelligatorswift_var(u32, t, &p->x, hasher);
|
||||
secp256k1_fe_normalize_var(t);
|
||||
if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
|
||||
secp256k1_fe_negate(t, t, 1);
|
||||
secp256k1_fe_normalize_var(t);
|
||||
}
|
||||
}
|
||||
|
||||
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_encode". */
|
||||
static void secp256k1_ellswift_sha256_init_encode(secp256k1_sha256* hash) {
|
||||
secp256k1_sha256_initialize(hash);
|
||||
hash->s[0] = 0xd1a6524bul;
|
||||
hash->s[1] = 0x028594b3ul;
|
||||
hash->s[2] = 0x96e42f4eul;
|
||||
hash->s[3] = 0x1037a177ul;
|
||||
hash->s[4] = 0x1b8fcb8bul;
|
||||
hash->s[5] = 0x56023885ul;
|
||||
hash->s[6] = 0x2560ede1ul;
|
||||
hash->s[7] = 0xd626b715ul;
|
||||
|
||||
hash->bytes = 64;
|
||||
}
|
||||
|
||||
int secp256k1_ellswift_encode(const secp256k1_context *ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
|
||||
secp256k1_ge p;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(ell64 != NULL);
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
ARG_CHECK(rnd32 != NULL);
|
||||
|
||||
if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
|
||||
secp256k1_fe t;
|
||||
unsigned char p64[64] = {0};
|
||||
size_t ser_size;
|
||||
int ser_ret;
|
||||
secp256k1_sha256 hash;
|
||||
|
||||
/* Set up hasher state; the used RNG is H(pubkey || "\x00"*31 || rnd32 || cnt++), using
|
||||
* BIP340 tagged hash with tag "secp256k1_ellswift_encode". */
|
||||
secp256k1_ellswift_sha256_init_encode(&hash);
|
||||
ser_ret = secp256k1_eckey_pubkey_serialize(&p, p64, &ser_size, 1);
|
||||
VERIFY_CHECK(ser_ret && ser_size == 33);
|
||||
secp256k1_sha256_write(&hash, p64, sizeof(p64));
|
||||
secp256k1_sha256_write(&hash, rnd32, 32);
|
||||
|
||||
/* Compute ElligatorSwift encoding and construct output. */
|
||||
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
|
||||
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
|
||||
return 1;
|
||||
}
|
||||
/* Only reached in case the provided pubkey is invalid. */
|
||||
memset(ell64, 0, 64);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_create". */
|
||||
static void secp256k1_ellswift_sha256_init_create(secp256k1_sha256* hash) {
|
||||
secp256k1_sha256_initialize(hash);
|
||||
hash->s[0] = 0xd29e1bf5ul;
|
||||
hash->s[1] = 0xf7025f42ul;
|
||||
hash->s[2] = 0x9b024773ul;
|
||||
hash->s[3] = 0x094cb7d5ul;
|
||||
hash->s[4] = 0xe59ed789ul;
|
||||
hash->s[5] = 0x03bc9786ul;
|
||||
hash->s[6] = 0x68335b35ul;
|
||||
hash->s[7] = 0x4e363b53ul;
|
||||
|
||||
hash->bytes = 64;
|
||||
}
|
||||
|
||||
int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) {
|
||||
secp256k1_ge p;
|
||||
secp256k1_fe t;
|
||||
secp256k1_sha256 hash;
|
||||
secp256k1_scalar seckey_scalar;
|
||||
int ret;
|
||||
static const unsigned char zero32[32] = {0};
|
||||
|
||||
/* Sanity check inputs. */
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(ell64 != NULL);
|
||||
memset(ell64, 0, 64);
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
ARG_CHECK(seckey32 != NULL);
|
||||
|
||||
/* Compute (affine) public key */
|
||||
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
|
||||
secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
|
||||
secp256k1_fe_normalize_var(&p.x);
|
||||
secp256k1_fe_normalize_var(&p.y);
|
||||
|
||||
/* Set up hasher state. The used RNG is H(privkey || "\x00"*32 [|| auxrnd32] || cnt++),
|
||||
* using BIP340 tagged hash with tag "secp256k1_ellswift_create". */
|
||||
secp256k1_ellswift_sha256_init_create(&hash);
|
||||
secp256k1_sha256_write(&hash, seckey32, 32);
|
||||
secp256k1_sha256_write(&hash, zero32, sizeof(zero32));
|
||||
secp256k1_declassify(ctx, &hash, sizeof(hash)); /* private key is hashed now */
|
||||
if (auxrnd32) secp256k1_sha256_write(&hash, auxrnd32, 32);
|
||||
|
||||
/* Compute ElligatorSwift encoding and construct output. */
|
||||
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
|
||||
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
|
||||
|
||||
secp256k1_memczero(ell64, 64, !ret);
|
||||
secp256k1_scalar_clear(&seckey_scalar);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int secp256k1_ellswift_decode(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
|
||||
secp256k1_fe u, t;
|
||||
secp256k1_ge p;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
ARG_CHECK(ell64 != NULL);
|
||||
|
||||
secp256k1_fe_set_b32_mod(&u, ell64);
|
||||
secp256k1_fe_set_b32_mod(&t, ell64 + 32);
|
||||
secp256k1_fe_normalize_var(&t);
|
||||
secp256k1_ellswift_swiftec_var(&p, &u, &t);
|
||||
secp256k1_pubkey_save(pubkey, &p);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int ellswift_xdh_hash_function_prefix(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
|
||||
secp256k1_sha256 sha;
|
||||
|
||||
secp256k1_sha256_initialize(&sha);
|
||||
secp256k1_sha256_write(&sha, data, 64);
|
||||
secp256k1_sha256_write(&sha, ell_a64, 64);
|
||||
secp256k1_sha256_write(&sha, ell_b64, 64);
|
||||
secp256k1_sha256_write(&sha, x32, 32);
|
||||
secp256k1_sha256_finalize(&sha, output);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** Set hash state to the BIP340 tagged hash midstate for "bip324_ellswift_xonly_ecdh". */
|
||||
static void secp256k1_ellswift_sha256_init_bip324(secp256k1_sha256* hash) {
|
||||
secp256k1_sha256_initialize(hash);
|
||||
hash->s[0] = 0x8c12d730ul;
|
||||
hash->s[1] = 0x827bd392ul;
|
||||
hash->s[2] = 0x9e4fb2eeul;
|
||||
hash->s[3] = 0x207b373eul;
|
||||
hash->s[4] = 0x2292bd7aul;
|
||||
hash->s[5] = 0xaa5441bcul;
|
||||
hash->s[6] = 0x15c3779ful;
|
||||
hash->s[7] = 0xcfb52549ul;
|
||||
|
||||
hash->bytes = 64;
|
||||
}
|
||||
|
||||
static int ellswift_xdh_hash_function_bip324(unsigned char* output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
|
||||
secp256k1_sha256 sha;
|
||||
|
||||
(void)data;
|
||||
|
||||
secp256k1_ellswift_sha256_init_bip324(&sha);
|
||||
secp256k1_sha256_write(&sha, ell_a64, 64);
|
||||
secp256k1_sha256_write(&sha, ell_b64, 64);
|
||||
secp256k1_sha256_write(&sha, x32, 32);
|
||||
secp256k1_sha256_finalize(&sha, output);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix = ellswift_xdh_hash_function_prefix;
|
||||
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324 = ellswift_xdh_hash_function_bip324;
|
||||
|
||||
int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
|
||||
int ret = 0;
|
||||
int overflow;
|
||||
secp256k1_scalar s;
|
||||
secp256k1_fe xn, xd, px, u, t;
|
||||
unsigned char sx[32];
|
||||
const unsigned char* theirs64;
|
||||
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(output != NULL);
|
||||
ARG_CHECK(ell_a64 != NULL);
|
||||
ARG_CHECK(ell_b64 != NULL);
|
||||
ARG_CHECK(seckey32 != NULL);
|
||||
ARG_CHECK(hashfp != NULL);
|
||||
|
||||
/* Load remote public key (as fraction). */
|
||||
theirs64 = party ? ell_a64 : ell_b64;
|
||||
secp256k1_fe_set_b32_mod(&u, theirs64);
|
||||
secp256k1_fe_set_b32_mod(&t, theirs64 + 32);
|
||||
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
|
||||
|
||||
/* Load private key (using one if invalid). */
|
||||
secp256k1_scalar_set_b32(&s, seckey32, &overflow);
|
||||
overflow = secp256k1_scalar_is_zero(&s);
|
||||
secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
|
||||
|
||||
/* Compute shared X coordinate. */
|
||||
secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 1);
|
||||
secp256k1_fe_normalize(&px);
|
||||
secp256k1_fe_get_b32(sx, &px);
|
||||
|
||||
/* Invoke hasher */
|
||||
ret = hashfp(output, sx, ell_a64, ell_b64, data);
|
||||
|
||||
memset(sx, 0, 32);
|
||||
secp256k1_fe_clear(&px);
|
||||
secp256k1_scalar_clear(&s);
|
||||
|
||||
return !!ret & !overflow;
|
||||
}
|
||||
|
||||
#endif
|
434
src/secp256k1/src/modules/ellswift/tests_impl.h
Normal file
434
src/secp256k1/src/modules/ellswift/tests_impl.h
Normal file
|
@ -0,0 +1,434 @@
|
|||
/***********************************************************************
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
||||
***********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODULE_ELLSWIFT_TESTS_H
|
||||
#define SECP256K1_MODULE_ELLSWIFT_TESTS_H
|
||||
|
||||
#include "../../../include/secp256k1_ellswift.h"
|
||||
|
||||
struct ellswift_xswiftec_inv_test {
|
||||
int enc_bitmap;
|
||||
secp256k1_fe u;
|
||||
secp256k1_fe x;
|
||||
secp256k1_fe encs[8];
|
||||
};
|
||||
|
||||
struct ellswift_decode_test {
|
||||
unsigned char enc[64];
|
||||
secp256k1_fe x;
|
||||
int odd_y;
|
||||
};
|
||||
|
||||
struct ellswift_xdh_test {
|
||||
unsigned char priv_ours[32];
|
||||
unsigned char ellswift_ours[64];
|
||||
unsigned char ellswift_theirs[64];
|
||||
int initiating;
|
||||
unsigned char shared_secret[32];
|
||||
};
|
||||
|
||||
/* Set of (point, encodings) test vectors, selected to maximize branch coverage, part of the BIP324
|
||||
* test vectors. Created using an independent implementation, and tested decoding against paper
|
||||
* authors' code. */
|
||||
static const struct ellswift_xswiftec_inv_test ellswift_xswiftec_inv_tests[] = {
|
||||
{0xcc, SECP256K1_FE_CONST(0x05ff6bda, 0xd900fc32, 0x61bc7fe3, 0x4e2fb0f5, 0x69f06e09, 0x1ae437d3, 0xa52e9da0, 0xcbfb9590), SECP256K1_FE_CONST(0x80cdf637, 0x74ec7022, 0xc89a5a85, 0x58e373a2, 0x79170285, 0xe0ab2741, 0x2dbce510, 0xbdfe23fc), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x45654798, 0xece071ba, 0x79286d04, 0xf7f3eb1c, 0x3f1d17dd, 0x883610f2, 0xad2efd82, 0xa287466b), SECP256K1_FE_CONST(0x0aeaa886, 0xf6b76c71, 0x58452418, 0xcbf5033a, 0xdc5747e9, 0xe9b5d3b2, 0x303db969, 0x36528557), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xba9ab867, 0x131f8e45, 0x86d792fb, 0x080c14e3, 0xc0e2e822, 0x77c9ef0d, 0x52d1027c, 0x5d78b5c4), SECP256K1_FE_CONST(0xf5155779, 0x0948938e, 0xa7badbe7, 0x340afcc5, 0x23a8b816, 0x164a2c4d, 0xcfc24695, 0xc9ad76d8)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x1737a85f, 0x4c8d146c, 0xec96e3ff, 0xdca76d99, 0x03dcf3bd, 0x53061868, 0xd478c78c, 0x63c2aa9e), SECP256K1_FE_CONST(0x39e48dd1, 0x50d2f429, 0xbe088dfd, 0x5b61882e, 0x7e840748, 0x3702ae9a, 0x5ab35927, 0xb15f85ea), {SECP256K1_FE_CONST(0x1be8cc0b, 0x04be0c68, 0x1d0c6a68, 0xf733f82c, 0x6c896e0c, 0x8a262fcd, 0x392918e3, 0x03a7abf4), SECP256K1_FE_CONST(0x605b5814, 0xbf9b8cb0, 0x66667c9e, 0x5480d22d, 0xc5b6c92f, 0x14b4af3e, 0xe0a9eb83, 0xb03685e3), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xe41733f4, 0xfb41f397, 0xe2f39597, 0x08cc07d3, 0x937691f3, 0x75d9d032, 0xc6d6e71b, 0xfc58503b), SECP256K1_FE_CONST(0x9fa4a7eb, 0x4064734f, 0x99998361, 0xab7f2dd2, 0x3a4936d0, 0xeb4b50c1, 0x1f56147b, 0x4fc9764c), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x1aaa1cce, 0xbf9c7241, 0x91033df3, 0x66b36f69, 0x1c4d902c, 0x228033ff, 0x4516d122, 0xb2564f68), SECP256K1_FE_CONST(0xc7554125, 0x9d3ba98f, 0x207eaa30, 0xc69634d1, 0x87d0b6da, 0x594e719e, 0x420f4898, 0x638fc5b0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x2323a1d0, 0x79b0fd72, 0xfc8bb62e, 0xc34230a8, 0x15cb0596, 0xc2bfac99, 0x8bd6b842, 0x60f5dc26), SECP256K1_FE_CONST(0x239342df, 0xb675500a, 0x34a19631, 0x0b8d87d5, 0x4f49dcac, 0x9da50c17, 0x43ceab41, 0xa7b249ff), {SECP256K1_FE_CONST(0xf63580b8, 0xaa49c484, 0x6de56e39, 0xe1b3e73f, 0x171e881e, 0xba8c66f6, 0x14e67e5c, 0x975dfc07), SECP256K1_FE_CONST(0xb6307b33, 0x2e699f1c, 0xf77841d9, 0x0af25365, 0x404deb7f, 0xed5edb30, 0x90db49e6, 0x42a156b6), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x09ca7f47, 0x55b63b7b, 0x921a91c6, 0x1e4c18c0, 0xe8e177e1, 0x45739909, 0xeb1981a2, 0x68a20028), SECP256K1_FE_CONST(0x49cf84cc, 0xd19660e3, 0x0887be26, 0xf50dac9a, 0xbfb21480, 0x12a124cf, 0x6f24b618, 0xbd5ea579), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x2dc90e64, 0x0cb646ae, 0x9164c0b5, 0xa9ef0169, 0xfebe34dc, 0x4437d6e4, 0x6acb0e27, 0xe219d1e8), SECP256K1_FE_CONST(0xd236f19b, 0xf349b951, 0x6e9b3f4a, 0x5610fe96, 0x0141cb23, 0xbbc8291b, 0x9534f1d7, 0x1de62a47), {SECP256K1_FE_CONST(0xe69df7d9, 0xc026c366, 0x00ebdf58, 0x80726758, 0x47c0c431, 0xc8eb7306, 0x82533e96, 0x4b6252c9), SECP256K1_FE_CONST(0x4f18bbdf, 0x7c2d6c5f, 0x818c1880, 0x2fa35cd0, 0x69eaa79f, 0xff74e4fc, 0x837c80d9, 0x3fece2f8), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x19620826, 0x3fd93c99, 0xff1420a7, 0x7f8d98a7, 0xb83f3bce, 0x37148cf9, 0x7dacc168, 0xb49da966), SECP256K1_FE_CONST(0xb0e74420, 0x83d293a0, 0x7e73e77f, 0xd05ca32f, 0x96155860, 0x008b1b03, 0x7c837f25, 0xc0131937), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0x3edd7b39, 0x80e2f2f3, 0x4d1409a2, 0x07069f88, 0x1fda5f96, 0xf08027ac, 0x4465b63d, 0xc278d672), SECP256K1_FE_CONST(0x053a98de, 0x4a27b196, 0x1155822b, 0x3a3121f0, 0x3b2a1445, 0x8bd80eb4, 0xa560c4c7, 0xa85c149c), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb3dae4b7, 0xdcf858e4, 0xc6968057, 0xcef2b156, 0x46543152, 0x6538199c, 0xf52dc1b2, 0xd62fda30), SECP256K1_FE_CONST(0x4aa77dd5, 0x5d6b6d3c, 0xfa10cc9d, 0x0fe42f79, 0x232e4575, 0x661049ae, 0x36779c1d, 0x0c666d88), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x4c251b48, 0x2307a71b, 0x39697fa8, 0x310d4ea9, 0xb9abcead, 0x9ac7e663, 0x0ad23e4c, 0x29d021ff), SECP256K1_FE_CONST(0xb558822a, 0xa29492c3, 0x05ef3362, 0xf01bd086, 0xdcd1ba8a, 0x99efb651, 0xc98863e1, 0xf3998ea7)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x4295737e, 0xfcb1da6f, 0xb1d96b9c, 0xa7dcd1e3, 0x20024b37, 0xa736c494, 0x8b625981, 0x73069f70), SECP256K1_FE_CONST(0xfa7ffe4f, 0x25f88362, 0x831c087a, 0xfe2e8a9b, 0x0713e2ca, 0xc1ddca6a, 0x383205a2, 0x66f14307), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xff, SECP256K1_FE_CONST(0x587c1a0c, 0xee91939e, 0x7f784d23, 0xb963004a, 0x3bf44f5d, 0x4e32a008, 0x1995ba20, 0xb0fca59e), SECP256K1_FE_CONST(0x2ea98853, 0x0715e8d1, 0x0363907f, 0xf2512452, 0x4d471ba2, 0x454d5ce3, 0xbe3f0419, 0x4dfd3a3c), {SECP256K1_FE_CONST(0xcfd5a094, 0xaa0b9b88, 0x91b76c6a, 0xb9438f66, 0xaa1c095a, 0x65f9f701, 0x35e81712, 0x92245e74), SECP256K1_FE_CONST(0xa89057d7, 0xc6563f0d, 0x6efa19ae, 0x84412b8a, 0x7b47e791, 0xa191ecdf, 0xdf2af84f, 0xd97bc339), SECP256K1_FE_CONST(0x475d0ae9, 0xef46920d, 0xf07b3411, 0x7be5a081, 0x7de1023e, 0x3cc32689, 0xe9be145b, 0x406b0aef), SECP256K1_FE_CONST(0xa0759178, 0xad802324, 0x54f827ef, 0x05ea3e72, 0xad8d7541, 0x8e6d4cc1, 0xcd4f5306, 0xc5e7c453), SECP256K1_FE_CONST(0x302a5f6b, 0x55f46477, 0x6e489395, 0x46bc7099, 0x55e3f6a5, 0x9a0608fe, 0xca17e8ec, 0x6ddb9dbb), SECP256K1_FE_CONST(0x576fa828, 0x39a9c0f2, 0x9105e651, 0x7bbed475, 0x84b8186e, 0x5e6e1320, 0x20d507af, 0x268438f6), SECP256K1_FE_CONST(0xb8a2f516, 0x10b96df2, 0x0f84cbee, 0x841a5f7e, 0x821efdc1, 0xc33cd976, 0x1641eba3, 0xbf94f140), SECP256K1_FE_CONST(0x5f8a6e87, 0x527fdcdb, 0xab07d810, 0xfa15c18d, 0x52728abe, 0x7192b33e, 0x32b0acf8, 0x3a1837dc)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0x5fa88b33, 0x65a635cb, 0xbcee003c, 0xce9ef51d, 0xd1a310de, 0x277e441a, 0xbccdb7be, 0x1e4ba249), SECP256K1_FE_CONST(0x79461ff6, 0x2bfcbcac, 0x4249ba84, 0xdd040f2c, 0xec3c63f7, 0x25204dc7, 0xf464c16b, 0xf0ff3170), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x6bb700e1, 0xf4d7e236, 0xe8d193ff, 0x4a76c1b3, 0xbcd4e2b2, 0x5acac3d5, 0x1c8dac65, 0x3fe909a0), SECP256K1_FE_CONST(0xf4c73410, 0x633da7f6, 0x3a4f1d55, 0xaec6dd32, 0xc4c6d89e, 0xe74075ed, 0xb5515ed9, 0x0da9e683), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x9448ff1e, 0x0b281dc9, 0x172e6c00, 0xb5893e4c, 0x432b1d4d, 0xa5353c2a, 0xe3725399, 0xc016f28f), SECP256K1_FE_CONST(0x0b38cbef, 0x9cc25809, 0xc5b0e2aa, 0x513922cd, 0x3b392761, 0x18bf8a12, 0x4aaea125, 0xf25615ac)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0x6fb31c75, 0x31f03130, 0xb42b155b, 0x952779ef, 0xbb46087d, 0xd9807d24, 0x1a48eac6, 0x3c3d96d6), SECP256K1_FE_CONST(0x56f81be7, 0x53e8d4ae, 0x4940ea6f, 0x46f6ec9f, 0xda66a6f9, 0x6cc95f50, 0x6cb2b574, 0x90e94260), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x59059774, 0x795bdb7a, 0x837fbe11, 0x40a5fa59, 0x984f48af, 0x8df95d57, 0xdd6d1c05, 0x437dcec1), SECP256K1_FE_CONST(0x22a644db, 0x79376ad4, 0xe7b3a009, 0xe58b3f13, 0x137c54fd, 0xf911122c, 0xc93667c4, 0x7077d784), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xa6fa688b, 0x86a42485, 0x7c8041ee, 0xbf5a05a6, 0x67b0b750, 0x7206a2a8, 0x2292e3f9, 0xbc822d6e), SECP256K1_FE_CONST(0xdd59bb24, 0x86c8952b, 0x184c5ff6, 0x1a74c0ec, 0xec83ab02, 0x06eeedd3, 0x36c9983a, 0x8f8824ab)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x704cd226, 0xe71cb682, 0x6a590e80, 0xdac90f2d, 0x2f5830f0, 0xfdf135a3, 0xeae3965b, 0xff25ff12), SECP256K1_FE_CONST(0x138e0afa, 0x68936ee6, 0x70bd2b8d, 0xb53aedbb, 0x7bea2a85, 0x97388b24, 0xd0518edd, 0x22ad66ec), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x725e9147, 0x92cb8c89, 0x49e7e116, 0x8b7cdd8a, 0x8094c91c, 0x6ec2202c, 0xcd53a6a1, 0x8771edeb), SECP256K1_FE_CONST(0x8da16eb8, 0x6d347376, 0xb6181ee9, 0x74832275, 0x7f6b36e3, 0x913ddfd3, 0x32ac595d, 0x788e0e44), {SECP256K1_FE_CONST(0xdd357786, 0xb9f68733, 0x30391aa5, 0x62580965, 0x4e43116e, 0x82a5a5d8, 0x2ffd1d66, 0x24101fc4), SECP256K1_FE_CONST(0xa0b7efca, 0x01814594, 0xc59c9aae, 0x8e497001, 0x86ca5d95, 0xe88bcc80, 0x399044d9, 0xc2d8613d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x22ca8879, 0x460978cc, 0xcfc6e55a, 0x9da7f69a, 0xb1bcee91, 0x7d5a5a27, 0xd002e298, 0xdbefdc6b), SECP256K1_FE_CONST(0x5f481035, 0xfe7eba6b, 0x3a636551, 0x71b68ffe, 0x7935a26a, 0x1774337f, 0xc66fbb25, 0x3d279af2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x78fe6b71, 0x7f2ea4a3, 0x2708d79c, 0x151bf503, 0xa5312a18, 0xc0963437, 0xe865cc6e, 0xd3f6ae97), SECP256K1_FE_CONST(0x8701948e, 0x80d15b5c, 0xd8f72863, 0xeae40afc, 0x5aced5e7, 0x3f69cbc8, 0x179a3390, 0x2c094d98), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x44, SECP256K1_FE_CONST(0x7c37bb9c, 0x5061dc07, 0x413f11ac, 0xd5a34006, 0xe64c5c45, 0x7fdb9a43, 0x8f217255, 0xa961f50d), SECP256K1_FE_CONST(0x5c1a76b4, 0x4568eb59, 0xd6789a74, 0x42d9ed7c, 0xdc6226b7, 0x752b4ff8, 0xeaf8e1a9, 0x5736e507), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb94d30cd, 0x7dbff60b, 0x64620c17, 0xca0fafaa, 0x40b3d1f5, 0x2d077a60, 0xa2e0cafd, 0x145086c2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x46b2cf32, 0x824009f4, 0x9b9df3e8, 0x35f05055, 0xbf4c2e0a, 0xd2f8859f, 0x5d1f3501, 0xebaf756d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0x82388888, 0x967f82a6, 0xb444438a, 0x7d44838e, 0x13c0d478, 0xb9ca060d, 0xa95a41fb, 0x94303de6), SECP256K1_FE_CONST(0x29e96541, 0x70628fec, 0x8b497289, 0x8b113cf9, 0x8807f460, 0x9274f4f3, 0x140d0674, 0x157c90a0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0x91298f57, 0x70af7a27, 0xf0a47188, 0xd24c3b7b, 0xf98ab299, 0x0d84b0b8, 0x98507e3c, 0x561d6472), SECP256K1_FE_CONST(0x144f4ccb, 0xd9a74698, 0xa88cbf6f, 0xd00ad886, 0xd339d29e, 0xa19448f2, 0xc572cac0, 0xa07d5562), {SECP256K1_FE_CONST(0xe6a0ffa3, 0x807f09da, 0xdbe71e0f, 0x4be4725f, 0x2832e76c, 0xad8dc1d9, 0x43ce8393, 0x75eff248), SECP256K1_FE_CONST(0x837b8e68, 0xd4917544, 0x764ad090, 0x3cb11f86, 0x15d2823c, 0xefbb06d8, 0x9049dbab, 0xc69befda), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x195f005c, 0x7f80f625, 0x2418e1f0, 0xb41b8da0, 0xd7cd1893, 0x52723e26, 0xbc317c6b, 0x8a1009e7), SECP256K1_FE_CONST(0x7c847197, 0x2b6e8abb, 0x89b52f6f, 0xc34ee079, 0xea2d7dc3, 0x1044f927, 0x6fb62453, 0x39640c55), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xb682f3d0, 0x3bbb5dee, 0x4f54b5eb, 0xfba931b4, 0xf52f6a19, 0x1e5c2f48, 0x3c73c66e, 0x9ace97e1), SECP256K1_FE_CONST(0x904717bf, 0x0bc0cb78, 0x73fcdc38, 0xaa97f19e, 0x3a626309, 0x72acff92, 0xb24cc6dd, 0xa197cb96), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x77, SECP256K1_FE_CONST(0xc17ec69e, 0x665f0fb0, 0xdbab48d9, 0xc2f94d12, 0xec8a9d7e, 0xacb58084, 0x83309180, 0x1eb0b80b), SECP256K1_FE_CONST(0x147756e6, 0x6d96e31c, 0x426d3cc8, 0x5ed0c4cf, 0xbef6341d, 0xd8b28558, 0x5aa574ea, 0x0204b55e), {SECP256K1_FE_CONST(0x6f4aea43, 0x1a0043bd, 0xd03134d6, 0xd9159119, 0xce034b88, 0xc32e50e8, 0xe36c4ee4, 0x5eac7ae9), SECP256K1_FE_CONST(0xfd5be16d, 0x4ffa2690, 0x126c67c3, 0xef7cb9d2, 0x9b74d397, 0xc78b06b3, 0x605fda34, 0xdc9696a6), SECP256K1_FE_CONST(0x5e9c6079, 0x2a2f000e, 0x45c6250f, 0x296f875e, 0x174efc0e, 0x9703e628, 0x706103a9, 0xdd2d82c7), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x90b515bc, 0xe5ffbc42, 0x2fcecb29, 0x26ea6ee6, 0x31fcb477, 0x3cd1af17, 0x1c93b11a, 0xa1538146), SECP256K1_FE_CONST(0x02a41e92, 0xb005d96f, 0xed93983c, 0x1083462d, 0x648b2c68, 0x3874f94c, 0x9fa025ca, 0x23696589), SECP256K1_FE_CONST(0xa1639f86, 0xd5d0fff1, 0xba39daf0, 0xd69078a1, 0xe8b103f1, 0x68fc19d7, 0x8f9efc55, 0x22d27968), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0xc25172fc, 0x3f29b6fc, 0x4a1155b8, 0x57523315, 0x5486b274, 0x64b74b8b, 0x260b499a, 0x3f53cb14), SECP256K1_FE_CONST(0x1ea9cbdb, 0x35cf6e03, 0x29aa31b0, 0xbb0a702a, 0x65123ed0, 0x08655a93, 0xb7dcd528, 0x0e52e1ab), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x7422edc7, 0x843136af, 0x0053bb88, 0x54448a82, 0x99994f9d, 0xdcefd3a9, 0xa92d4546, 0x2c59298a), SECP256K1_FE_CONST(0x78c7774a, 0x266f8b97, 0xea23d05d, 0x064f033c, 0x77319f92, 0x3f6b78bc, 0xe4e20bf0, 0x5fa5398d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x8bdd1238, 0x7bcec950, 0xffac4477, 0xabbb757d, 0x6666b062, 0x23102c56, 0x56d2bab8, 0xd3a6d2a5), SECP256K1_FE_CONST(0x873888b5, 0xd9907468, 0x15dc2fa2, 0xf9b0fcc3, 0x88ce606d, 0xc0948743, 0x1b1df40e, 0xa05ac2a2)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xcab6626f, 0x832a4b12, 0x80ba7add, 0x2fc5322f, 0xf011caed, 0xedf7ff4d, 0xb6735d50, 0x26dc0367), SECP256K1_FE_CONST(0x2b2bef08, 0x52c6f7c9, 0x5d72ac99, 0xa23802b8, 0x75029cd5, 0x73b248d1, 0xf1b3fc80, 0x33788eb6), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x33, SECP256K1_FE_CONST(0xd8621b4f, 0xfc85b9ed, 0x56e99d8d, 0xd1dd24ae, 0xdcecb147, 0x63b861a1, 0x7112dc77, 0x1a104fd2), SECP256K1_FE_CONST(0x812cabe9, 0x72a22aa6, 0x7c7da0c9, 0x4d8a9362, 0x96eb9949, 0xd70c37cb, 0x2b248757, 0x4cb3ce58), {SECP256K1_FE_CONST(0xfbc5febc, 0x6fdbc9ae, 0x3eb88a93, 0xb982196e, 0x8b6275a6, 0xd5a73c17, 0x387e000c, 0x711bd0e3), SECP256K1_FE_CONST(0x8724c96b, 0xd4e5527f, 0x2dd195a5, 0x1c468d2d, 0x211ba2fa, 0xc7cbe0b4, 0xb3434253, 0x409fb42d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x043a0143, 0x90243651, 0xc147756c, 0x467de691, 0x749d8a59, 0x2a58c3e8, 0xc781fff2, 0x8ee42b4c), SECP256K1_FE_CONST(0x78db3694, 0x2b1aad80, 0xd22e6a5a, 0xe3b972d2, 0xdee45d05, 0x38341f4b, 0x4cbcbdab, 0xbf604802), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xda463164, 0xc6f4bf71, 0x29ee5f0e, 0xc00f65a6, 0x75a8adf1, 0xbd931b39, 0xb64806af, 0xdcda9a22), SECP256K1_FE_CONST(0x25b9ce9b, 0x390b408e, 0xd611a0f1, 0x3ff09a59, 0x8a57520e, 0x426ce4c6, 0x49b7f94f, 0x2325620d), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0xdafc971e, 0x4a3a7b6d, 0xcfb42a08, 0xd9692d82, 0xad9e7838, 0x523fcbda, 0x1d4827e1, 0x4481ae2d), SECP256K1_FE_CONST(0x250368e1, 0xb5c58492, 0x304bd5f7, 0x2696d27d, 0x526187c7, 0xadc03425, 0xe2b7d81d, 0xbb7e4e02), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x370c28f1, 0xbe665efa, 0xcde6aa43, 0x6bf86fe2, 0x1e6e314c, 0x1e53dd04, 0x0e6c73a4, 0x6b4c8c49), SECP256K1_FE_CONST(0xcd8acee9, 0x8ffe5653, 0x1a84d7eb, 0x3e48fa40, 0x34206ce8, 0x25ace907, 0xd0edf0ea, 0xeb5e9ca2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xc8f3d70e, 0x4199a105, 0x321955bc, 0x9407901d, 0xe191ceb3, 0xe1ac22fb, 0xf1938c5a, 0x94b36fe6), SECP256K1_FE_CONST(0x32753116, 0x7001a9ac, 0xe57b2814, 0xc1b705bf, 0xcbdf9317, 0xda5316f8, 0x2f120f14, 0x14a15f8d)}},
|
||||
{0x44, SECP256K1_FE_CONST(0xe0294c8b, 0xc1a36b41, 0x66ee92bf, 0xa70a5c34, 0x976fa982, 0x9405efea, 0x8f9cd54d, 0xcb29b99e), SECP256K1_FE_CONST(0xae9690d1, 0x3b8d20a0, 0xfbbf37be, 0xd8474f67, 0xa04e142f, 0x56efd787, 0x70a76b35, 0x9165d8a1), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xdcd45d93, 0x5613916a, 0xf167b029, 0x058ba3a7, 0x00d37150, 0xb9df3472, 0x8cb05412, 0xc16d4182), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x232ba26c, 0xa9ec6e95, 0x0e984fd6, 0xfa745c58, 0xff2c8eaf, 0x4620cb8d, 0x734fabec, 0x3e92baad), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xe148441c, 0xd7b92b8b, 0x0e4fa3bd, 0x68712cfd, 0x0d709ad1, 0x98cace61, 0x1493c10e, 0x97f5394e), SECP256K1_FE_CONST(0x164a6397, 0x94d74c53, 0xafc4d329, 0x4e79cdb3, 0xcd25f99f, 0x6df45c00, 0x0f758aba, 0x54d699c0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xff, SECP256K1_FE_CONST(0xe4b00ec9, 0x7aadcca9, 0x7644d3b0, 0xc8a931b1, 0x4ce7bcf7, 0xbc877954, 0x6d6e35aa, 0x5937381c), SECP256K1_FE_CONST(0x94e9588d, 0x41647b3f, 0xcc772dc8, 0xd83c67ce, 0x3be00353, 0x8517c834, 0x103d2cd4, 0x9d62ef4d), {SECP256K1_FE_CONST(0xc88d25f4, 0x1407376b, 0xb2c03a7f, 0xffeb3ec7, 0x811cc434, 0x91a0c3aa, 0xc0378cdc, 0x78357bee), SECP256K1_FE_CONST(0x51c02636, 0xce00c234, 0x5ecd89ad, 0xb6089fe4, 0xd5e18ac9, 0x24e3145e, 0x6669501c, 0xd37a00d4), SECP256K1_FE_CONST(0x205b3512, 0xdb40521c, 0xb200952e, 0x67b46f67, 0xe09e7839, 0xe0de4400, 0x4138329e, 0xbd9138c5), SECP256K1_FE_CONST(0x58aab390, 0xab6fb55c, 0x1d1b8089, 0x7a207ce9, 0x4a78fa5b, 0x4aa61a33, 0x398bcae9, 0xadb20d3e), SECP256K1_FE_CONST(0x3772da0b, 0xebf8c894, 0x4d3fc580, 0x0014c138, 0x7ee33bcb, 0x6e5f3c55, 0x3fc87322, 0x87ca8041), SECP256K1_FE_CONST(0xae3fd9c9, 0x31ff3dcb, 0xa1327652, 0x49f7601b, 0x2a1e7536, 0xdb1ceba1, 0x9996afe2, 0x2c85fb5b), SECP256K1_FE_CONST(0xdfa4caed, 0x24bfade3, 0x4dff6ad1, 0x984b9098, 0x1f6187c6, 0x1f21bbff, 0xbec7cd60, 0x426ec36a), SECP256K1_FE_CONST(0xa7554c6f, 0x54904aa3, 0xe2e47f76, 0x85df8316, 0xb58705a4, 0xb559e5cc, 0xc6743515, 0x524deef1)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xff, SECP256K1_FE_CONST(0xe6bcb5c3, 0xd63467d4, 0x90bfa54f, 0xbbc6092a, 0x7248c25e, 0x11b248dc, 0x2964a6e1, 0x5edb1457), SECP256K1_FE_CONST(0x19434a3c, 0x29cb982b, 0x6f405ab0, 0x4439f6d5, 0x8db73da1, 0xee4db723, 0xd69b591d, 0xa124e7d8), {SECP256K1_FE_CONST(0x67119877, 0x832ab8f4, 0x59a82165, 0x6d8261f5, 0x44a553b8, 0x9ae4f25c, 0x52a97134, 0xb70f3426), SECP256K1_FE_CONST(0xffee02f5, 0xe649c07f, 0x0560eff1, 0x867ec7b3, 0x2d0e595e, 0x9b1c0ea6, 0xe2a4fc70, 0xc97cd71f), SECP256K1_FE_CONST(0xb5e0c189, 0xeb5b4bac, 0xd025b744, 0x4d74178b, 0xe8d5246c, 0xfa4a9a20, 0x7964a057, 0xee969992), SECP256K1_FE_CONST(0x5746e459, 0x1bf7f4c3, 0x044609ea, 0x372e9086, 0x03975d27, 0x9fdef834, 0x9f0b08d3, 0x2f07619d), SECP256K1_FE_CONST(0x98ee6788, 0x7cd5470b, 0xa657de9a, 0x927d9e0a, 0xbb5aac47, 0x651b0da3, 0xad568eca, 0x48f0c809), SECP256K1_FE_CONST(0x0011fd0a, 0x19b63f80, 0xfa9f100e, 0x7981384c, 0xd2f1a6a1, 0x64e3f159, 0x1d5b038e, 0x36832510), SECP256K1_FE_CONST(0x4a1f3e76, 0x14a4b453, 0x2fda48bb, 0xb28be874, 0x172adb93, 0x05b565df, 0x869b5fa7, 0x1169629d), SECP256K1_FE_CONST(0xa8b91ba6, 0xe4080b3c, 0xfbb9f615, 0xc8d16f79, 0xfc68a2d8, 0x602107cb, 0x60f4f72b, 0xd0f89a92)}},
|
||||
{0x33, SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), {SECP256K1_FE_CONST(0x4f867ad8, 0xbb3d8404, 0x09d26b67, 0x307e6210, 0x0153273f, 0x72fa4b74, 0x84becfa1, 0x4ebe7408), SECP256K1_FE_CONST(0x5bbc4f59, 0xe452cc5f, 0x22a99144, 0xb10ce898, 0x9a89a995, 0xec3cea1c, 0x91ae10e8, 0xf721bb5d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb0798527, 0x44c27bfb, 0xf62d9498, 0xcf819def, 0xfeacd8c0, 0x8d05b48b, 0x7b41305d, 0xb1418827), SECP256K1_FE_CONST(0xa443b0a6, 0x1bad33a0, 0xdd566ebb, 0x4ef31767, 0x6576566a, 0x13c315e3, 0x6e51ef16, 0x08de40d2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
{0xcc, SECP256K1_FE_CONST(0xf455605b, 0xc85bf48e, 0x3a908c31, 0x023faf98, 0x381504c6, 0xc6d3aeb9, 0xede55f8d, 0xd528924d), SECP256K1_FE_CONST(0xd31fbcd5, 0xcdb798f6, 0xc00db669, 0x2f8fe896, 0x7fa9c79d, 0xd10958f4, 0xa194f013, 0x74905e99), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x0c00c571, 0x5b56fe63, 0x2d814ad8, 0xa77f8e66, 0x628ea47a, 0x6116834f, 0x8c1218f3, 0xa03cbd50), SECP256K1_FE_CONST(0xdf88e44f, 0xac84fa52, 0xdf4d59f4, 0x8819f18f, 0x6a8cd415, 0x1d162afa, 0xf773166f, 0x57c7ff46), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xf3ff3a8e, 0xa4a9019c, 0xd27eb527, 0x58807199, 0x9d715b85, 0x9ee97cb0, 0x73ede70b, 0x5fc33edf), SECP256K1_FE_CONST(0x20771bb0, 0x537b05ad, 0x20b2a60b, 0x77e60e70, 0x95732bea, 0xe2e9d505, 0x088ce98f, 0xa837fce9)}},
|
||||
{0xff, SECP256K1_FE_CONST(0xf58cd4d9, 0x830bad32, 0x2699035e, 0x8246007d, 0x4be27e19, 0xb6f53621, 0x317b4f30, 0x9b3daa9d), SECP256K1_FE_CONST(0x78ec2b3d, 0xc0948de5, 0x60148bbc, 0x7c6dc963, 0x3ad5df70, 0xa5a5750c, 0xbed72180, 0x4f082a3b), {SECP256K1_FE_CONST(0x6c4c580b, 0x76c75940, 0x43569f9d, 0xae16dc28, 0x01c16a1f, 0xbe128608, 0x81b75f8e, 0xf929bce5), SECP256K1_FE_CONST(0x94231355, 0xe7385c5f, 0x25ca436a, 0xa6419147, 0x1aea4393, 0xd6e86ab7, 0xa35fe2af, 0xacaefd0d), SECP256K1_FE_CONST(0xdff2a195, 0x1ada6db5, 0x74df8340, 0x48149da3, 0x397a75b8, 0x29abf58c, 0x7e69db1b, 0x41ac0989), SECP256K1_FE_CONST(0xa52b66d3, 0xc9070355, 0x48028bf8, 0x04711bf4, 0x22aba95f, 0x1a666fc8, 0x6f4648e0, 0x5f29caae), SECP256K1_FE_CONST(0x93b3a7f4, 0x8938a6bf, 0xbca96062, 0x51e923d7, 0xfe3e95e0, 0x41ed79f7, 0x7e48a070, 0x06d63f4a), SECP256K1_FE_CONST(0x6bdcecaa, 0x18c7a3a0, 0xda35bc95, 0x59be6eb8, 0xe515bc6c, 0x29179548, 0x5ca01d4f, 0x5350ff22), SECP256K1_FE_CONST(0x200d5e6a, 0xe525924a, 0x8b207cbf, 0xb7eb625c, 0xc6858a47, 0xd6540a73, 0x819624e3, 0xbe53f2a6), SECP256K1_FE_CONST(0x5ad4992c, 0x36f8fcaa, 0xb7fd7407, 0xfb8ee40b, 0xdd5456a0, 0xe5999037, 0x90b9b71e, 0xa0d63181)}},
|
||||
{0x00, SECP256K1_FE_CONST(0xfd7d912a, 0x40f182a3, 0x588800d6, 0x9ebfb504, 0x8766da20, 0x6fd7ebc8, 0xd2436c81, 0xcbef6421), SECP256K1_FE_CONST(0x8d37c862, 0x054debe7, 0x31694536, 0xff46b273, 0xec122b35, 0xa9bf1445, 0xac3c4ff9, 0xf262c952), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
|
||||
};
|
||||
|
||||
/* Set of (encoding, xcoord) test vectors, selected to maximize branch coverage, part of the BIP324
|
||||
* test vectors. Created using an independent implementation, and tested decoding against the paper
|
||||
* authors' code. */
|
||||
static const struct ellswift_decode_test ellswift_decode_tests[] = {
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 1},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
|
||||
{{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
|
||||
{{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
|
||||
{{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
|
||||
{{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x74e880b3, 0xffd18fe3, 0xcddf7902, 0x522551dd, 0xf97fa4a3, 0x5a3cfda8, 0x197f9470, 0x81a57b8f), 0},
|
||||
{{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x377b643f, 0xce2271f6, 0x4e5c8101, 0x566107c1, 0xbe498074, 0x50917838, 0x04f65478, 0x1ac9217c), 1},
|
||||
{{0x12, 0x36, 0x58, 0x44, 0x4f, 0x32, 0xbe, 0x8f, 0x02, 0xea, 0x20, 0x34, 0xaf, 0xa7, 0xef, 0x4b, 0xbe, 0x8a, 0xdc, 0x91, 0x8c, 0xeb, 0x49, 0xb1, 0x27, 0x73, 0xb6, 0x25, 0xf4, 0x90, 0xb3, 0x68, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8d, 0xc5, 0xfe, 0x11}, SECP256K1_FE_CONST(0xed16d65c, 0xf3a9538f, 0xcb2c139f, 0x1ecbc143, 0xee148271, 0x20cbc265, 0x9e667256, 0x800b8142), 0},
|
||||
{{0x14, 0x6f, 0x92, 0x46, 0x4d, 0x15, 0xd3, 0x6e, 0x35, 0x38, 0x2b, 0xd3, 0xca, 0x5b, 0x0f, 0x97, 0x6c, 0x95, 0xcb, 0x08, 0xac, 0xdc, 0xf2, 0xd5, 0xb3, 0x57, 0x06, 0x17, 0x99, 0x08, 0x39, 0xd7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x45, 0xe9, 0x3b}, SECP256K1_FE_CONST(0x0d5cd840, 0x427f941f, 0x65193079, 0xab8e2e83, 0x024ef2ee, 0x7ca558d8, 0x8879ffd8, 0x79fb6657), 0},
|
||||
{{0x15, 0xfd, 0xf5, 0xcf, 0x09, 0xc9, 0x07, 0x59, 0xad, 0xd2, 0x27, 0x2d, 0x57, 0x4d, 0x2b, 0xb5, 0xfe, 0x14, 0x29, 0xf9, 0xf3, 0xc1, 0x4c, 0x65, 0xe3, 0x19, 0x4b, 0xf6, 0x1b, 0x82, 0xaa, 0x73, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x04, 0xcf, 0xd9, 0x06}, SECP256K1_FE_CONST(0x16d0e439, 0x46aec93f, 0x62d57eb8, 0xcde68951, 0xaf136cf4, 0xb307938d, 0xd1447411, 0xe07bffe1), 1},
|
||||
{{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
|
||||
{{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
|
||||
{{0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x98bec3b2, 0xa351fa96, 0xcfd191c1, 0x77835193, 0x1b9e9ba9, 0xad1149f6, 0xd9eadca8, 0x0981b801), 0},
|
||||
{{0x40, 0x56, 0xa3, 0x4a, 0x21, 0x0e, 0xec, 0x78, 0x92, 0xe8, 0x82, 0x06, 0x75, 0xc8, 0x60, 0x09, 0x9f, 0x85, 0x7b, 0x26, 0xaa, 0xd8, 0x54, 0x70, 0xee, 0x6d, 0x3c, 0xf1, 0x30, 0x4a, 0x9d, 0xcf, 0x37, 0x5e, 0x70, 0x37, 0x42, 0x71, 0xf2, 0x0b, 0x13, 0xc9, 0x98, 0x6e, 0xd7, 0xd3, 0xc1, 0x77, 0x99, 0x69, 0x8c, 0xfc, 0x43, 0x5d, 0xbe, 0xd3, 0xa9, 0xf3, 0x4b, 0x38, 0xc8, 0x23, 0xc2, 0xb4}, SECP256K1_FE_CONST(0x868aac20, 0x03b29dbc, 0xad1a3e80, 0x3855e078, 0xa89d1654, 0x3ac64392, 0xd1224172, 0x98cec76e), 0},
|
||||
{{0x41, 0x97, 0xec, 0x37, 0x23, 0xc6, 0x54, 0xcf, 0xdd, 0x32, 0xab, 0x07, 0x55, 0x06, 0x64, 0x8b, 0x2f, 0xf5, 0x07, 0x03, 0x62, 0xd0, 0x1a, 0x4f, 0xff, 0x14, 0xb3, 0x36, 0xb7, 0x8f, 0x96, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb3, 0xab, 0x1e, 0x95}, SECP256K1_FE_CONST(0xba5a6314, 0x502a8952, 0xb8f456e0, 0x85928105, 0xf665377a, 0x8ce27726, 0xa5b0eb7e, 0xc1ac0286), 0},
|
||||
{{0x47, 0xeb, 0x3e, 0x20, 0x8f, 0xed, 0xcd, 0xf8, 0x23, 0x4c, 0x94, 0x21, 0xe9, 0xcd, 0x9a, 0x7a, 0xe8, 0x73, 0xbf, 0xbd, 0xbc, 0x39, 0x37, 0x23, 0xd1, 0xba, 0x1e, 0x1e, 0x6a, 0x8e, 0x6b, 0x24, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7c, 0xd1, 0x2c, 0xb1}, SECP256K1_FE_CONST(0xd192d520, 0x07e541c9, 0x807006ed, 0x0468df77, 0xfd214af0, 0xa795fe11, 0x9359666f, 0xdcf08f7c), 0},
|
||||
{{0x5e, 0xb9, 0x69, 0x6a, 0x23, 0x36, 0xfe, 0x2c, 0x3c, 0x66, 0x6b, 0x02, 0xc7, 0x55, 0xdb, 0x4c, 0x0c, 0xfd, 0x62, 0x82, 0x5c, 0x7b, 0x58, 0x9a, 0x7b, 0x7b, 0xb4, 0x42, 0xe1, 0x41, 0xc1, 0xd6, 0x93, 0x41, 0x3f, 0x00, 0x52, 0xd4, 0x9e, 0x64, 0xab, 0xec, 0x6d, 0x58, 0x31, 0xd6, 0x6c, 0x43, 0x61, 0x28, 0x30, 0xa1, 0x7d, 0xf1, 0xfe, 0x43, 0x83, 0xdb, 0x89, 0x64, 0x68, 0x10, 0x02, 0x21}, SECP256K1_FE_CONST(0xef6e1da6, 0xd6c7627e, 0x80f7a723, 0x4cb08a02, 0x2c1ee1cf, 0x29e4d0f9, 0x642ae924, 0xcef9eb38), 1},
|
||||
{{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
|
||||
{{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
|
||||
{{0x85, 0x1b, 0x1c, 0xa9, 0x45, 0x49, 0x37, 0x1c, 0x4f, 0x1f, 0x71, 0x87, 0x32, 0x1d, 0x39, 0xbf, 0x51, 0xc6, 0xb7, 0xfb, 0x61, 0xf7, 0xcb, 0xf0, 0x27, 0xc9, 0xda, 0x62, 0x02, 0x1b, 0x7a, 0x65, 0xfc, 0x54, 0xc9, 0x68, 0x37, 0xfb, 0x22, 0xb3, 0x62, 0xed, 0xa6, 0x3e, 0xc5, 0x2e, 0xc8, 0x3d, 0x81, 0xbe, 0xdd, 0x16, 0x0c, 0x11, 0xb2, 0x2d, 0x96, 0x5d, 0x9f, 0x4a, 0x6d, 0x64, 0xd2, 0x51}, SECP256K1_FE_CONST(0x3e731051, 0xe12d3323, 0x7eb324f2, 0xaa5b16bb, 0x868eb49a, 0x1aa1fadc, 0x19b6e876, 0x1b5a5f7b), 1},
|
||||
{{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
|
||||
{{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
|
||||
{{0xa0, 0xf1, 0x84, 0x92, 0x18, 0x3e, 0x61, 0xe8, 0x06, 0x3e, 0x57, 0x36, 0x06, 0x59, 0x14, 0x21, 0xb0, 0x6b, 0xc3, 0x51, 0x36, 0x31, 0x57, 0x8a, 0x73, 0xa3, 0x9c, 0x1c, 0x33, 0x06, 0x23, 0x9f, 0x2f, 0x32, 0x90, 0x4f, 0x0d, 0x2a, 0x33, 0xec, 0xca, 0x8a, 0x54, 0x51, 0x70, 0x5b, 0xb5, 0x37, 0xd3, 0xbf, 0x44, 0xe0, 0x71, 0x22, 0x60, 0x25, 0xcd, 0xbf, 0xd2, 0x49, 0xfe, 0x0f, 0x7a, 0xd6}, SECP256K1_FE_CONST(0x97a09cf1, 0xa2eae7c4, 0x94df3c6f, 0x8a9445bf, 0xb8c09d60, 0x832f9b0b, 0x9d5eabe2, 0x5fbd14b9), 0},
|
||||
{{0xa1, 0xed, 0x0a, 0x0b, 0xd7, 0x9d, 0x8a, 0x23, 0xcf, 0xe4, 0xec, 0x5f, 0xef, 0x5b, 0xa5, 0xcc, 0xcf, 0xd8, 0x44, 0xe4, 0xff, 0x5c, 0xb4, 0xb0, 0xf2, 0xe7, 0x16, 0x27, 0x34, 0x1f, 0x1c, 0x5b, 0x17, 0xc4, 0x99, 0x24, 0x9e, 0x0a, 0xc0, 0x8d, 0x5d, 0x11, 0xea, 0x1c, 0x2c, 0x8c, 0xa7, 0x00, 0x16, 0x16, 0x55, 0x9a, 0x79, 0x94, 0xea, 0xde, 0xc9, 0xca, 0x10, 0xfb, 0x4b, 0x85, 0x16, 0xdc}, SECP256K1_FE_CONST(0x65a89640, 0x744192cd, 0xac64b2d2, 0x1ddf989c, 0xdac75007, 0x25b645be, 0xf8e2200a, 0xe39691f2), 0},
|
||||
{{0xba, 0x94, 0x59, 0x4a, 0x43, 0x27, 0x21, 0xaa, 0x35, 0x80, 0xb8, 0x4c, 0x16, 0x1d, 0x0d, 0x13, 0x4b, 0xc3, 0x54, 0xb6, 0x90, 0x40, 0x4d, 0x7c, 0xd4, 0xec, 0x57, 0xc1, 0x6d, 0x3f, 0xbe, 0x98, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xea, 0x50, 0x7d, 0xd7}, SECP256K1_FE_CONST(0x5e0d7656, 0x4aae92cb, 0x347e01a6, 0x2afd389a, 0x9aa401c7, 0x6c8dd227, 0x543dc9cd, 0x0efe685a), 0},
|
||||
{{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x2d97f96c, 0xac882dfe, 0x73dc44db, 0x6ce0f1d3, 0x1d624135, 0x8dd5d74e, 0xb3d3b500, 0x03d24c2b), 0},
|
||||
{{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x65, 0x07, 0xd0, 0x9a}, SECP256K1_FE_CONST(0xe7008afe, 0x6e8cbd50, 0x55df120b, 0xd748757c, 0x686dadb4, 0x1cce75e4, 0xaddcc5e0, 0x2ec02b44), 1},
|
||||
{{0xc5, 0x98, 0x1b, 0xae, 0x27, 0xfd, 0x84, 0x40, 0x1c, 0x72, 0xa1, 0x55, 0xe5, 0x70, 0x7f, 0xbb, 0x81, 0x1b, 0x2b, 0x62, 0x06, 0x45, 0xd1, 0x02, 0x8e, 0xa2, 0x70, 0xcb, 0xe0, 0xee, 0x22, 0x5d, 0x4b, 0x62, 0xaa, 0x4d, 0xca, 0x65, 0x06, 0xc1, 0xac, 0xdb, 0xec, 0xc0, 0x55, 0x25, 0x69, 0xb4, 0xb2, 0x14, 0x36, 0xa5, 0x69, 0x2e, 0x25, 0xd9, 0x0d, 0x3b, 0xc2, 0xeb, 0x7c, 0xe2, 0x40, 0x78}, SECP256K1_FE_CONST(0x948b40e7, 0x181713bc, 0x018ec170, 0x2d3d054d, 0x15746c59, 0xa7020730, 0xdd13ecf9, 0x85a010d7), 0},
|
||||
{{0xc8, 0x94, 0xce, 0x48, 0xbf, 0xec, 0x43, 0x30, 0x14, 0xb9, 0x31, 0xa6, 0xad, 0x42, 0x26, 0xd7, 0xdb, 0xd8, 0xea, 0xa7, 0xb6, 0xe3, 0xfa, 0xa8, 0xd0, 0xef, 0x94, 0x05, 0x2b, 0xcf, 0x8c, 0xff, 0x33, 0x6e, 0xeb, 0x39, 0x19, 0xe2, 0xb4, 0xef, 0xb7, 0x46, 0xc7, 0xf7, 0x1b, 0xbc, 0xa7, 0xe9, 0x38, 0x32, 0x30, 0xfb, 0xbc, 0x48, 0xff, 0xaf, 0xe7, 0x7e, 0x8b, 0xcc, 0x69, 0x54, 0x24, 0x71}, SECP256K1_FE_CONST(0xf1c91acd, 0xc2525330, 0xf9b53158, 0x434a4d43, 0xa1c547cf, 0xf29f1550, 0x6f5da4eb, 0x4fe8fa5a), 1},
|
||||
{{0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x872d81ed, 0x8831d999, 0x8b67cb71, 0x05243edb, 0xf86c10ed, 0xfebb786c, 0x110b02d0, 0x7b2e67cd), 0},
|
||||
{{0xd9, 0x17, 0xb7, 0x86, 0xda, 0xc3, 0x56, 0x70, 0xc3, 0x30, 0xc9, 0xc5, 0xae, 0x59, 0x71, 0xdf, 0xb4, 0x95, 0xc8, 0xae, 0x52, 0x3e, 0xd9, 0x7e, 0xe2, 0x42, 0x01, 0x17, 0xb1, 0x71, 0xf4, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x20, 0x01, 0xf6, 0xf6}, SECP256K1_FE_CONST(0xe45b71e1, 0x10b831f2, 0xbdad8651, 0x994526e5, 0x8393fde4, 0x328b1ec0, 0x4d598971, 0x42584691), 1},
|
||||
{{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
|
||||
{{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
|
||||
{{0xe7, 0xee, 0x58, 0x14, 0xc1, 0x70, 0x6b, 0xf8, 0xa8, 0x93, 0x96, 0xa9, 0xb0, 0x32, 0xbc, 0x01, 0x4c, 0x2c, 0xac, 0x9c, 0x12, 0x11, 0x27, 0xdb, 0xf6, 0xc9, 0x92, 0x78, 0xf8, 0xbb, 0x53, 0xd1, 0xdf, 0xd0, 0x4d, 0xbc, 0xda, 0x8e, 0x35, 0x24, 0x66, 0xb6, 0xfc, 0xd5, 0xf2, 0xde, 0xa3, 0xe1, 0x7d, 0x5e, 0x13, 0x31, 0x15, 0x88, 0x6e, 0xda, 0x20, 0xdb, 0x8a, 0x12, 0xb5, 0x4d, 0xe7, 0x1b}, SECP256K1_FE_CONST(0xe842c6e3, 0x529b2342, 0x70a5e977, 0x44edc34a, 0x04d7ba94, 0xe44b6d25, 0x23c9cf01, 0x95730a50), 1},
|
||||
{{0xf2, 0x92, 0xe4, 0x68, 0x25, 0xf9, 0x22, 0x5a, 0xd2, 0x3d, 0xc0, 0x57, 0xc1, 0xd9, 0x1c, 0x4f, 0x57, 0xfc, 0xb1, 0x38, 0x6f, 0x29, 0xef, 0x10, 0x48, 0x1c, 0xb1, 0xd2, 0x25, 0x18, 0x59, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x11, 0xc9, 0x89}, SECP256K1_FE_CONST(0x3cea2c53, 0xb8b01701, 0x66ac7da6, 0x7194694a, 0xdacc84d5, 0x6389225e, 0x330134da, 0xb85a4d55), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x02, 0x8c, 0x59, 0x00, 0x63, 0xf6, 0x4d, 0x5a, 0x7f, 0x1c, 0x14, 0x91, 0x5c, 0xd6, 0x1e, 0xac, 0x88, 0x6a, 0xb2, 0x95, 0xbe, 0xbd, 0x91, 0x99, 0x25, 0x04, 0xcf, 0x77, 0xed, 0xb0, 0x28, 0xbd, 0xd6, 0x26, 0x7f}, SECP256K1_FE_CONST(0x3fde5713, 0xf8282eea, 0xd7d39d42, 0x01f44a7c, 0x85a5ac8a, 0x0681f35e, 0x54085c6b, 0x69543374), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x2c, 0x2c, 0x57, 0x09, 0xe7, 0x15, 0x6c, 0x41, 0x77, 0x17, 0xf2, 0xfe, 0xab, 0x14, 0x71, 0x41, 0xec, 0x3d, 0xa1, 0x9f, 0xb7, 0x59, 0x57, 0x5c, 0xc6, 0xe3, 0x7b, 0x2e, 0xa5, 0xac, 0x93, 0x09, 0xf2, 0x6f, 0x0f, 0x66}, SECP256K1_FE_CONST(0xd2469ab3, 0xe04acbb2, 0x1c65a180, 0x9f39caaf, 0xe7a77c13, 0xd10f9dd3, 0x8f391c01, 0xdc499c52), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3a, 0x08, 0xcc, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x60, 0xe9, 0xf0}, SECP256K1_FE_CONST(0x38e2a5ce, 0x6a93e795, 0xe16d2c39, 0x8bc99f03, 0x69202ce2, 0x1e8f09d5, 0x6777b40f, 0xc512bccc), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3e, 0x91, 0x25, 0x7d, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x864b3dc9, 0x02c37670, 0x9c10a93a, 0xd4bbe29f, 0xce0012f3, 0xdc8672c6, 0x286bba28, 0xd7d6d6fc), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79, 0x5d, 0x6c, 0x1c, 0x32, 0x2c, 0xad, 0xf5, 0x99, 0xdb, 0xb8, 0x64, 0x81, 0x52, 0x2b, 0x3c, 0xc5, 0x5f, 0x15, 0xa6, 0x79, 0x32, 0xdb, 0x2a, 0xfa, 0x01, 0x11, 0xd9, 0xed, 0x69, 0x81, 0xbc, 0xd1, 0x24, 0xbf, 0x44}, SECP256K1_FE_CONST(0x766dfe4a, 0x700d9bee, 0x288b903a, 0xd58870e3, 0xd4fe2f0e, 0xf780bcac, 0x5c823f32, 0x0d9a9bef), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8e, 0x42, 0x6f, 0x03, 0x92, 0x38, 0x90, 0x78, 0xc1, 0x2b, 0x1a, 0x89, 0xe9, 0x54, 0x2f, 0x05, 0x93, 0xbc, 0x96, 0xb6, 0xbf, 0xde, 0x82, 0x24, 0xf8, 0x65, 0x4e, 0xf5, 0xd5, 0xcd, 0xa9, 0x35, 0xa3, 0x58, 0x21, 0x94}, SECP256K1_FE_CONST(0xfaec7bc1, 0x987b6323, 0x3fbc5f95, 0x6edbf37d, 0x54404e74, 0x61c58ab8, 0x631bc68e, 0x451a0478), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x91, 0x19, 0x21, 0x39, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x45, 0xf0, 0xf1, 0xeb}, SECP256K1_FE_CONST(0xec29a50b, 0xae138dbf, 0x7d8e2482, 0x5006bb5f, 0xc1a2cc12, 0x43ba335b, 0xc6116fb9, 0xe498ec1f), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x98, 0xeb, 0x9a, 0xb7, 0x6e, 0x84, 0x49, 0x9c, 0x48, 0x3b, 0x3b, 0xf0, 0x62, 0x14, 0xab, 0xfe, 0x06, 0x5d, 0xdd, 0xf4, 0x3b, 0x86, 0x01, 0xde, 0x59, 0x6d, 0x63, 0xb9, 0xe4, 0x5a, 0x16, 0x6a, 0x58, 0x05, 0x41, 0xfe}, SECP256K1_FE_CONST(0x1e0ff2de, 0xe9b09b13, 0x6292a9e9, 0x10f0d6ac, 0x3e552a64, 0x4bba39e6, 0x4e9dd3e3, 0xbbd3d4d4), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x8b7dd5c3, 0xedba9ee9, 0x7b70eff4, 0x38f22dca, 0x9849c825, 0x4a2f3345, 0xa0a572ff, 0xeaae0928), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x0881950c, 0x8f51d6b9, 0xa6387465, 0xd5f12609, 0xef1bb254, 0x12a08a74, 0xcb2dfb20, 0x0c74bfbf), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa2, 0xf5, 0xcd, 0x83, 0x88, 0x16, 0xc1, 0x6c, 0x4f, 0xe8, 0xa1, 0x66, 0x1d, 0x60, 0x6f, 0xdb, 0x13, 0xcf, 0x9a, 0xf0, 0x4b, 0x97, 0x9a, 0x2e, 0x15, 0x9a, 0x09, 0x40, 0x9e, 0xbc, 0x86, 0x45, 0xd5, 0x8f, 0xde, 0x02}, SECP256K1_FE_CONST(0x2f083207, 0xb9fd9b55, 0x0063c31c, 0xd62b8746, 0xbd543bdc, 0x5bbf10e3, 0xa35563e9, 0x27f440c8), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x64, 0xd1, 0x62, 0x75, 0x05, 0x46, 0xce, 0x42, 0xb0, 0x43, 0x13, 0x61, 0xe5, 0x2d, 0x4f, 0x52, 0x42, 0xd8, 0xf2, 0x4f, 0x33, 0xe6, 0xb1, 0xf9, 0x9b, 0x59, 0x16, 0x47, 0xcb, 0xc8, 0x08, 0xf4, 0x62, 0xaf, 0x51}, SECP256K1_FE_CONST(0xd41244d1, 0x1ca4f652, 0x40687759, 0xf95ca9ef, 0xbab767ed, 0xedb38fd1, 0x8c36e18c, 0xd3b6f6a9), 1},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0xe5, 0xbe, 0x52, 0x37, 0x2d, 0xd6, 0xe8, 0x94, 0xb2, 0xa3, 0x26, 0xfc, 0x36, 0x05, 0xa6, 0xe8, 0xf3, 0xc6, 0x9c, 0x71, 0x0b, 0xf2, 0x7d, 0x63, 0x0d, 0xfe, 0x20, 0x04, 0x98, 0x8b, 0x78, 0xeb, 0x6e, 0xab, 0x36}, SECP256K1_FE_CONST(0x64bf84dd, 0x5e03670f, 0xdb24c0f5, 0xd3c2c365, 0x736f51db, 0x6c92d950, 0x10716ad2, 0xd36134c8), 0},
|
||||
{{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfb, 0xb9, 0x82, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xd6, 0xdb, 0x1f}, SECP256K1_FE_CONST(0x1c92ccdf, 0xcf4ac550, 0xc28db57c, 0xff0c8515, 0xcb26936c, 0x786584a7, 0x0114008d, 0x6c33a34b), 0},
|
||||
};
|
||||
|
||||
/* Set of expected ellswift_xdh BIP324 shared secrets, given private key, encodings, initiating,
|
||||
* taken from the BIP324 test vectors. Created using an independent implementation, and tested
|
||||
* against the paper authors' decoding code. */
|
||||
static const struct ellswift_xdh_test ellswift_xdh_tests_bip324[] = {
|
||||
{{0x61, 0x06, 0x2e, 0xa5, 0x07, 0x1d, 0x80, 0x0b, 0xbf, 0xd5, 0x9e, 0x2e, 0x8b, 0x53, 0xd4, 0x7d, 0x19, 0x4b, 0x09, 0x5a, 0xe5, 0xa4, 0xdf, 0x04, 0x93, 0x6b, 0x49, 0x77, 0x2e, 0xf0, 0xd4, 0xd7}, {0xec, 0x0a, 0xdf, 0xf2, 0x57, 0xbb, 0xfe, 0x50, 0x0c, 0x18, 0x8c, 0x80, 0xb4, 0xfd, 0xd6, 0x40, 0xf6, 0xb4, 0x5a, 0x48, 0x2b, 0xbc, 0x15, 0xfc, 0x7c, 0xef, 0x59, 0x31, 0xde, 0xff, 0x0a, 0xa1, 0x86, 0xf6, 0xeb, 0x9b, 0xba, 0x7b, 0x85, 0xdc, 0x4d, 0xcc, 0x28, 0xb2, 0x87, 0x22, 0xde, 0x1e, 0x3d, 0x91, 0x08, 0xb9, 0x85, 0xe2, 0x96, 0x70, 0x45, 0x66, 0x8f, 0x66, 0x09, 0x8e, 0x47, 0x5b}, {0xa4, 0xa9, 0x4d, 0xfc, 0xe6, 0x9b, 0x4a, 0x2a, 0x0a, 0x09, 0x93, 0x13, 0xd1, 0x0f, 0x9f, 0x7e, 0x7d, 0x64, 0x9d, 0x60, 0x50, 0x1c, 0x9e, 0x1d, 0x27, 0x4c, 0x30, 0x0e, 0x0d, 0x89, 0xaa, 0xfa, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8f, 0xaf, 0x88, 0xd5}, 1, {0xc6, 0x99, 0x2a, 0x11, 0x7f, 0x5e, 0xdb, 0xea, 0x70, 0xc3, 0xf5, 0x11, 0xd3, 0x2d, 0x26, 0xb9, 0x79, 0x8b, 0xe4, 0xb8, 0x1a, 0x62, 0xea, 0xee, 0x1a, 0x5a, 0xca, 0xa8, 0x45, 0x9a, 0x35, 0x92}},
|
||||
{{0x1f, 0x9c, 0x58, 0x1b, 0x35, 0x23, 0x18, 0x38, 0xf0, 0xf1, 0x7c, 0xf0, 0xc9, 0x79, 0x83, 0x5b, 0xac, 0xcb, 0x7f, 0x3a, 0xbb, 0xbb, 0x96, 0xff, 0xcc, 0x31, 0x8a, 0xb7, 0x1e, 0x6e, 0x12, 0x6f}, {0xa1, 0x85, 0x5e, 0x10, 0xe9, 0x4e, 0x00, 0xba, 0xa2, 0x30, 0x41, 0xd9, 0x16, 0xe2, 0x59, 0xf7, 0x04, 0x4e, 0x49, 0x1d, 0xa6, 0x17, 0x12, 0x69, 0x69, 0x47, 0x63, 0xf0, 0x18, 0xc7, 0xe6, 0x36, 0x93, 0xd2, 0x95, 0x75, 0xdc, 0xb4, 0x64, 0xac, 0x81, 0x6b, 0xaa, 0x1b, 0xe3, 0x53, 0xba, 0x12, 0xe3, 0x87, 0x6c, 0xba, 0x76, 0x28, 0xbd, 0x0b, 0xd8, 0xe7, 0x55, 0xe7, 0x21, 0xeb, 0x01, 0x40}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 0, {0xa0, 0x13, 0x8f, 0x56, 0x4f, 0x74, 0xd0, 0xad, 0x70, 0xbc, 0x33, 0x7d, 0xac, 0xc9, 0xd0, 0xbf, 0x1d, 0x23, 0x49, 0x36, 0x4c, 0xaf, 0x11, 0x88, 0xa1, 0xe6, 0xe8, 0xdd, 0xb3, 0xb7, 0xb1, 0x84}},
|
||||
{{0x02, 0x86, 0xc4, 0x1c, 0xd3, 0x09, 0x13, 0xdb, 0x0f, 0xdf, 0xf7, 0xa6, 0x4e, 0xbd, 0xa5, 0xc8, 0xe3, 0xe7, 0xce, 0xf1, 0x0f, 0x2a, 0xeb, 0xc0, 0x0a, 0x76, 0x50, 0x44, 0x3c, 0xf4, 0xc6, 0x0d}, {0xd1, 0xee, 0x8a, 0x93, 0xa0, 0x11, 0x30, 0xcb, 0xf2, 0x99, 0x24, 0x9a, 0x25, 0x8f, 0x94, 0xfe, 0xb5, 0xf4, 0x69, 0xe7, 0xd0, 0xf2, 0xf2, 0x8f, 0x69, 0xee, 0x5e, 0x9a, 0xa8, 0xf9, 0xb5, 0x4a, 0x60, 0xf2, 0xc3, 0xff, 0x2d, 0x02, 0x36, 0x34, 0xec, 0x7f, 0x41, 0x27, 0xa9, 0x6c, 0xc1, 0x16, 0x62, 0xe4, 0x02, 0x89, 0x4c, 0xf1, 0xf6, 0x94, 0xfb, 0x9a, 0x7e, 0xaa, 0x5f, 0x1d, 0x92, 0x44}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x22, 0xd5, 0xe4, 0x41, 0x52, 0x4d, 0x57, 0x1a, 0x52, 0xb3, 0xde, 0xf1, 0x26, 0x18, 0x9d, 0x3f, 0x41, 0x68, 0x90, 0xa9, 0x9d, 0x4d, 0xa6, 0xed, 0xe2, 0xb0, 0xcd, 0xe1, 0x76, 0x0c, 0xe2, 0xc3, 0xf9, 0x84, 0x57, 0xae}, 1, {0x25, 0x0b, 0x93, 0x57, 0x0d, 0x41, 0x11, 0x49, 0x10, 0x5a, 0xb8, 0xcb, 0x0b, 0xc5, 0x07, 0x99, 0x14, 0x90, 0x63, 0x06, 0x36, 0x8c, 0x23, 0xe9, 0xd7, 0x7c, 0x2a, 0x33, 0x26, 0x5b, 0x99, 0x4c}},
|
||||
{{0x6c, 0x77, 0x43, 0x2d, 0x1f, 0xda, 0x31, 0xe9, 0xf9, 0x42, 0xf8, 0xaf, 0x44, 0x60, 0x7e, 0x10, 0xf3, 0xad, 0x38, 0xa6, 0x5f, 0x8a, 0x4b, 0xdd, 0xae, 0x82, 0x3e, 0x5e, 0xff, 0x90, 0xdc, 0x38}, {0xd2, 0x68, 0x50, 0x70, 0xc1, 0xe6, 0x37, 0x6e, 0x63, 0x3e, 0x82, 0x52, 0x96, 0x63, 0x4f, 0xd4, 0x61, 0xfa, 0x9e, 0x5b, 0xdf, 0x21, 0x09, 0xbc, 0xeb, 0xd7, 0x35, 0xe5, 0xa9, 0x1f, 0x3e, 0x58, 0x7c, 0x5c, 0xb7, 0x82, 0xab, 0xb7, 0x97, 0xfb, 0xf6, 0xbb, 0x50, 0x74, 0xfd, 0x15, 0x42, 0xa4, 0x74, 0xf2, 0xa4, 0x5b, 0x67, 0x37, 0x63, 0xec, 0x2d, 0xb7, 0xfb, 0x99, 0xb7, 0x37, 0xbb, 0xb9}, {0x56, 0xbd, 0x0c, 0x06, 0xf1, 0x03, 0x52, 0xc3, 0xa1, 0xa9, 0xf4, 0xb4, 0xc9, 0x2f, 0x6f, 0xa2, 0xb2, 0x6d, 0xf1, 0x24, 0xb5, 0x78, 0x78, 0x35, 0x3c, 0x1f, 0xc6, 0x91, 0xc5, 0x1a, 0xbe, 0xa7, 0x7c, 0x88, 0x17, 0xda, 0xee, 0xb9, 0xfa, 0x54, 0x6b, 0x77, 0xc8, 0xda, 0xf7, 0x9d, 0x89, 0xb2, 0x2b, 0x0e, 0x1b, 0x87, 0x57, 0x4e, 0xce, 0x42, 0x37, 0x1f, 0x00, 0x23, 0x7a, 0xa9, 0xd8, 0x3a}, 0, {0x19, 0x18, 0xb7, 0x41, 0xef, 0x5f, 0x9d, 0x1d, 0x76, 0x70, 0xb0, 0x50, 0xc1, 0x52, 0xb4, 0xa4, 0xea, 0xd2, 0xc3, 0x1b, 0xe9, 0xae, 0xcb, 0x06, 0x81, 0xc0, 0xcd, 0x43, 0x24, 0x15, 0x08, 0x53}},
|
||||
{{0xa6, 0xec, 0x25, 0x12, 0x7c, 0xa1, 0xaa, 0x4c, 0xf1, 0x6b, 0x20, 0x08, 0x4b, 0xa1, 0xe6, 0x51, 0x6b, 0xaa, 0xe4, 0xd3, 0x24, 0x22, 0x28, 0x8e, 0x9b, 0x36, 0xd8, 0xbd, 0xdd, 0x2d, 0xe3, 0x5a}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x05, 0x3d, 0x7e, 0xcc, 0xa5, 0x3e, 0x33, 0xe1, 0x85, 0xa8, 0xb9, 0xbe, 0x4e, 0x76, 0x99, 0xa9, 0x7c, 0x6f, 0xf4, 0xc7, 0x95, 0x52, 0x2e, 0x59, 0x18, 0xab, 0x7c, 0xd6, 0xb6, 0x88, 0x4f, 0x67, 0xe6, 0x83, 0xf3, 0xdc}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa7, 0x73, 0x0b, 0xe3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 1, {0xdd, 0x21, 0x0a, 0xa6, 0x62, 0x9f, 0x20, 0xbb, 0x32, 0x8e, 0x5d, 0x89, 0xda, 0xa6, 0xeb, 0x2a, 0xc3, 0xd1, 0xc6, 0x58, 0xa7, 0x25, 0x53, 0x6f, 0xf1, 0x54, 0xf3, 0x1b, 0x53, 0x6c, 0x23, 0xb2}},
|
||||
{{0x0a, 0xf9, 0x52, 0x65, 0x9e, 0xd7, 0x6f, 0x80, 0xf5, 0x85, 0x96, 0x6b, 0x95, 0xab, 0x6e, 0x6f, 0xd6, 0x86, 0x54, 0x67, 0x28, 0x27, 0x87, 0x86, 0x84, 0xc8, 0xb5, 0x47, 0xb1, 0xb9, 0x4f, 0x5a}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc8, 0x10, 0x17, 0xfd, 0x92, 0xfd, 0x31, 0x63, 0x7c, 0x26, 0xc9, 0x06, 0xb4, 0x20, 0x92, 0xe1, 0x1c, 0xc0, 0xd3, 0xaf, 0xae, 0x8d, 0x90, 0x19, 0xd2, 0x57, 0x8a, 0xf2, 0x27, 0x35, 0xce, 0x7b, 0xc4, 0x69, 0xc7, 0x2d}, {0x96, 0x52, 0xd7, 0x8b, 0xae, 0xfc, 0x02, 0x8c, 0xd3, 0x7a, 0x6a, 0x92, 0x62, 0x5b, 0x8b, 0x8f, 0x85, 0xfd, 0xe1, 0xe4, 0xc9, 0x44, 0xad, 0x3f, 0x20, 0xe1, 0x98, 0xbe, 0xf8, 0xc0, 0x2f, 0x19, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf2, 0xe9, 0x18, 0x70}, 0, {0x35, 0x68, 0xf2, 0xae, 0xa2, 0xe1, 0x4e, 0xf4, 0xee, 0x4a, 0x3c, 0x2a, 0x8b, 0x8d, 0x31, 0xbc, 0x5e, 0x31, 0x87, 0xba, 0x86, 0xdb, 0x10, 0x73, 0x9b, 0x4f, 0xf8, 0xec, 0x92, 0xff, 0x66, 0x55}},
|
||||
{{0xf9, 0x0e, 0x08, 0x0c, 0x64, 0xb0, 0x58, 0x24, 0xc5, 0xa2, 0x4b, 0x25, 0x01, 0xd5, 0xae, 0xaf, 0x08, 0xaf, 0x38, 0x72, 0xee, 0x86, 0x0a, 0xa8, 0x0b, 0xdc, 0xd4, 0x30, 0xf7, 0xb6, 0x34, 0x94}, {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x11, 0x51, 0x73, 0x76, 0x5d, 0xc2, 0x02, 0xcf, 0x02, 0x9a, 0xd3, 0xf1, 0x54, 0x79, 0x73, 0x5d, 0x57, 0x69, 0x7a, 0xf1, 0x2b, 0x01, 0x31, 0xdd, 0x21, 0x43, 0x0d, 0x57, 0x72, 0xe4, 0xef, 0x11, 0x47, 0x4d, 0x58, 0xb9}, {0x12, 0xa5, 0x0f, 0x3f, 0xaf, 0xea, 0x7c, 0x1e, 0xea, 0xda, 0x4c, 0xf8, 0xd3, 0x37, 0x77, 0x70, 0x4b, 0x77, 0x36, 0x14, 0x53, 0xaf, 0xc8, 0x3b, 0xda, 0x91, 0xee, 0xf3, 0x49, 0xae, 0x04, 0x4d, 0x20, 0x12, 0x6c, 0x62, 0x00, 0x54, 0x7e, 0xa5, 0xa6, 0x91, 0x17, 0x76, 0xc0, 0x5d, 0xee, 0x2a, 0x7f, 0x1a, 0x9b, 0xa7, 0xdf, 0xba, 0xbb, 0xbd, 0x27, 0x3c, 0x3e, 0xf2, 0x9e, 0xf4, 0x6e, 0x46}, 1, {0xe2, 0x54, 0x61, 0xfb, 0x0e, 0x4c, 0x16, 0x2e, 0x18, 0x12, 0x3e, 0xcd, 0xe8, 0x83, 0x42, 0xd5, 0x4d, 0x44, 0x96, 0x31, 0xe9, 0xb7, 0x5a, 0x26, 0x6f, 0xd9, 0x26, 0x0c, 0x2b, 0xb2, 0xf4, 0x1d}},
|
||||
};
|
||||
|
||||
/** This is a hasher for ellswift_xdh which just returns the shared X coordinate.
|
||||
*
|
||||
* This is generally a bad idea as it means changes to the encoding of the
|
||||
* exchanged public keys do not affect the shared secret. However, it's used here
|
||||
* in tests to be able to verify the X coordinate through other means.
|
||||
*/
|
||||
static int ellswift_xdh_hash_x32(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
|
||||
(void)ell_a64;
|
||||
(void)ell_b64;
|
||||
(void)data;
|
||||
memcpy(output, x32, 32);
|
||||
return 1;
|
||||
}
|
||||
|
||||
void run_ellswift_tests(void) {
|
||||
int i = 0;
|
||||
/* Test vectors. */
|
||||
for (i = 0; (unsigned)i < sizeof(ellswift_xswiftec_inv_tests) / sizeof(ellswift_xswiftec_inv_tests[0]); ++i) {
|
||||
const struct ellswift_xswiftec_inv_test *testcase = &ellswift_xswiftec_inv_tests[i];
|
||||
int c;
|
||||
for (c = 0; c < 8; ++c) {
|
||||
secp256k1_fe t;
|
||||
int ret = secp256k1_ellswift_xswiftec_inv_var(&t, &testcase->x, &testcase->u, c);
|
||||
CHECK(ret == ((testcase->enc_bitmap >> c) & 1));
|
||||
if (ret) {
|
||||
secp256k1_fe x2;
|
||||
CHECK(check_fe_equal(&t, &testcase->encs[c]));
|
||||
secp256k1_ellswift_xswiftec_var(&x2, &testcase->u, &testcase->encs[c]);
|
||||
CHECK(check_fe_equal(&testcase->x, &x2));
|
||||
}
|
||||
}
|
||||
}
|
||||
for (i = 0; (unsigned)i < sizeof(ellswift_decode_tests) / sizeof(ellswift_decode_tests[0]); ++i) {
|
||||
const struct ellswift_decode_test *testcase = &ellswift_decode_tests[i];
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ge ge;
|
||||
int ret;
|
||||
ret = secp256k1_ellswift_decode(CTX, &pubkey, testcase->enc);
|
||||
CHECK(ret);
|
||||
ret = secp256k1_pubkey_load(CTX, &ge, &pubkey);
|
||||
CHECK(ret);
|
||||
CHECK(check_fe_equal(&testcase->x, &ge.x));
|
||||
CHECK(secp256k1_fe_is_odd(&ge.y) == testcase->odd_y);
|
||||
}
|
||||
for (i = 0; (unsigned)i < sizeof(ellswift_xdh_tests_bip324) / sizeof(ellswift_xdh_tests_bip324[0]); ++i) {
|
||||
const struct ellswift_xdh_test *test = &ellswift_xdh_tests_bip324[i];
|
||||
unsigned char shared_secret[32];
|
||||
int ret;
|
||||
int party = !test->initiating;
|
||||
const unsigned char* ell_a64 = party ? test->ellswift_theirs : test->ellswift_ours;
|
||||
const unsigned char* ell_b64 = party ? test->ellswift_ours : test->ellswift_theirs;
|
||||
ret = secp256k1_ellswift_xdh(CTX, shared_secret,
|
||||
ell_a64, ell_b64,
|
||||
test->priv_ours,
|
||||
party,
|
||||
secp256k1_ellswift_xdh_hash_function_bip324,
|
||||
NULL);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(shared_secret, test->shared_secret, 32) == 0);
|
||||
}
|
||||
/* Verify that secp256k1_ellswift_encode + decode roundtrips. */
|
||||
for (i = 0; i < 1000 * COUNT; i++) {
|
||||
unsigned char rnd32[32];
|
||||
unsigned char ell64[64];
|
||||
secp256k1_ge g, g2;
|
||||
secp256k1_pubkey pubkey, pubkey2;
|
||||
/* Generate random public key and random randomizer. */
|
||||
random_group_element_test(&g);
|
||||
secp256k1_pubkey_save(&pubkey, &g);
|
||||
secp256k1_testrand256(rnd32);
|
||||
/* Convert the public key to ElligatorSwift and back. */
|
||||
secp256k1_ellswift_encode(CTX, ell64, &pubkey, rnd32);
|
||||
secp256k1_ellswift_decode(CTX, &pubkey2, ell64);
|
||||
secp256k1_pubkey_load(CTX, &g2, &pubkey2);
|
||||
/* Compare with original. */
|
||||
ge_equals_ge(&g, &g2);
|
||||
}
|
||||
/* Verify the behavior of secp256k1_ellswift_create */
|
||||
for (i = 0; i < 400 * COUNT; i++) {
|
||||
unsigned char auxrnd32[32], sec32[32];
|
||||
secp256k1_scalar sec;
|
||||
secp256k1_gej res;
|
||||
secp256k1_ge dec;
|
||||
secp256k1_pubkey pub;
|
||||
unsigned char ell64[64];
|
||||
int ret;
|
||||
/* Generate random secret key and random randomizer. */
|
||||
if (i & 1) secp256k1_testrand256_test(auxrnd32);
|
||||
random_scalar_order_test(&sec);
|
||||
secp256k1_scalar_get_b32(sec32, &sec);
|
||||
/* Construct ElligatorSwift-encoded public keys for that key. */
|
||||
ret = secp256k1_ellswift_create(CTX, ell64, sec32, (i & 1) ? auxrnd32 : NULL);
|
||||
CHECK(ret);
|
||||
/* Decode it, and compare with traditionally-computed public key. */
|
||||
secp256k1_ellswift_decode(CTX, &pub, ell64);
|
||||
secp256k1_pubkey_load(CTX, &dec, &pub);
|
||||
secp256k1_ecmult(&res, NULL, &secp256k1_scalar_zero, &sec);
|
||||
ge_equals_gej(&dec, &res);
|
||||
}
|
||||
/* Verify that secp256k1_ellswift_xdh computes the right shared X coordinate. */
|
||||
for (i = 0; i < 800 * COUNT; i++) {
|
||||
unsigned char ell64[64], sec32[32], share32[32];
|
||||
secp256k1_scalar sec;
|
||||
secp256k1_ge dec, res;
|
||||
secp256k1_fe share_x;
|
||||
secp256k1_gej decj, resj;
|
||||
secp256k1_pubkey pub;
|
||||
int ret;
|
||||
/* Generate random secret key. */
|
||||
random_scalar_order_test(&sec);
|
||||
secp256k1_scalar_get_b32(sec32, &sec);
|
||||
/* Generate random ElligatorSwift encoding for the remote key and decode it. */
|
||||
secp256k1_testrand256_test(ell64);
|
||||
secp256k1_testrand256_test(ell64 + 32);
|
||||
secp256k1_ellswift_decode(CTX, &pub, ell64);
|
||||
secp256k1_pubkey_load(CTX, &dec, &pub);
|
||||
secp256k1_gej_set_ge(&decj, &dec);
|
||||
/* Compute the X coordinate of seckey*pubkey using ellswift_xdh. Note that we
|
||||
* pass ell64 as claimed (but incorrect) encoding for sec32 here; this works
|
||||
* because the "hasher" function we use here ignores the ell64 arguments. */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32, ell64, ell64, sec32, i & 1, &ellswift_xdh_hash_x32, NULL);
|
||||
CHECK(ret);
|
||||
(void)secp256k1_fe_set_b32_limit(&share_x, share32); /* no overflow is possible */
|
||||
secp256k1_fe_verify(&share_x);
|
||||
/* Compute seckey*pubkey directly. */
|
||||
secp256k1_ecmult(&resj, &decj, &sec, NULL);
|
||||
secp256k1_ge_set_gej(&res, &resj);
|
||||
/* Compare. */
|
||||
CHECK(check_fe_equal(&res.x, &share_x));
|
||||
}
|
||||
/* Verify the joint behavior of secp256k1_ellswift_xdh */
|
||||
for (i = 0; i < 200 * COUNT; i++) {
|
||||
unsigned char auxrnd32a[32], auxrnd32b[32], auxrnd32a_bad[32], auxrnd32b_bad[32];
|
||||
unsigned char sec32a[32], sec32b[32], sec32a_bad[32], sec32b_bad[32];
|
||||
secp256k1_scalar seca, secb;
|
||||
unsigned char ell64a[64], ell64b[64], ell64a_bad[64], ell64b_bad[64];
|
||||
unsigned char share32a[32], share32b[32], share32_bad[32];
|
||||
unsigned char prefix64[64];
|
||||
secp256k1_ellswift_xdh_hash_function hash_function;
|
||||
void* data;
|
||||
int ret;
|
||||
|
||||
/* Pick hasher to use. */
|
||||
if ((i % 3) == 0) {
|
||||
hash_function = ellswift_xdh_hash_x32;
|
||||
data = NULL;
|
||||
} else if ((i % 3) == 1) {
|
||||
hash_function = secp256k1_ellswift_xdh_hash_function_bip324;
|
||||
data = NULL;
|
||||
} else {
|
||||
hash_function = secp256k1_ellswift_xdh_hash_function_prefix;
|
||||
secp256k1_testrand256_test(prefix64);
|
||||
secp256k1_testrand256_test(prefix64 + 32);
|
||||
data = prefix64;
|
||||
}
|
||||
|
||||
/* Generate random secret keys and random randomizers. */
|
||||
secp256k1_testrand256_test(auxrnd32a);
|
||||
secp256k1_testrand256_test(auxrnd32b);
|
||||
random_scalar_order_test(&seca);
|
||||
random_scalar_order_test(&secb);
|
||||
secp256k1_scalar_get_b32(sec32a, &seca);
|
||||
secp256k1_scalar_get_b32(sec32b, &secb);
|
||||
|
||||
/* Construct ElligatorSwift-encoded public keys for those keys. */
|
||||
/* For A: */
|
||||
ret = secp256k1_ellswift_create(CTX, ell64a, sec32a, auxrnd32a);
|
||||
CHECK(ret);
|
||||
/* For B: */
|
||||
ret = secp256k1_ellswift_create(CTX, ell64b, sec32b, auxrnd32b);
|
||||
CHECK(ret);
|
||||
|
||||
/* Compute the shared secret both ways and compare with each other. */
|
||||
/* For A: */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32a, ell64a, ell64b, sec32a, 0, hash_function, data);
|
||||
CHECK(ret);
|
||||
/* For B: */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32b, ell64a, ell64b, sec32b, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
/* And compare: */
|
||||
CHECK(secp256k1_memcmp_var(share32a, share32b, 32) == 0);
|
||||
|
||||
/* Verify that the shared secret doesn't match if other side's public key is incorrect. */
|
||||
/* For A (using a bad public key for B): */
|
||||
memcpy(ell64b_bad, ell64b, sizeof(ell64a_bad));
|
||||
secp256k1_testrand_flip(ell64b_bad, sizeof(ell64b_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b_bad, sec32a, 0, hash_function, data);
|
||||
CHECK(ret); /* Mismatching encodings don't get detected by secp256k1_ellswift_xdh. */
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B (using a bad public key for A): */
|
||||
memcpy(ell64a_bad, ell64a, sizeof(ell64a_bad));
|
||||
secp256k1_testrand_flip(ell64a_bad, sizeof(ell64a_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a_bad, ell64b, sec32b, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
|
||||
/* Verify that the shared secret doesn't match if the private key is incorrect. */
|
||||
/* For A: */
|
||||
memcpy(sec32a_bad, sec32a, sizeof(sec32a_bad));
|
||||
secp256k1_testrand_flip(sec32a_bad, sizeof(sec32a_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32a_bad, 0, hash_function, data);
|
||||
CHECK(!ret || secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B: */
|
||||
memcpy(sec32b_bad, sec32b, sizeof(sec32b_bad));
|
||||
secp256k1_testrand_flip(sec32b_bad, sizeof(sec32b_bad));
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32b_bad, 1, hash_function, data);
|
||||
CHECK(!ret || secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
|
||||
if (hash_function != ellswift_xdh_hash_x32) {
|
||||
/* Verify that the shared secret doesn't match when a different encoding of the same public key is used. */
|
||||
/* For A (changing B's public key): */
|
||||
memcpy(auxrnd32b_bad, auxrnd32b, sizeof(auxrnd32b_bad));
|
||||
secp256k1_testrand_flip(auxrnd32b_bad, sizeof(auxrnd32b_bad));
|
||||
ret = secp256k1_ellswift_create(CTX, ell64b_bad, sec32b, auxrnd32b_bad);
|
||||
CHECK(ret);
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b_bad, sec32a, 0, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B (changing A's public key): */
|
||||
memcpy(auxrnd32a_bad, auxrnd32a, sizeof(auxrnd32a_bad));
|
||||
secp256k1_testrand_flip(auxrnd32a_bad, sizeof(auxrnd32a_bad));
|
||||
ret = secp256k1_ellswift_create(CTX, ell64a_bad, sec32a, auxrnd32a_bad);
|
||||
CHECK(ret);
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a_bad, ell64b, sec32b, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
|
||||
/* Verify that swapping sides changes the shared secret. */
|
||||
/* For A (claiming to be B): */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32a, 1, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32a, 32) != 0);
|
||||
/* For B (claiming to be A): */
|
||||
ret = secp256k1_ellswift_xdh(CTX, share32_bad, ell64a, ell64b, sec32b, 0, hash_function, data);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_memcmp_var(share32_bad, share32b, 32) != 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* Test hash initializers. */
|
||||
{
|
||||
secp256k1_sha256 sha, sha_optimized;
|
||||
static const unsigned char encode_tag[25] = "secp256k1_ellswift_encode";
|
||||
static const unsigned char create_tag[25] = "secp256k1_ellswift_create";
|
||||
static const unsigned char bip324_tag[26] = "bip324_ellswift_xonly_ecdh";
|
||||
|
||||
/* Check that hash initialized by
|
||||
* secp256k1_ellswift_sha256_init_encode has the expected
|
||||
* state. */
|
||||
secp256k1_sha256_initialize_tagged(&sha, encode_tag, sizeof(encode_tag));
|
||||
secp256k1_ellswift_sha256_init_encode(&sha_optimized);
|
||||
test_sha256_eq(&sha, &sha_optimized);
|
||||
|
||||
/* Check that hash initialized by
|
||||
* secp256k1_ellswift_sha256_init_create has the expected
|
||||
* state. */
|
||||
secp256k1_sha256_initialize_tagged(&sha, create_tag, sizeof(create_tag));
|
||||
secp256k1_ellswift_sha256_init_create(&sha_optimized);
|
||||
test_sha256_eq(&sha, &sha_optimized);
|
||||
|
||||
/* Check that hash initialized by
|
||||
* secp256k1_ellswift_sha256_init_bip324 has the expected
|
||||
* state. */
|
||||
secp256k1_sha256_initialize_tagged(&sha, bip324_tag, sizeof(bip324_tag));
|
||||
secp256k1_ellswift_sha256_init_bip324(&sha_optimized);
|
||||
test_sha256_eq(&sha, &sha_optimized);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include "../../../include/secp256k1.h"
|
||||
#include "../../../include/secp256k1_extrakeys.h"
|
||||
#include "../../util.h"
|
||||
|
||||
static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context* ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey) {
|
||||
return secp256k1_pubkey_load(ctx, ge, (const secp256k1_pubkey *) pubkey);
|
||||
|
@ -27,7 +28,7 @@ int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_p
|
|||
memset(pubkey, 0, sizeof(*pubkey));
|
||||
ARG_CHECK(input32 != NULL);
|
||||
|
||||
if (!secp256k1_fe_set_b32(&x, input32)) {
|
||||
if (!secp256k1_fe_set_b32_limit(&x, input32)) {
|
||||
return 0;
|
||||
}
|
||||
if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
|
||||
|
|
|
@ -47,7 +47,7 @@ static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp25
|
|||
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0);
|
||||
|
||||
/* Compare the xonly_pubkey bytes against the precomputed group. */
|
||||
secp256k1_fe_set_b32(&fe, xonly_pubkey_bytes[i - 1]);
|
||||
secp256k1_fe_set_b32_mod(&fe, xonly_pubkey_bytes[i - 1]);
|
||||
CHECK(secp256k1_fe_equal_var(&fe, &group[i].x));
|
||||
|
||||
/* Check the parity against the precomputed group. */
|
||||
|
|
|
@ -98,7 +98,7 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_scalar *sigr, const secp2
|
|||
}
|
||||
|
||||
secp256k1_scalar_get_b32(brx, sigr);
|
||||
r = secp256k1_fe_set_b32(&fx, brx);
|
||||
r = secp256k1_fe_set_b32_limit(&fx, brx);
|
||||
(void)r;
|
||||
VERIFY_CHECK(r); /* brx comes from a scalar, so is less than the order; certainly less than p */
|
||||
if (recid & 2) {
|
||||
|
|
|
@ -232,7 +232,7 @@ int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned cha
|
|||
ARG_CHECK(msg != NULL || msglen == 0);
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
|
||||
if (!secp256k1_fe_set_b32(&rx, &sig64[0])) {
|
||||
if (!secp256k1_fe_set_b32_limit(&rx, &sig64[0])) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -20,17 +20,6 @@ static void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, s
|
|||
CHECK(secp256k1_memcmp_var(nonces[0], nonces[1], 32) != 0);
|
||||
}
|
||||
|
||||
/* Tests for the equality of two sha256 structs. This function only produces a
|
||||
* correct result if an integer multiple of 64 many bytes have been written
|
||||
* into the hash functions. */
|
||||
static void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) {
|
||||
/* Is buffer fully consumed? */
|
||||
CHECK((sha1->bytes & 0x3F) == 0);
|
||||
|
||||
CHECK(sha1->bytes == sha2->bytes);
|
||||
CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
|
||||
}
|
||||
|
||||
static void run_nonce_function_bip340_tests(void) {
|
||||
unsigned char tag[13] = "BIP0340/nonce";
|
||||
unsigned char aux_tag[11] = "BIP0340/aux";
|
||||
|
@ -215,28 +204,36 @@ static void test_schnorrsig_sha256_tagged(void) {
|
|||
|
||||
/* Helper function for schnorrsig_bip_vectors
|
||||
* Signs the message and checks that it's the same as expected_sig. */
|
||||
static void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const unsigned char *pk_serialized, const unsigned char *aux_rand, const unsigned char *msg32, const unsigned char *expected_sig) {
|
||||
static void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const unsigned char *pk_serialized, const unsigned char *aux_rand, const unsigned char *msg, size_t msglen, const unsigned char *expected_sig) {
|
||||
unsigned char sig[64];
|
||||
secp256k1_keypair keypair;
|
||||
secp256k1_xonly_pubkey pk, pk_expected;
|
||||
|
||||
secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT;
|
||||
extraparams.ndata = (unsigned char*)aux_rand;
|
||||
|
||||
CHECK(secp256k1_keypair_create(CTX, &keypair, sk));
|
||||
CHECK(secp256k1_schnorrsig_sign32(CTX, sig, msg32, &keypair, aux_rand));
|
||||
CHECK(secp256k1_schnorrsig_sign_custom(CTX, sig, msg, msglen, &keypair, &extraparams));
|
||||
CHECK(secp256k1_memcmp_var(sig, expected_sig, 64) == 0);
|
||||
if (msglen == 32) {
|
||||
memset(sig, 0, 64);
|
||||
CHECK(secp256k1_schnorrsig_sign32(CTX, sig, msg, &keypair, aux_rand));
|
||||
CHECK(secp256k1_memcmp_var(sig, expected_sig, 64) == 0);
|
||||
}
|
||||
|
||||
CHECK(secp256k1_xonly_pubkey_parse(CTX, &pk_expected, pk_serialized));
|
||||
CHECK(secp256k1_keypair_xonly_pub(CTX, &pk, NULL, &keypair));
|
||||
CHECK(secp256k1_memcmp_var(&pk, &pk_expected, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_schnorrsig_verify(CTX, sig, msg32, 32, &pk));
|
||||
CHECK(secp256k1_schnorrsig_verify(CTX, sig, msg, msglen, &pk));
|
||||
}
|
||||
|
||||
/* Helper function for schnorrsig_bip_vectors
|
||||
* Checks that both verify and verify_batch (TODO) return the same value as expected. */
|
||||
static void test_schnorrsig_bip_vectors_check_verify(const unsigned char *pk_serialized, const unsigned char *msg32, const unsigned char *sig, int expected) {
|
||||
static void test_schnorrsig_bip_vectors_check_verify(const unsigned char *pk_serialized, const unsigned char *msg, size_t msglen, const unsigned char *sig, int expected) {
|
||||
secp256k1_xonly_pubkey pk;
|
||||
|
||||
CHECK(secp256k1_xonly_pubkey_parse(CTX, &pk, pk_serialized));
|
||||
CHECK(expected == secp256k1_schnorrsig_verify(CTX, sig, msg32, 32, &pk));
|
||||
CHECK(expected == secp256k1_schnorrsig_verify(CTX, sig, msg, msglen, &pk));
|
||||
}
|
||||
|
||||
/* Test vectors according to BIP-340 ("Schnorr Signatures for secp256k1"). See
|
||||
|
@ -256,7 +253,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xB5, 0x31, 0xC8, 0x45, 0x83, 0x6F, 0x99, 0xB0,
|
||||
0x86, 0x01, 0xF1, 0x13, 0xBC, 0xE0, 0x36, 0xF9
|
||||
};
|
||||
unsigned char aux_rand[32] = {
|
||||
const unsigned char aux_rand[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
|
@ -278,8 +275,8 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xEB, 0xEE, 0xE8, 0xFD, 0xB2, 0x17, 0x2F, 0x47,
|
||||
0x7D, 0xF4, 0x90, 0x0D, 0x31, 0x05, 0x36, 0xC0
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sizeof(msg), sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 1 */
|
||||
|
@ -295,7 +292,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8,
|
||||
0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59
|
||||
};
|
||||
unsigned char aux_rand[32] = {
|
||||
const unsigned char aux_rand[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
|
@ -317,8 +314,8 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x89, 0x7E, 0xFC, 0xB6, 0x39, 0xEA, 0x87, 0x1C,
|
||||
0xFA, 0x95, 0xF6, 0xDE, 0x33, 0x9E, 0x4B, 0x0A
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sizeof(msg), sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 2 */
|
||||
|
@ -334,7 +331,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x01, 0x39, 0x71, 0x53, 0x09, 0xB0, 0x86, 0xC9,
|
||||
0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8
|
||||
};
|
||||
unsigned char aux_rand[32] = {
|
||||
const unsigned char aux_rand[32] = {
|
||||
0xC8, 0x7A, 0xA5, 0x38, 0x24, 0xB4, 0xD7, 0xAE,
|
||||
0x2E, 0xB0, 0x35, 0xA2, 0xB5, 0xBB, 0xBC, 0xCC,
|
||||
0x08, 0x0E, 0x76, 0xCD, 0xC6, 0xD1, 0x69, 0x2C,
|
||||
|
@ -356,8 +353,8 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x7A, 0xDE, 0xA9, 0x8D, 0x82, 0xF8, 0x48, 0x1E,
|
||||
0x0E, 0x1E, 0x03, 0x67, 0x4A, 0x6F, 0x3F, 0xB7
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sizeof(msg), sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 3 */
|
||||
|
@ -373,7 +370,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x3A, 0x0D, 0x95, 0xFB, 0xF2, 0x1D, 0x46, 0x8A,
|
||||
0x1B, 0x33, 0xF8, 0xC1, 0x60, 0xD8, 0xF5, 0x17
|
||||
};
|
||||
unsigned char aux_rand[32] = {
|
||||
const unsigned char aux_rand[32] = {
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
|
@ -395,8 +392,8 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xF2, 0x5F, 0xD7, 0x88, 0x81, 0xEB, 0xB3, 0x27,
|
||||
0x71, 0xFC, 0x59, 0x22, 0xEF, 0xC6, 0x6E, 0xA3
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sizeof(msg), sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 4 */
|
||||
|
@ -422,7 +419,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x60, 0xCB, 0x71, 0xC0, 0x4E, 0x80, 0xF5, 0x93,
|
||||
0x06, 0x0B, 0x07, 0xD2, 0x83, 0x08, 0xD7, 0xF4
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 5 */
|
||||
|
@ -460,7 +457,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x7A, 0x73, 0xC6, 0x43, 0xE1, 0x66, 0xBE, 0x5E,
|
||||
0xBE, 0xAF, 0xA3, 0x4B, 0x1A, 0xC5, 0x53, 0xE2
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 7 */
|
||||
|
@ -486,7 +483,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x62, 0x2A, 0x95, 0x4C, 0xFE, 0x54, 0x57, 0x35,
|
||||
0xAA, 0xEA, 0x51, 0x34, 0xFC, 0xCD, 0xB2, 0xBD
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 8 */
|
||||
|
@ -512,7 +509,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xE8, 0xD7, 0xC9, 0x3E, 0x00, 0xC5, 0xED, 0x0C,
|
||||
0x18, 0x34, 0xFF, 0x0D, 0x0C, 0x2E, 0x6D, 0xA6
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 9 */
|
||||
|
@ -538,7 +535,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0x4F, 0xB7, 0x34, 0x76, 0xF0, 0xD5, 0x94, 0xDC,
|
||||
0xB6, 0x5C, 0x64, 0x25, 0xBD, 0x18, 0x60, 0x51
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 10 */
|
||||
|
@ -564,7 +561,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xDB, 0xA8, 0x7F, 0x11, 0xAC, 0x67, 0x54, 0xF9,
|
||||
0x37, 0x80, 0xD5, 0xA1, 0x83, 0x7C, 0xF1, 0x97
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 11 */
|
||||
|
@ -590,7 +587,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F,
|
||||
0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 12 */
|
||||
|
@ -616,7 +613,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F,
|
||||
0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 13 */
|
||||
|
@ -642,7 +639,7 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
|
||||
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 0);
|
||||
}
|
||||
{
|
||||
/* Test vector 14 */
|
||||
|
@ -656,6 +653,147 @@ static void test_schnorrsig_bip_vectors(void) {
|
|||
/* No need to check the signature of the test vector as parsing the pubkey already fails */
|
||||
CHECK(!secp256k1_xonly_pubkey_parse(CTX, &pk_parsed, pk));
|
||||
}
|
||||
{
|
||||
/* Test vector 15 */
|
||||
const unsigned char sk[32] = {
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
};
|
||||
const unsigned char pk[32] = {
|
||||
0x77, 0x8C, 0xAA, 0x53, 0xB4, 0x39, 0x3A, 0xC4,
|
||||
0x67, 0x77, 0x4D, 0x09, 0x49, 0x7A, 0x87, 0x22,
|
||||
0x4B, 0xF9, 0xFA, 0xB6, 0xF6, 0xE6, 0x8B, 0x23,
|
||||
0x08, 0x64, 0x97, 0x32, 0x4D, 0x6F, 0xD1, 0x17,
|
||||
};
|
||||
const unsigned char aux_rand[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
};
|
||||
/* const unsigned char msg[0] = {}; */
|
||||
const unsigned char sig[64] = {
|
||||
0x71, 0x53, 0x5D, 0xB1, 0x65, 0xEC, 0xD9, 0xFB,
|
||||
0xBC, 0x04, 0x6E, 0x5F, 0xFA, 0xEA, 0x61, 0x18,
|
||||
0x6B, 0xB6, 0xAD, 0x43, 0x67, 0x32, 0xFC, 0xCC,
|
||||
0x25, 0x29, 0x1A, 0x55, 0x89, 0x54, 0x64, 0xCF,
|
||||
0x60, 0x69, 0xCE, 0x26, 0xBF, 0x03, 0x46, 0x62,
|
||||
0x28, 0xF1, 0x9A, 0x3A, 0x62, 0xDB, 0x8A, 0x64,
|
||||
0x9F, 0x2D, 0x56, 0x0F, 0xAC, 0x65, 0x28, 0x27,
|
||||
0xD1, 0xAF, 0x05, 0x74, 0xE4, 0x27, 0xAB, 0x63,
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, NULL, 0, sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, NULL, 0, sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 16 */
|
||||
const unsigned char sk[32] = {
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
};
|
||||
const unsigned char pk[32] = {
|
||||
0x77, 0x8C, 0xAA, 0x53, 0xB4, 0x39, 0x3A, 0xC4,
|
||||
0x67, 0x77, 0x4D, 0x09, 0x49, 0x7A, 0x87, 0x22,
|
||||
0x4B, 0xF9, 0xFA, 0xB6, 0xF6, 0xE6, 0x8B, 0x23,
|
||||
0x08, 0x64, 0x97, 0x32, 0x4D, 0x6F, 0xD1, 0x17,
|
||||
};
|
||||
const unsigned char aux_rand[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
};
|
||||
const unsigned char msg[] = { 0x11 };
|
||||
const unsigned char sig[64] = {
|
||||
0x08, 0xA2, 0x0A, 0x0A, 0xFE, 0xF6, 0x41, 0x24,
|
||||
0x64, 0x92, 0x32, 0xE0, 0x69, 0x3C, 0x58, 0x3A,
|
||||
0xB1, 0xB9, 0x93, 0x4A, 0xE6, 0x3B, 0x4C, 0x35,
|
||||
0x11, 0xF3, 0xAE, 0x11, 0x34, 0xC6, 0xA3, 0x03,
|
||||
0xEA, 0x31, 0x73, 0xBF, 0xEA, 0x66, 0x83, 0xBD,
|
||||
0x10, 0x1F, 0xA5, 0xAA, 0x5D, 0xBC, 0x19, 0x96,
|
||||
0xFE, 0x7C, 0xAC, 0xFC, 0x5A, 0x57, 0x7D, 0x33,
|
||||
0xEC, 0x14, 0x56, 0x4C, 0xEC, 0x2B, 0xAC, 0xBF,
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sizeof(msg), sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 17 */
|
||||
const unsigned char sk[32] = {
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
};
|
||||
const unsigned char pk[32] = {
|
||||
0x77, 0x8C, 0xAA, 0x53, 0xB4, 0x39, 0x3A, 0xC4,
|
||||
0x67, 0x77, 0x4D, 0x09, 0x49, 0x7A, 0x87, 0x22,
|
||||
0x4B, 0xF9, 0xFA, 0xB6, 0xF6, 0xE6, 0x8B, 0x23,
|
||||
0x08, 0x64, 0x97, 0x32, 0x4D, 0x6F, 0xD1, 0x17,
|
||||
};
|
||||
const unsigned char aux_rand[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
};
|
||||
const unsigned char msg[] = {
|
||||
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
|
||||
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
|
||||
0x11,
|
||||
};
|
||||
const unsigned char sig[64] = {
|
||||
0x51, 0x30, 0xF3, 0x9A, 0x40, 0x59, 0xB4, 0x3B,
|
||||
0xC7, 0xCA, 0xC0, 0x9A, 0x19, 0xEC, 0xE5, 0x2B,
|
||||
0x5D, 0x86, 0x99, 0xD1, 0xA7, 0x1E, 0x3C, 0x52,
|
||||
0xDA, 0x9A, 0xFD, 0xB6, 0xB5, 0x0A, 0xC3, 0x70,
|
||||
0xC4, 0xA4, 0x82, 0xB7, 0x7B, 0xF9, 0x60, 0xF8,
|
||||
0x68, 0x15, 0x40, 0xE2, 0x5B, 0x67, 0x71, 0xEC,
|
||||
0xE1, 0xE5, 0xA3, 0x7F, 0xD8, 0x0E, 0x5A, 0x51,
|
||||
0x89, 0x7C, 0x55, 0x66, 0xA9, 0x7E, 0xA5, 0xA5,
|
||||
};
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sizeof(msg), sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
{
|
||||
/* Test vector 18 */
|
||||
const unsigned char sk[32] = {
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
0x03, 0x40, 0x03, 0x40, 0x03, 0x40, 0x03, 0x40,
|
||||
};
|
||||
const unsigned char pk[32] = {
|
||||
0x77, 0x8C, 0xAA, 0x53, 0xB4, 0x39, 0x3A, 0xC4,
|
||||
0x67, 0x77, 0x4D, 0x09, 0x49, 0x7A, 0x87, 0x22,
|
||||
0x4B, 0xF9, 0xFA, 0xB6, 0xF6, 0xE6, 0x8B, 0x23,
|
||||
0x08, 0x64, 0x97, 0x32, 0x4D, 0x6F, 0xD1, 0x17,
|
||||
};
|
||||
const unsigned char aux_rand[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
};
|
||||
const unsigned char sig[64] = {
|
||||
0x40, 0x3B, 0x12, 0xB0, 0xD8, 0x55, 0x5A, 0x34,
|
||||
0x41, 0x75, 0xEA, 0x7E, 0xC7, 0x46, 0x56, 0x63,
|
||||
0x03, 0x32, 0x1E, 0x5D, 0xBF, 0xA8, 0xBE, 0x6F,
|
||||
0x09, 0x16, 0x35, 0x16, 0x3E, 0xCA, 0x79, 0xA8,
|
||||
0x58, 0x5E, 0xD3, 0xE3, 0x17, 0x08, 0x07, 0xE7,
|
||||
0xC0, 0x3B, 0x72, 0x0F, 0xC5, 0x4C, 0x7B, 0x23,
|
||||
0x89, 0x7F, 0xCB, 0xA0, 0xE9, 0xD0, 0xB4, 0xA0,
|
||||
0x68, 0x94, 0xCF, 0xD2, 0x49, 0xF2, 0x23, 0x67,
|
||||
};
|
||||
unsigned char msg[100];
|
||||
memset(msg, 0x99, sizeof(msg));
|
||||
test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sizeof(msg), sig);
|
||||
test_schnorrsig_bip_vectors_check_verify(pk, msg, sizeof(msg), sig, 1);
|
||||
}
|
||||
}
|
||||
|
||||
/* Nonce function that returns constant 0 */
|
||||
|
|
|
@ -68,7 +68,6 @@ int main(void) {
|
|||
fprintf(fp, "/* This file contains an array secp256k1_pre_g with odd multiples of the base point G and\n");
|
||||
fprintf(fp, " * an array secp256k1_pre_g_128 with odd multiples of 2^128*G for accelerating the computation of a*P + b*G.\n");
|
||||
fprintf(fp, " */\n");
|
||||
fprintf(fp, "#include \"../include/secp256k1.h\"\n");
|
||||
fprintf(fp, "#include \"group.h\"\n");
|
||||
fprintf(fp, "#include \"ecmult.h\"\n");
|
||||
fprintf(fp, "#include \"precomputed_ecmult.h\"\n");
|
||||
|
|
|
@ -33,7 +33,6 @@ int main(int argc, char **argv) {
|
|||
|
||||
fprintf(fp, "/* This file was automatically generated by precompute_ecmult_gen. */\n");
|
||||
fprintf(fp, "/* See ecmult_gen_impl.h for details about the contents of this file. */\n");
|
||||
fprintf(fp, "#include \"../include/secp256k1.h\"\n");
|
||||
fprintf(fp, "#include \"group.h\"\n");
|
||||
fprintf(fp, "#include \"ecmult_gen.h\"\n");
|
||||
fprintf(fp, "#include \"precomputed_ecmult_gen.h\"\n");
|
||||
|
|
1
src/secp256k1/src/precomputed_ecmult.c
generated
1
src/secp256k1/src/precomputed_ecmult.c
generated
|
@ -2,7 +2,6 @@
|
|||
/* This file contains an array secp256k1_pre_g with odd multiples of the base point G and
|
||||
* an array secp256k1_pre_g_128 with odd multiples of 2^128*G for accelerating the computation of a*P + b*G.
|
||||
*/
|
||||
#include "../include/secp256k1.h"
|
||||
#include "group.h"
|
||||
#include "ecmult.h"
|
||||
#include "precomputed_ecmult.h"
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "ecmult.h"
|
||||
#include "group.h"
|
||||
#if defined(EXHAUSTIVE_TEST_ORDER)
|
||||
# if EXHAUSTIVE_TEST_ORDER == 7
|
||||
|
|
1
src/secp256k1/src/precomputed_ecmult_gen.c
generated
1
src/secp256k1/src/precomputed_ecmult_gen.c
generated
|
@ -1,6 +1,5 @@
|
|||
/* This file was automatically generated by precompute_ecmult_gen. */
|
||||
/* See ecmult_gen_impl.h for details about the contents of this file. */
|
||||
#include "../include/secp256k1.h"
|
||||
#include "group.h"
|
||||
#include "ecmult_gen.h"
|
||||
#include "precomputed_ecmult_gen.h"
|
||||
|
|
|
@ -10,6 +10,7 @@
|
|||
#include "checkmem.h"
|
||||
#include "int128.h"
|
||||
#include "modinv64_impl.h"
|
||||
#include "util.h"
|
||||
|
||||
/* Limbs of the secp256k1 order. */
|
||||
#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
|
||||
|
@ -110,8 +111,9 @@ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a,
|
|||
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
|
||||
secp256k1_uint128 t;
|
||||
volatile int vflag = flag;
|
||||
VERIFY_CHECK(bit < 256);
|
||||
bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
|
||||
bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
|
||||
secp256k1_u128_from_u64(&t, r->d[0]);
|
||||
secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
|
||||
r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64);
|
||||
|
@ -131,10 +133,10 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int
|
|||
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
|
||||
int over;
|
||||
r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
|
||||
r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
|
||||
r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
|
||||
r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
|
||||
r->d[0] = secp256k1_read_be64(&b32[24]);
|
||||
r->d[1] = secp256k1_read_be64(&b32[16]);
|
||||
r->d[2] = secp256k1_read_be64(&b32[8]);
|
||||
r->d[3] = secp256k1_read_be64(&b32[0]);
|
||||
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
|
||||
if (overflow) {
|
||||
*overflow = over;
|
||||
|
@ -142,10 +144,10 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b
|
|||
}
|
||||
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
|
||||
bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
|
||||
bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
|
||||
bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
|
||||
bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
|
||||
secp256k1_write_be64(&bin[0], a->d[3]);
|
||||
secp256k1_write_be64(&bin[8], a->d[2]);
|
||||
secp256k1_write_be64(&bin[16], a->d[1]);
|
||||
secp256k1_write_be64(&bin[24], a->d[0]);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
|
||||
|
@ -188,7 +190,8 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
|
|||
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
|
||||
/* If we are flag = 0, mask = 00...00 and this is a no-op;
|
||||
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
|
||||
uint64_t mask = !flag - 1;
|
||||
volatile int vflag = flag;
|
||||
uint64_t mask = -vflag;
|
||||
uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
|
||||
secp256k1_uint128 t;
|
||||
secp256k1_u128_from_u64(&t, r->d[0] ^ mask);
|
||||
|
@ -380,7 +383,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
|
|||
"movq %%r10, %q5\n"
|
||||
/* extract m6 */
|
||||
"movq %%r8, %q6\n"
|
||||
: "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
|
||||
: "=&g"(m0), "=&g"(m1), "=&g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
|
||||
: "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
|
||||
: "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
|
||||
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include "checkmem.h"
|
||||
#include "modinv32_impl.h"
|
||||
#include "util.h"
|
||||
|
||||
/* Limbs of the secp256k1 order. */
|
||||
#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
|
||||
|
@ -141,8 +142,9 @@ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a,
|
|||
|
||||
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
|
||||
uint64_t t;
|
||||
volatile int vflag = flag;
|
||||
VERIFY_CHECK(bit < 256);
|
||||
bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
|
||||
bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
|
||||
t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
|
||||
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
|
||||
t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
|
||||
|
@ -167,14 +169,14 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int
|
|||
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
|
||||
int over;
|
||||
r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
|
||||
r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
|
||||
r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
|
||||
r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
|
||||
r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
|
||||
r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
|
||||
r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
|
||||
r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
|
||||
r->d[0] = secp256k1_read_be32(&b32[28]);
|
||||
r->d[1] = secp256k1_read_be32(&b32[24]);
|
||||
r->d[2] = secp256k1_read_be32(&b32[20]);
|
||||
r->d[3] = secp256k1_read_be32(&b32[16]);
|
||||
r->d[4] = secp256k1_read_be32(&b32[12]);
|
||||
r->d[5] = secp256k1_read_be32(&b32[8]);
|
||||
r->d[6] = secp256k1_read_be32(&b32[4]);
|
||||
r->d[7] = secp256k1_read_be32(&b32[0]);
|
||||
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
|
||||
if (overflow) {
|
||||
*overflow = over;
|
||||
|
@ -182,14 +184,14 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b
|
|||
}
|
||||
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
|
||||
bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
|
||||
bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
|
||||
bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
|
||||
bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
|
||||
bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
|
||||
bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
|
||||
bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
|
||||
bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
|
||||
secp256k1_write_be32(&bin[0], a->d[7]);
|
||||
secp256k1_write_be32(&bin[4], a->d[6]);
|
||||
secp256k1_write_be32(&bin[8], a->d[5]);
|
||||
secp256k1_write_be32(&bin[12], a->d[4]);
|
||||
secp256k1_write_be32(&bin[16], a->d[3]);
|
||||
secp256k1_write_be32(&bin[20], a->d[2]);
|
||||
secp256k1_write_be32(&bin[24], a->d[1]);
|
||||
secp256k1_write_be32(&bin[28], a->d[0]);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
|
||||
|
@ -241,7 +243,8 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
|
|||
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
|
||||
/* If we are flag = 0, mask = 00...00 and this is a no-op;
|
||||
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
|
||||
uint32_t mask = !flag - 1;
|
||||
volatile int vflag = flag;
|
||||
uint32_t mask = -vflag;
|
||||
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
|
||||
uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
|
||||
r->d[0] = t & nonzero; t >>= 32;
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include "checkmem.h"
|
||||
#include "scalar.h"
|
||||
#include "util.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
|
|
@ -247,8 +247,8 @@ static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge,
|
|||
} else {
|
||||
/* Otherwise, fall back to 32-byte big endian for X and Y. */
|
||||
secp256k1_fe x, y;
|
||||
secp256k1_fe_set_b32(&x, pubkey->data);
|
||||
secp256k1_fe_set_b32(&y, pubkey->data + 32);
|
||||
ARG_CHECK(secp256k1_fe_set_b32_limit(&x, pubkey->data));
|
||||
ARG_CHECK(secp256k1_fe_set_b32_limit(&y, pubkey->data + 32));
|
||||
secp256k1_ge_set_xy(ge, &x, &y);
|
||||
}
|
||||
ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
|
||||
|
@ -811,3 +811,7 @@ int secp256k1_tagged_sha256(const secp256k1_context* ctx, unsigned char *hash32,
|
|||
#ifdef ENABLE_MODULE_SCHNORRSIG
|
||||
# include "modules/schnorrsig/main_impl.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
# include "modules/ellswift/main_impl.h"
|
||||
#endif
|
||||
|
|
|
@ -7,6 +7,8 @@
|
|||
#ifndef SECP256K1_TESTRAND_H
|
||||
#define SECP256K1_TESTRAND_H
|
||||
|
||||
#include "util.h"
|
||||
|
||||
/* A non-cryptographic RNG used only for test infrastructure. */
|
||||
|
||||
/** Seed the pseudorandom number generator for testing. */
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
|
||||
#include "testrand.h"
|
||||
#include "hash.h"
|
||||
#include "util.h"
|
||||
|
||||
static uint64_t secp256k1_test_state[4];
|
||||
static uint64_t secp256k1_test_rng_integer;
|
||||
|
|
|
@ -10,7 +10,15 @@
|
|||
|
||||
#include <time.h>
|
||||
|
||||
#ifdef USE_EXTERNAL_DEFAULT_CALLBACKS
|
||||
#pragma message("Ignoring USE_EXTERNAL_CALLBACKS in tests.")
|
||||
#undef USE_EXTERNAL_DEFAULT_CALLBACKS
|
||||
#endif
|
||||
#if defined(VERIFY) && defined(COVERAGE)
|
||||
#pragma message("Defining VERIFY for tests being built for coverage analysis support is meaningless.")
|
||||
#endif
|
||||
#include "secp256k1.c"
|
||||
|
||||
#include "../include/secp256k1.h"
|
||||
#include "../include/secp256k1_preallocated.h"
|
||||
#include "testrand_impl.h"
|
||||
|
@ -85,7 +93,7 @@ static void random_field_element_test(secp256k1_fe *fe) {
|
|||
do {
|
||||
unsigned char b32[32];
|
||||
secp256k1_testrand256_test(b32);
|
||||
if (secp256k1_fe_set_b32(fe, b32)) {
|
||||
if (secp256k1_fe_set_b32_limit(fe, b32)) {
|
||||
break;
|
||||
}
|
||||
} while(1);
|
||||
|
@ -689,6 +697,17 @@ static void run_sha256_counter_tests(void) {
|
|||
}
|
||||
}
|
||||
|
||||
/* Tests for the equality of two sha256 structs. This function only produces a
|
||||
* correct result if an integer multiple of 64 many bytes have been written
|
||||
* into the hash functions. This function is used by some module tests. */
|
||||
static void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) {
|
||||
/* Is buffer fully consumed? */
|
||||
CHECK((sha1->bytes & 0x3F) == 0);
|
||||
|
||||
CHECK(sha1->bytes == sha2->bytes);
|
||||
CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
|
||||
}
|
||||
|
||||
static void run_hmac_sha256_tests(void) {
|
||||
static const char *keys[6] = {
|
||||
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
|
||||
|
@ -2221,7 +2240,7 @@ static void scalar_test(void) {
|
|||
for (i = 0; i < 100; ++i) {
|
||||
int low;
|
||||
int shift = 1 + secp256k1_testrand_int(15);
|
||||
int expected = r.d[0] % (1 << shift);
|
||||
int expected = r.d[0] % (1ULL << shift);
|
||||
low = secp256k1_scalar_shr_int(&r, shift);
|
||||
CHECK(expected == low);
|
||||
}
|
||||
|
@ -2299,26 +2318,23 @@ static void scalar_test(void) {
|
|||
|
||||
{
|
||||
/* Test multiplicative identity. */
|
||||
secp256k1_scalar r1, v1;
|
||||
secp256k1_scalar_set_int(&v1,1);
|
||||
secp256k1_scalar_mul(&r1, &s1, &v1);
|
||||
secp256k1_scalar r1;
|
||||
secp256k1_scalar_mul(&r1, &s1, &secp256k1_scalar_one);
|
||||
CHECK(secp256k1_scalar_eq(&r1, &s1));
|
||||
}
|
||||
|
||||
{
|
||||
/* Test additive identity. */
|
||||
secp256k1_scalar r1, v0;
|
||||
secp256k1_scalar_set_int(&v0,0);
|
||||
secp256k1_scalar_add(&r1, &s1, &v0);
|
||||
secp256k1_scalar r1;
|
||||
secp256k1_scalar_add(&r1, &s1, &secp256k1_scalar_zero);
|
||||
CHECK(secp256k1_scalar_eq(&r1, &s1));
|
||||
}
|
||||
|
||||
{
|
||||
/* Test zero product property. */
|
||||
secp256k1_scalar r1, v0;
|
||||
secp256k1_scalar_set_int(&v0,0);
|
||||
secp256k1_scalar_mul(&r1, &s1, &v0);
|
||||
CHECK(secp256k1_scalar_eq(&r1, &v0));
|
||||
secp256k1_scalar r1;
|
||||
secp256k1_scalar_mul(&r1, &s1, &secp256k1_scalar_zero);
|
||||
CHECK(secp256k1_scalar_eq(&r1, &secp256k1_scalar_zero));
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -2349,13 +2365,25 @@ static void run_scalar_tests(void) {
|
|||
run_scalar_set_b32_seckey_tests();
|
||||
}
|
||||
|
||||
{
|
||||
/* Check that the scalar constants secp256k1_scalar_zero and
|
||||
secp256k1_scalar_one contain the expected values. */
|
||||
secp256k1_scalar zero, one;
|
||||
|
||||
CHECK(secp256k1_scalar_is_zero(&secp256k1_scalar_zero));
|
||||
secp256k1_scalar_set_int(&zero, 0);
|
||||
CHECK(secp256k1_scalar_eq(&zero, &secp256k1_scalar_zero));
|
||||
|
||||
CHECK(secp256k1_scalar_is_one(&secp256k1_scalar_one));
|
||||
secp256k1_scalar_set_int(&one, 1);
|
||||
CHECK(secp256k1_scalar_eq(&one, &secp256k1_scalar_one));
|
||||
}
|
||||
|
||||
{
|
||||
/* (-1)+1 should be zero. */
|
||||
secp256k1_scalar s, o;
|
||||
secp256k1_scalar_set_int(&s, 1);
|
||||
CHECK(secp256k1_scalar_is_one(&s));
|
||||
secp256k1_scalar_negate(&o, &s);
|
||||
secp256k1_scalar_add(&o, &o, &s);
|
||||
secp256k1_scalar o;
|
||||
secp256k1_scalar_negate(&o, &secp256k1_scalar_one);
|
||||
secp256k1_scalar_add(&o, &o, &secp256k1_scalar_one);
|
||||
CHECK(secp256k1_scalar_is_zero(&o));
|
||||
secp256k1_scalar_negate(&o, &o);
|
||||
CHECK(secp256k1_scalar_is_zero(&o));
|
||||
|
@ -2380,7 +2408,6 @@ static void run_scalar_tests(void) {
|
|||
secp256k1_scalar y;
|
||||
secp256k1_scalar z;
|
||||
secp256k1_scalar zz;
|
||||
secp256k1_scalar one;
|
||||
secp256k1_scalar r1;
|
||||
secp256k1_scalar r2;
|
||||
secp256k1_scalar zzv;
|
||||
|
@ -2917,7 +2944,6 @@ static void run_scalar_tests(void) {
|
|||
0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46,
|
||||
0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}}
|
||||
};
|
||||
secp256k1_scalar_set_int(&one, 1);
|
||||
for (i = 0; i < 33; i++) {
|
||||
secp256k1_scalar_set_b32(&x, chal[i][0], &overflow);
|
||||
CHECK(!overflow);
|
||||
|
@ -2940,7 +2966,7 @@ static void run_scalar_tests(void) {
|
|||
CHECK(secp256k1_scalar_eq(&x, &z));
|
||||
secp256k1_scalar_mul(&zz, &zz, &y);
|
||||
CHECK(!secp256k1_scalar_check_overflow(&zz));
|
||||
CHECK(secp256k1_scalar_eq(&one, &zz));
|
||||
CHECK(secp256k1_scalar_eq(&secp256k1_scalar_one, &zz));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2952,7 +2978,7 @@ static void random_fe(secp256k1_fe *x) {
|
|||
unsigned char bin[32];
|
||||
do {
|
||||
secp256k1_testrand256(bin);
|
||||
if (secp256k1_fe_set_b32(x, bin)) {
|
||||
if (secp256k1_fe_set_b32_limit(x, bin)) {
|
||||
return;
|
||||
}
|
||||
} while(1);
|
||||
|
@ -2962,7 +2988,7 @@ static void random_fe_test(secp256k1_fe *x) {
|
|||
unsigned char bin[32];
|
||||
do {
|
||||
secp256k1_testrand256_test(bin);
|
||||
if (secp256k1_fe_set_b32(x, bin)) {
|
||||
if (secp256k1_fe_set_b32_limit(x, bin)) {
|
||||
return;
|
||||
}
|
||||
} while(1);
|
||||
|
@ -3016,7 +3042,7 @@ static void run_field_convert(void) {
|
|||
unsigned char b322[32];
|
||||
secp256k1_fe_storage fes2;
|
||||
/* Check conversions to fe. */
|
||||
CHECK(secp256k1_fe_set_b32(&fe2, b32));
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe2, b32));
|
||||
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
|
||||
secp256k1_fe_from_storage(&fe2, &fes);
|
||||
CHECK(secp256k1_fe_equal_var(&fe, &fe2));
|
||||
|
@ -3027,13 +3053,75 @@ static void run_field_convert(void) {
|
|||
CHECK(secp256k1_memcmp_var(&fes2, &fes, sizeof(fes)) == 0);
|
||||
}
|
||||
|
||||
static void run_field_be32_overflow(void) {
|
||||
{
|
||||
static const unsigned char zero_overflow[32] = {
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F,
|
||||
};
|
||||
static const unsigned char zero[32] = { 0x00 };
|
||||
unsigned char out[32];
|
||||
secp256k1_fe fe;
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe, zero_overflow) == 0);
|
||||
secp256k1_fe_set_b32_mod(&fe, zero_overflow);
|
||||
CHECK(secp256k1_fe_normalizes_to_zero(&fe) == 1);
|
||||
secp256k1_fe_normalize(&fe);
|
||||
CHECK(secp256k1_fe_is_zero(&fe) == 1);
|
||||
secp256k1_fe_get_b32(out, &fe);
|
||||
CHECK(secp256k1_memcmp_var(out, zero, 32) == 0);
|
||||
}
|
||||
{
|
||||
static const unsigned char one_overflow[32] = {
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30,
|
||||
};
|
||||
static const unsigned char one[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
|
||||
};
|
||||
unsigned char out[32];
|
||||
secp256k1_fe fe;
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe, one_overflow) == 0);
|
||||
secp256k1_fe_set_b32_mod(&fe, one_overflow);
|
||||
secp256k1_fe_normalize(&fe);
|
||||
CHECK(secp256k1_fe_cmp_var(&fe, &secp256k1_fe_one) == 0);
|
||||
secp256k1_fe_get_b32(out, &fe);
|
||||
CHECK(secp256k1_memcmp_var(out, one, 32) == 0);
|
||||
}
|
||||
{
|
||||
static const unsigned char ff_overflow[32] = {
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
};
|
||||
static const unsigned char ff[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x03, 0xD0,
|
||||
};
|
||||
unsigned char out[32];
|
||||
secp256k1_fe fe;
|
||||
const secp256k1_fe fe_ff = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0x01, 0x000003d0);
|
||||
CHECK(secp256k1_fe_set_b32_limit(&fe, ff_overflow) == 0);
|
||||
secp256k1_fe_set_b32_mod(&fe, ff_overflow);
|
||||
secp256k1_fe_normalize(&fe);
|
||||
CHECK(secp256k1_fe_cmp_var(&fe, &fe_ff) == 0);
|
||||
secp256k1_fe_get_b32(out, &fe);
|
||||
CHECK(secp256k1_memcmp_var(out, ff, 32) == 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns true if two field elements have the same representation. */
|
||||
static int fe_identical(const secp256k1_fe *a, const secp256k1_fe *b) {
|
||||
int ret = 1;
|
||||
#ifdef VERIFY
|
||||
ret &= (a->magnitude == b->magnitude);
|
||||
ret &= (a->normalized == b->normalized);
|
||||
#endif
|
||||
/* Compare the struct member that holds the limbs. */
|
||||
ret &= (secp256k1_memcmp_var(a->n, b->n, sizeof(a->n)) == 0);
|
||||
return ret;
|
||||
|
@ -3121,16 +3209,22 @@ static void run_field_misc(void) {
|
|||
q = x;
|
||||
secp256k1_fe_cmov(&x, &z, 0);
|
||||
#ifdef VERIFY
|
||||
CHECK(x.normalized && x.magnitude == 1);
|
||||
CHECK(!x.normalized);
|
||||
CHECK((x.magnitude == q.magnitude) || (x.magnitude == z.magnitude));
|
||||
CHECK((x.magnitude >= q.magnitude) && (x.magnitude >= z.magnitude));
|
||||
#endif
|
||||
x = q;
|
||||
secp256k1_fe_cmov(&x, &x, 1);
|
||||
CHECK(!fe_identical(&x, &z));
|
||||
CHECK(fe_identical(&x, &q));
|
||||
secp256k1_fe_cmov(&q, &z, 1);
|
||||
#ifdef VERIFY
|
||||
CHECK(!q.normalized && q.magnitude == z.magnitude);
|
||||
CHECK(!q.normalized);
|
||||
CHECK((q.magnitude == x.magnitude) || (q.magnitude == z.magnitude));
|
||||
CHECK((q.magnitude >= x.magnitude) && (q.magnitude >= z.magnitude));
|
||||
#endif
|
||||
CHECK(fe_identical(&q, &z));
|
||||
q = z;
|
||||
secp256k1_fe_normalize_var(&x);
|
||||
secp256k1_fe_normalize_var(&z);
|
||||
CHECK(!secp256k1_fe_equal_var(&x, &z));
|
||||
|
@ -3144,7 +3238,7 @@ static void run_field_misc(void) {
|
|||
secp256k1_fe_normalize_var(&q);
|
||||
secp256k1_fe_cmov(&q, &z, (j&1));
|
||||
#ifdef VERIFY
|
||||
CHECK((q.normalized != (j&1)) && q.magnitude == ((j&1) ? z.magnitude : 1));
|
||||
CHECK(!q.normalized && q.magnitude == z.magnitude);
|
||||
#endif
|
||||
}
|
||||
secp256k1_fe_normalize_var(&z);
|
||||
|
@ -3605,7 +3699,7 @@ static void run_inverse_tests(void)
|
|||
b32[31] = i & 0xff;
|
||||
b32[30] = (i >> 8) & 0xff;
|
||||
secp256k1_scalar_set_b32(&x_scalar, b32, NULL);
|
||||
secp256k1_fe_set_b32(&x_fe, b32);
|
||||
secp256k1_fe_set_b32_mod(&x_fe, b32);
|
||||
for (var = 0; var <= 1; ++var) {
|
||||
test_inverse_scalar(NULL, &x_scalar, var);
|
||||
test_inverse_field(NULL, &x_fe, var);
|
||||
|
@ -3622,7 +3716,7 @@ static void run_inverse_tests(void)
|
|||
for (i = 0; i < 64 * COUNT; ++i) {
|
||||
(testrand ? secp256k1_testrand256_test : secp256k1_testrand256)(b32);
|
||||
secp256k1_scalar_set_b32(&x_scalar, b32, NULL);
|
||||
secp256k1_fe_set_b32(&x_fe, b32);
|
||||
secp256k1_fe_set_b32_mod(&x_fe, b32);
|
||||
for (var = 0; var <= 1; ++var) {
|
||||
test_inverse_scalar(NULL, &x_scalar, var);
|
||||
test_inverse_field(NULL, &x_fe, var);
|
||||
|
@ -3692,7 +3786,7 @@ static void test_ge(void) {
|
|||
*/
|
||||
secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs));
|
||||
secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs));
|
||||
secp256k1_fe zf;
|
||||
secp256k1_fe zf, r;
|
||||
secp256k1_fe zfi2, zfi3;
|
||||
|
||||
secp256k1_gej_set_infinity(&gej[0]);
|
||||
|
@ -3734,6 +3828,11 @@ static void test_ge(void) {
|
|||
secp256k1_fe_sqr(&zfi2, &zfi3);
|
||||
secp256k1_fe_mul(&zfi3, &zfi3, &zfi2);
|
||||
|
||||
/* Generate random r */
|
||||
do {
|
||||
random_field_element_test(&r);
|
||||
} while(secp256k1_fe_is_zero(&r));
|
||||
|
||||
for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
|
||||
int i2;
|
||||
for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
|
||||
|
@ -3846,6 +3945,29 @@ static void test_ge(void) {
|
|||
free(ge_set_all);
|
||||
}
|
||||
|
||||
/* Test that all elements have X coordinates on the curve. */
|
||||
for (i = 1; i < 4 * runs + 1; i++) {
|
||||
secp256k1_fe n;
|
||||
CHECK(secp256k1_ge_x_on_curve_var(&ge[i].x));
|
||||
/* And the same holds after random rescaling. */
|
||||
secp256k1_fe_mul(&n, &zf, &ge[i].x);
|
||||
CHECK(secp256k1_ge_x_frac_on_curve_var(&n, &zf));
|
||||
}
|
||||
|
||||
/* Test correspondence of secp256k1_ge_x{,_frac}_on_curve_var with ge_set_xo. */
|
||||
{
|
||||
secp256k1_fe n;
|
||||
secp256k1_ge q;
|
||||
int ret_on_curve, ret_frac_on_curve, ret_set_xo;
|
||||
secp256k1_fe_mul(&n, &zf, &r);
|
||||
ret_on_curve = secp256k1_ge_x_on_curve_var(&r);
|
||||
ret_frac_on_curve = secp256k1_ge_x_frac_on_curve_var(&n, &zf);
|
||||
ret_set_xo = secp256k1_ge_set_xo_var(&q, &r, 0);
|
||||
CHECK(ret_on_curve == ret_frac_on_curve);
|
||||
CHECK(ret_on_curve == ret_set_xo);
|
||||
if (ret_set_xo) CHECK(secp256k1_fe_equal_var(&r, &q.x));
|
||||
}
|
||||
|
||||
/* Test batch gej -> ge conversion with many infinities. */
|
||||
for (i = 0; i < 4 * runs + 1; i++) {
|
||||
int odd;
|
||||
|
@ -4338,9 +4460,9 @@ static void test_ecmult_target(const secp256k1_scalar* target, int mode) {
|
|||
secp256k1_ecmult(&p2j, &pj, &n2, &zero);
|
||||
secp256k1_ecmult(&ptj, &pj, target, &zero);
|
||||
} else {
|
||||
secp256k1_ecmult_const(&p1j, &p, &n1, 256);
|
||||
secp256k1_ecmult_const(&p2j, &p, &n2, 256);
|
||||
secp256k1_ecmult_const(&ptj, &p, target, 256);
|
||||
secp256k1_ecmult_const(&p1j, &p, &n1);
|
||||
secp256k1_ecmult_const(&p2j, &p, &n2);
|
||||
secp256k1_ecmult_const(&ptj, &p, target);
|
||||
}
|
||||
|
||||
/* Add them all up: n1*P + n2*P + target*P = (n1+n2+target)*P = (n1+n1-n1-n2)*P = 0. */
|
||||
|
@ -4403,7 +4525,7 @@ static void ecmult_const_random_mult(void) {
|
|||
0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956
|
||||
);
|
||||
secp256k1_gej b;
|
||||
secp256k1_ecmult_const(&b, &a, &xn, 256);
|
||||
secp256k1_ecmult_const(&b, &a, &xn);
|
||||
|
||||
CHECK(secp256k1_ge_is_valid_var(&a));
|
||||
ge_equals_gej(&expected_b, &b);
|
||||
|
@ -4419,12 +4541,12 @@ static void ecmult_const_commutativity(void) {
|
|||
random_scalar_order_test(&a);
|
||||
random_scalar_order_test(&b);
|
||||
|
||||
secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a, 256);
|
||||
secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b, 256);
|
||||
secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a);
|
||||
secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b);
|
||||
secp256k1_ge_set_gej(&mid1, &res1);
|
||||
secp256k1_ge_set_gej(&mid2, &res2);
|
||||
secp256k1_ecmult_const(&res1, &mid1, &b, 256);
|
||||
secp256k1_ecmult_const(&res2, &mid2, &a, 256);
|
||||
secp256k1_ecmult_const(&res1, &mid1, &b);
|
||||
secp256k1_ecmult_const(&res2, &mid2, &a);
|
||||
secp256k1_ge_set_gej(&mid1, &res1);
|
||||
secp256k1_ge_set_gej(&mid2, &res2);
|
||||
ge_equals_ge(&mid1, &mid2);
|
||||
|
@ -4440,13 +4562,13 @@ static void ecmult_const_mult_zero_one(void) {
|
|||
secp256k1_scalar_negate(&negone, &one);
|
||||
|
||||
random_group_element_test(&point);
|
||||
secp256k1_ecmult_const(&res1, &point, &zero, 3);
|
||||
secp256k1_ecmult_const(&res1, &point, &zero);
|
||||
secp256k1_ge_set_gej(&res2, &res1);
|
||||
CHECK(secp256k1_ge_is_infinity(&res2));
|
||||
secp256k1_ecmult_const(&res1, &point, &one, 2);
|
||||
secp256k1_ecmult_const(&res1, &point, &one);
|
||||
secp256k1_ge_set_gej(&res2, &res1);
|
||||
ge_equals_ge(&res2, &point);
|
||||
secp256k1_ecmult_const(&res1, &point, &negone, 256);
|
||||
secp256k1_ecmult_const(&res1, &point, &negone);
|
||||
secp256k1_gej_neg(&res1, &res1);
|
||||
secp256k1_ge_set_gej(&res2, &res1);
|
||||
ge_equals_ge(&res2, &point);
|
||||
|
@ -4476,7 +4598,7 @@ static void ecmult_const_mult_xonly(void) {
|
|||
n = base.x;
|
||||
}
|
||||
/* Perform x-only multiplication. */
|
||||
res = secp256k1_ecmult_const_xonly(&resx, &n, (i & 1) ? &d : NULL, &q, 256, i & 2);
|
||||
res = secp256k1_ecmult_const_xonly(&resx, &n, (i & 1) ? &d : NULL, &q, i & 2);
|
||||
CHECK(res);
|
||||
/* Perform normal multiplication. */
|
||||
secp256k1_gej_set_ge(&basej, &base);
|
||||
|
@ -4498,7 +4620,7 @@ static void ecmult_const_mult_xonly(void) {
|
|||
random_field_element_test(&x);
|
||||
secp256k1_fe_sqr(&c, &x);
|
||||
secp256k1_fe_mul(&c, &c, &x);
|
||||
secp256k1_fe_add(&c, &secp256k1_fe_const_b);
|
||||
secp256k1_fe_add_int(&c, SECP256K1_B);
|
||||
} while (secp256k1_fe_is_square_var(&c));
|
||||
/* If i is odd, n=d*x for random non-zero d. */
|
||||
if (i & 1) {
|
||||
|
@ -4509,7 +4631,7 @@ static void ecmult_const_mult_xonly(void) {
|
|||
} else {
|
||||
n = x;
|
||||
}
|
||||
res = secp256k1_ecmult_const_xonly(&r, &n, (i & 1) ? &d : NULL, &q, 256, 0);
|
||||
res = secp256k1_ecmult_const_xonly(&r, &n, (i & 1) ? &d : NULL, &q, 0);
|
||||
CHECK(res == 0);
|
||||
}
|
||||
}
|
||||
|
@ -4534,7 +4656,7 @@ static void ecmult_const_chain_multiply(void) {
|
|||
for (i = 0; i < 100; ++i) {
|
||||
secp256k1_ge tmp;
|
||||
secp256k1_ge_set_gej(&tmp, &point);
|
||||
secp256k1_ecmult_const(&point, &tmp, &scalar, 256);
|
||||
secp256k1_ecmult_const(&point, &tmp, &scalar);
|
||||
}
|
||||
secp256k1_ge_set_gej(&res, &point);
|
||||
ge_equals_gej(&res, &expected_point);
|
||||
|
@ -4570,7 +4692,6 @@ static int ecmult_multi_false_callback(secp256k1_scalar *sc, secp256k1_ge *pt, s
|
|||
|
||||
static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func ecmult_multi) {
|
||||
int ncount;
|
||||
secp256k1_scalar szero;
|
||||
secp256k1_scalar sc[32];
|
||||
secp256k1_ge pt[32];
|
||||
secp256k1_gej r;
|
||||
|
@ -4579,7 +4700,6 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
|
||||
data.sc = sc;
|
||||
data.pt = pt;
|
||||
secp256k1_scalar_set_int(&szero, 0);
|
||||
|
||||
/* No points to multiply */
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, NULL, ecmult_multi_callback, &data, 0));
|
||||
|
@ -4597,21 +4717,21 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
pt[1] = secp256k1_ge_const_g;
|
||||
|
||||
/* only G scalar */
|
||||
secp256k1_ecmult(&r2, &ptgj, &szero, &sc[0]);
|
||||
secp256k1_ecmult(&r2, &ptgj, &secp256k1_scalar_zero, &sc[0]);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0));
|
||||
CHECK(secp256k1_gej_eq_var(&r, &r2));
|
||||
|
||||
/* 1-point */
|
||||
secp256k1_ecmult(&r2, &ptgj, &sc[0], &szero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 1));
|
||||
secp256k1_ecmult(&r2, &ptgj, &sc[0], &secp256k1_scalar_zero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 1));
|
||||
CHECK(secp256k1_gej_eq_var(&r, &r2));
|
||||
|
||||
/* Try to multiply 1 point, but callback returns false */
|
||||
CHECK(!ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1));
|
||||
CHECK(!ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_false_callback, &data, 1));
|
||||
|
||||
/* 2-point */
|
||||
secp256k1_ecmult(&r2, &ptgj, &sc[0], &sc[1]);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 2));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 2));
|
||||
CHECK(secp256k1_gej_eq_var(&r, &r2));
|
||||
|
||||
/* 2-point with G scalar */
|
||||
|
@ -4631,7 +4751,7 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
random_scalar_order(&sc[i]);
|
||||
secp256k1_ge_set_infinity(&pt[i]);
|
||||
}
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(secp256k1_gej_is_infinity(&r));
|
||||
}
|
||||
|
||||
|
@ -4641,7 +4761,7 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
pt[i] = ptg;
|
||||
secp256k1_scalar_set_int(&sc[i], 0);
|
||||
}
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(secp256k1_gej_is_infinity(&r));
|
||||
}
|
||||
|
||||
|
@ -4654,7 +4774,7 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
pt[2 * i + 1] = ptg;
|
||||
}
|
||||
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(secp256k1_gej_is_infinity(&r));
|
||||
|
||||
random_scalar_order(&sc[0]);
|
||||
|
@ -4667,7 +4787,7 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]);
|
||||
}
|
||||
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, sizes[j]));
|
||||
CHECK(secp256k1_gej_is_infinity(&r));
|
||||
}
|
||||
|
||||
|
@ -4682,7 +4802,7 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
secp256k1_scalar_negate(&sc[i], &sc[i]);
|
||||
}
|
||||
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 32));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 32));
|
||||
CHECK(secp256k1_gej_is_infinity(&r));
|
||||
}
|
||||
|
||||
|
@ -4700,8 +4820,8 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
secp256k1_gej_add_ge_var(&r, &r, &pt[i], NULL);
|
||||
}
|
||||
|
||||
secp256k1_ecmult(&r2, &r, &sc[0], &szero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
||||
secp256k1_ecmult(&r2, &r, &sc[0], &secp256k1_scalar_zero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 20));
|
||||
CHECK(secp256k1_gej_eq_var(&r, &r2));
|
||||
}
|
||||
|
||||
|
@ -4721,8 +4841,8 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
}
|
||||
|
||||
secp256k1_gej_set_ge(&p0j, &pt[0]);
|
||||
secp256k1_ecmult(&r2, &p0j, &rs, &szero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
||||
secp256k1_ecmult(&r2, &p0j, &rs, &secp256k1_scalar_zero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 20));
|
||||
CHECK(secp256k1_gej_eq_var(&r, &r2));
|
||||
}
|
||||
|
||||
|
@ -4733,13 +4853,13 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
}
|
||||
|
||||
secp256k1_scalar_clear(&sc[0]);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 20));
|
||||
secp256k1_scalar_clear(&sc[1]);
|
||||
secp256k1_scalar_clear(&sc[2]);
|
||||
secp256k1_scalar_clear(&sc[3]);
|
||||
secp256k1_scalar_clear(&sc[4]);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 6));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &szero, ecmult_multi_callback, &data, 5));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 6));
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 5));
|
||||
CHECK(secp256k1_gej_is_infinity(&r));
|
||||
|
||||
/* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */
|
||||
|
@ -4763,8 +4883,8 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
secp256k1_scalar_set_int(&t1, (t1i + 1) / 2);
|
||||
secp256k1_scalar_cond_negate(&t1, t1i & 1);
|
||||
|
||||
secp256k1_ecmult(&t0p, &ptgj, &t0, &szero);
|
||||
secp256k1_ecmult(&t1p, &ptgj, &t1, &szero);
|
||||
secp256k1_ecmult(&t0p, &ptgj, &t0, &secp256k1_scalar_zero);
|
||||
secp256k1_ecmult(&t1p, &ptgj, &t1, &secp256k1_scalar_zero);
|
||||
|
||||
for(s0i = 0; s0i < TOP; s0i++) {
|
||||
for(s1i = 0; s1i < TOP; s1i++) {
|
||||
|
@ -4783,8 +4903,8 @@ static void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi
|
|||
secp256k1_scalar_mul(&tmp2, &t1, &sc[1]);
|
||||
secp256k1_scalar_add(&tmp1, &tmp1, &tmp2);
|
||||
|
||||
secp256k1_ecmult(&expected, &ptgj, &tmp1, &szero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &actual, &szero, ecmult_multi_callback, &data, 2));
|
||||
secp256k1_ecmult(&expected, &ptgj, &tmp1, &secp256k1_scalar_zero);
|
||||
CHECK(ecmult_multi(&CTX->error_callback, scratch, &actual, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 2));
|
||||
CHECK(secp256k1_gej_eq_var(&actual, &expected));
|
||||
}
|
||||
}
|
||||
|
@ -4960,7 +5080,6 @@ static int test_ecmult_multi_random(secp256k1_scratch *scratch) {
|
|||
}
|
||||
|
||||
static void test_ecmult_multi_batch_single(secp256k1_ecmult_multi_func ecmult_multi) {
|
||||
secp256k1_scalar szero;
|
||||
secp256k1_scalar sc;
|
||||
secp256k1_ge pt;
|
||||
secp256k1_gej r;
|
||||
|
@ -4971,11 +5090,10 @@ static void test_ecmult_multi_batch_single(secp256k1_ecmult_multi_func ecmult_mu
|
|||
random_scalar_order(&sc);
|
||||
data.sc = ≻
|
||||
data.pt = &pt;
|
||||
secp256k1_scalar_set_int(&szero, 0);
|
||||
|
||||
/* Try to multiply 1 point, but scratch space is empty.*/
|
||||
scratch_empty = secp256k1_scratch_create(&CTX->error_callback, 0);
|
||||
CHECK(!ecmult_multi(&CTX->error_callback, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1));
|
||||
CHECK(!ecmult_multi(&CTX->error_callback, scratch_empty, &r, &secp256k1_scalar_zero, ecmult_multi_callback, &data, 1));
|
||||
secp256k1_scratch_destroy(&CTX->error_callback, scratch_empty);
|
||||
}
|
||||
|
||||
|
@ -5083,7 +5201,6 @@ static void test_ecmult_multi_batch_size_helper(void) {
|
|||
static void test_ecmult_multi_batching(void) {
|
||||
static const int n_points = 2*ECMULT_PIPPENGER_THRESHOLD;
|
||||
secp256k1_scalar scG;
|
||||
secp256k1_scalar szero;
|
||||
secp256k1_scalar *sc = (secp256k1_scalar *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_scalar) * n_points);
|
||||
secp256k1_ge *pt = (secp256k1_ge *)checked_malloc(&CTX->error_callback, sizeof(secp256k1_ge) * n_points);
|
||||
secp256k1_gej r;
|
||||
|
@ -5093,11 +5210,10 @@ static void test_ecmult_multi_batching(void) {
|
|||
secp256k1_scratch *scratch;
|
||||
|
||||
secp256k1_gej_set_infinity(&r2);
|
||||
secp256k1_scalar_set_int(&szero, 0);
|
||||
|
||||
/* Get random scalars and group elements and compute result */
|
||||
random_scalar_order(&scG);
|
||||
secp256k1_ecmult(&r2, &r2, &szero, &scG);
|
||||
secp256k1_ecmult(&r2, &r2, &secp256k1_scalar_zero, &scG);
|
||||
for(i = 0; i < n_points; i++) {
|
||||
secp256k1_ge ptg;
|
||||
secp256k1_gej ptgj;
|
||||
|
@ -5432,7 +5548,7 @@ static void test_ecmult_accumulate(secp256k1_sha256* acc, const secp256k1_scalar
|
|||
secp256k1_ecmult(&rj3, &infj, &zero, x);
|
||||
secp256k1_ecmult_multi_var(NULL, scratch, &rj4, x, NULL, NULL, 0);
|
||||
secp256k1_ecmult_multi_var(NULL, scratch, &rj5, &zero, test_ecmult_accumulate_cb, (void*)x, 1);
|
||||
secp256k1_ecmult_const(&rj6, &secp256k1_ge_const_g, x, 256);
|
||||
secp256k1_ecmult_const(&rj6, &secp256k1_ge_const_g, x);
|
||||
secp256k1_ge_set_gej_var(&r, &rj1);
|
||||
ge_equals_gej(&r, &rj2);
|
||||
ge_equals_gej(&r, &rj3);
|
||||
|
@ -7423,6 +7539,10 @@ static void run_ecdsa_wycheproof(void) {
|
|||
# include "modules/schnorrsig/tests_impl.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
# include "modules/ellswift/tests_impl.h"
|
||||
#endif
|
||||
|
||||
static void run_secp256k1_memczero_test(void) {
|
||||
unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
|
||||
unsigned char buf2[sizeof(buf1)];
|
||||
|
@ -7439,16 +7559,31 @@ static void run_secp256k1_memczero_test(void) {
|
|||
}
|
||||
|
||||
static void run_secp256k1_byteorder_tests(void) {
|
||||
const uint32_t x = 0xFF03AB45;
|
||||
const unsigned char x_be[4] = {0xFF, 0x03, 0xAB, 0x45};
|
||||
unsigned char buf[4];
|
||||
uint32_t x_;
|
||||
{
|
||||
const uint32_t x = 0xFF03AB45;
|
||||
const unsigned char x_be[4] = {0xFF, 0x03, 0xAB, 0x45};
|
||||
unsigned char buf[4];
|
||||
uint32_t x_;
|
||||
|
||||
secp256k1_write_be32(buf, x);
|
||||
CHECK(secp256k1_memcmp_var(buf, x_be, sizeof(buf)) == 0);
|
||||
secp256k1_write_be32(buf, x);
|
||||
CHECK(secp256k1_memcmp_var(buf, x_be, sizeof(buf)) == 0);
|
||||
|
||||
x_ = secp256k1_read_be32(buf);
|
||||
CHECK(x == x_);
|
||||
x_ = secp256k1_read_be32(buf);
|
||||
CHECK(x == x_);
|
||||
}
|
||||
|
||||
{
|
||||
const uint64_t x = 0xCAFE0123BEEF4567;
|
||||
const unsigned char x_be[8] = {0xCA, 0xFE, 0x01, 0x23, 0xBE, 0xEF, 0x45, 0x67};
|
||||
unsigned char buf[8];
|
||||
uint64_t x_;
|
||||
|
||||
secp256k1_write_be64(buf, x);
|
||||
CHECK(secp256k1_memcmp_var(buf, x_be, sizeof(buf)) == 0);
|
||||
|
||||
x_ = secp256k1_read_be64(buf);
|
||||
CHECK(x == x_);
|
||||
}
|
||||
}
|
||||
|
||||
static void int_cmov_test(void) {
|
||||
|
@ -7487,23 +7622,23 @@ static void fe_cmov_test(void) {
|
|||
secp256k1_fe a = zero;
|
||||
|
||||
secp256k1_fe_cmov(&r, &a, 0);
|
||||
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
||||
CHECK(fe_identical(&r, &max));
|
||||
|
||||
r = zero; a = max;
|
||||
secp256k1_fe_cmov(&r, &a, 1);
|
||||
CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0);
|
||||
CHECK(fe_identical(&r, &max));
|
||||
|
||||
a = zero;
|
||||
secp256k1_fe_cmov(&r, &a, 1);
|
||||
CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0);
|
||||
CHECK(fe_identical(&r, &zero));
|
||||
|
||||
a = one;
|
||||
secp256k1_fe_cmov(&r, &a, 1);
|
||||
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
||||
CHECK(fe_identical(&r, &one));
|
||||
|
||||
r = one; a = zero;
|
||||
secp256k1_fe_cmov(&r, &a, 0);
|
||||
CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0);
|
||||
CHECK(fe_identical(&r, &one));
|
||||
}
|
||||
|
||||
static void fe_storage_cmov_test(void) {
|
||||
|
@ -7693,6 +7828,7 @@ int main(int argc, char **argv) {
|
|||
run_field_half();
|
||||
run_field_misc();
|
||||
run_field_convert();
|
||||
run_field_be32_overflow();
|
||||
run_fe_mul();
|
||||
run_sqr();
|
||||
run_sqrt();
|
||||
|
@ -7754,6 +7890,10 @@ int main(int argc, char **argv) {
|
|||
run_schnorrsig_tests();
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_ELLSWIFT
|
||||
run_ellswift_tests();
|
||||
#endif
|
||||
|
||||
/* util tests */
|
||||
run_secp256k1_memczero_test();
|
||||
run_secp256k1_byteorder_tests();
|
||||
|
|
|
@ -13,13 +13,19 @@
|
|||
#define EXHAUSTIVE_TEST_ORDER 13
|
||||
#endif
|
||||
|
||||
#ifdef USE_EXTERNAL_DEFAULT_CALLBACKS
|
||||
#pragma message("Ignoring USE_EXTERNAL_CALLBACKS in exhaustive_tests.")
|
||||
#undef USE_EXTERNAL_DEFAULT_CALLBACKS
|
||||
#endif
|
||||
#include "secp256k1.c"
|
||||
|
||||
#include "../include/secp256k1.h"
|
||||
#include "assumptions.h"
|
||||
#include "group.h"
|
||||
#include "testrand_impl.h"
|
||||
#include "ecmult_compute_table_impl.h"
|
||||
#include "ecmult_gen_compute_table_impl.h"
|
||||
#include "util.h"
|
||||
|
||||
static int count = 2;
|
||||
|
||||
|
@ -54,7 +60,7 @@ static void random_fe(secp256k1_fe *x) {
|
|||
unsigned char bin[32];
|
||||
do {
|
||||
secp256k1_testrand256(bin);
|
||||
if (secp256k1_fe_set_b32(x, bin)) {
|
||||
if (secp256k1_fe_set_b32_limit(x, bin)) {
|
||||
return;
|
||||
}
|
||||
} while(1);
|
||||
|
@ -192,7 +198,7 @@ static void test_exhaustive_ecmult(const secp256k1_ge *group, const secp256k1_ge
|
|||
}
|
||||
|
||||
for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
int ret;
|
||||
secp256k1_gej tmp;
|
||||
secp256k1_fe xn, xd, tmpf;
|
||||
|
@ -203,19 +209,19 @@ static void test_exhaustive_ecmult(const secp256k1_ge *group, const secp256k1_ge
|
|||
secp256k1_scalar_set_int(&ng, j);
|
||||
|
||||
/* Test secp256k1_ecmult_const. */
|
||||
secp256k1_ecmult_const(&tmp, &group[i], &ng, 256);
|
||||
secp256k1_ecmult_const(&tmp, &group[i], &ng);
|
||||
ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
|
||||
if (j != 0) {
|
||||
if (i != 0 && j != 0) {
|
||||
/* Test secp256k1_ecmult_const_xonly with all curve X coordinates, and xd=NULL. */
|
||||
ret = secp256k1_ecmult_const_xonly(&tmpf, &group[i].x, NULL, &ng, 256, 0);
|
||||
ret = secp256k1_ecmult_const_xonly(&tmpf, &group[i].x, NULL, &ng, 0);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_fe_equal_var(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));
|
||||
|
||||
/* Test secp256k1_ecmult_const_xonly with all curve X coordinates, with random xd. */
|
||||
random_fe_non_zero(&xd);
|
||||
secp256k1_fe_mul(&xn, &xd, &group[i].x);
|
||||
ret = secp256k1_ecmult_const_xonly(&tmpf, &xn, &xd, &ng, 256, 0);
|
||||
ret = secp256k1_ecmult_const_xonly(&tmpf, &xn, &xd, &ng, 0);
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_fe_equal_var(&tmpf, &group[(i * j) % EXHAUSTIVE_TEST_ORDER].x));
|
||||
}
|
||||
|
|
|
@ -7,6 +7,8 @@
|
|||
#ifndef SECP256K1_UTIL_H
|
||||
#define SECP256K1_UTIL_H
|
||||
|
||||
#include "../include/secp256k1.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
@ -17,6 +19,38 @@
|
|||
#define DEBUG_CONFIG_MSG(x) "DEBUG_CONFIG: " x
|
||||
#define DEBUG_CONFIG_DEF(x) DEBUG_CONFIG_MSG(#x "=" STR(x))
|
||||
|
||||
/* Debug helper for printing arrays of unsigned char. */
|
||||
#define PRINT_BUF(buf, len) do { \
|
||||
printf("%s[%lu] = ", #buf, (unsigned long)len); \
|
||||
print_buf_plain(buf, len); \
|
||||
} while(0)
|
||||
|
||||
static void print_buf_plain(const unsigned char *buf, size_t len) {
|
||||
size_t i;
|
||||
printf("{");
|
||||
for (i = 0; i < len; i++) {
|
||||
if (i % 8 == 0) {
|
||||
printf("\n ");
|
||||
} else {
|
||||
printf(" ");
|
||||
}
|
||||
printf("0x%02X,", buf[i]);
|
||||
}
|
||||
printf("\n}\n");
|
||||
}
|
||||
|
||||
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
|
||||
# if SECP256K1_GNUC_PREREQ(2,7)
|
||||
# define SECP256K1_INLINE __inline__
|
||||
# elif (defined(_MSC_VER))
|
||||
# define SECP256K1_INLINE __inline
|
||||
# else
|
||||
# define SECP256K1_INLINE
|
||||
# endif
|
||||
# else
|
||||
# define SECP256K1_INLINE inline
|
||||
# endif
|
||||
|
||||
typedef struct {
|
||||
void (*fn)(const char *text, void* data);
|
||||
const void* data;
|
||||
|
@ -319,4 +353,28 @@ SECP256K1_INLINE static void secp256k1_write_be32(unsigned char* p, uint32_t x)
|
|||
p[0] = x >> 24;
|
||||
}
|
||||
|
||||
/* Read a uint64_t in big endian */
|
||||
SECP256K1_INLINE static uint64_t secp256k1_read_be64(const unsigned char* p) {
|
||||
return (uint64_t)p[0] << 56 |
|
||||
(uint64_t)p[1] << 48 |
|
||||
(uint64_t)p[2] << 40 |
|
||||
(uint64_t)p[3] << 32 |
|
||||
(uint64_t)p[4] << 24 |
|
||||
(uint64_t)p[5] << 16 |
|
||||
(uint64_t)p[6] << 8 |
|
||||
(uint64_t)p[7];
|
||||
}
|
||||
|
||||
/* Write a uint64_t in big endian */
|
||||
SECP256K1_INLINE static void secp256k1_write_be64(unsigned char* p, uint64_t x) {
|
||||
p[7] = x;
|
||||
p[6] = x >> 8;
|
||||
p[5] = x >> 16;
|
||||
p[4] = x >> 24;
|
||||
p[3] = x >> 32;
|
||||
p[2] = x >> 40;
|
||||
p[1] = x >> 48;
|
||||
p[0] = x >> 56;
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_UTIL_H */
|
||||
|
|
|
@ -7,8 +7,6 @@ Generate a C file with ECDSA testvectors from the Wycheproof project.
|
|||
'''
|
||||
|
||||
import json
|
||||
import hashlib
|
||||
import urllib.request
|
||||
import sys
|
||||
|
||||
filename_input = sys.argv[1]
|
||||
|
@ -19,7 +17,8 @@ with open(filename_input) as f:
|
|||
num_groups = len(doc['testGroups'])
|
||||
|
||||
def to_c_array(x):
|
||||
if x == "": return ""
|
||||
if x == "":
|
||||
return ""
|
||||
s = ',0x'.join(a+b for a,b in zip(x[::2], x[1::2]))
|
||||
return "0x" + s
|
||||
|
||||
|
@ -43,18 +42,23 @@ for i in range(num_groups):
|
|||
sig_size = len(test_vector['sig']) // 2
|
||||
msg_size = len(test_vector['msg']) // 2
|
||||
|
||||
if test_vector['result'] == "invalid": expected_verify = 0
|
||||
elif test_vector['result'] == "valid": expected_verify = 1
|
||||
else: raise ValueError("invalid result field")
|
||||
if test_vector['result'] == "invalid":
|
||||
expected_verify = 0
|
||||
elif test_vector['result'] == "valid":
|
||||
expected_verify = 1
|
||||
else:
|
||||
raise ValueError("invalid result field")
|
||||
|
||||
if num_vectors != 0 and sig_size != 0: signatures += ",\n "
|
||||
if num_vectors != 0 and sig_size != 0:
|
||||
signatures += ",\n "
|
||||
|
||||
new_msg = False
|
||||
msg = to_c_array(test_vector['msg'])
|
||||
msg_offset = offset_msg_running
|
||||
# check for repeated msg
|
||||
if msg not in cache_msgs.keys():
|
||||
if num_vectors != 0 and msg_size != 0: messages += ",\n "
|
||||
if msg not in cache_msgs:
|
||||
if num_vectors != 0 and msg_size != 0:
|
||||
messages += ",\n "
|
||||
cache_msgs[msg] = offset_msg_running
|
||||
messages += msg
|
||||
new_msg = True
|
||||
|
@ -65,8 +69,9 @@ for i in range(num_groups):
|
|||
pk = to_c_array(public_key['uncompressed'])
|
||||
pk_offset = offset_pk_running
|
||||
# check for repeated pk
|
||||
if pk not in cache_public_keys.keys():
|
||||
if num_vectors != 0: public_keys += ",\n "
|
||||
if pk not in cache_public_keys:
|
||||
if num_vectors != 0:
|
||||
public_keys += ",\n "
|
||||
cache_public_keys[pk] = offset_pk_running
|
||||
public_keys += pk
|
||||
new_pk = True
|
||||
|
@ -76,15 +81,11 @@ for i in range(num_groups):
|
|||
signatures += to_c_array(test_vector['sig'])
|
||||
|
||||
out += " /" + "* tcId: " + str(test_vector['tcId']) + ". " + test_vector['comment'] + " *" + "/\n"
|
||||
out += " {" + "{0}, {1}, {2}, {3}, {4}, {5}".format(
|
||||
pk_offset,
|
||||
msg_offset,
|
||||
msg_size,
|
||||
offset_sig,
|
||||
sig_size,
|
||||
expected_verify) + " },\n"
|
||||
if new_msg: offset_msg_running += msg_size
|
||||
if new_pk: offset_pk_running += 65
|
||||
out += f" {{{pk_offset}, {msg_offset}, {msg_size}, {offset_sig}, {sig_size}, {expected_verify} }},\n"
|
||||
if new_msg:
|
||||
offset_msg_running += msg_size
|
||||
if new_pk:
|
||||
offset_pk_running += 65
|
||||
offset_sig += sig_size
|
||||
num_vectors += 1
|
||||
|
||||
|
@ -101,7 +102,7 @@ typedef struct {
|
|||
|
||||
|
||||
print("/* Note: this file was autogenerated using tests_wycheproof_generate.py. Do not edit. */")
|
||||
print("#define SECP256K1_ECDSA_WYCHEPROOF_NUMBER_TESTVECTORS ({})".format(num_vectors))
|
||||
print(f"#define SECP256K1_ECDSA_WYCHEPROOF_NUMBER_TESTVECTORS ({num_vectors})")
|
||||
|
||||
print(struct_definition)
|
||||
|
||||
|
|
|
@ -274,6 +274,7 @@ Span<std::byte> MakeWritableByteSpan(V&& v) noexcept
|
|||
// Helper functions to safely cast to unsigned char pointers.
|
||||
inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; }
|
||||
inline unsigned char* UCharCast(unsigned char* c) { return c; }
|
||||
inline unsigned char* UCharCast(std::byte* c) { return (unsigned char*)c; }
|
||||
inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; }
|
||||
inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
|
||||
inline const unsigned char* UCharCast(const std::byte* c) { return reinterpret_cast<const unsigned char*>(c); }
|
||||
|
|
|
@ -15,13 +15,17 @@
|
|||
#include <script/signingprovider.h>
|
||||
#include <script/standard.h>
|
||||
#include <streams.h>
|
||||
#include <test/fuzz/FuzzedDataProvider.h>
|
||||
#include <test/fuzz/fuzz.h>
|
||||
#include <util/chaintype.h>
|
||||
#include <util/strencodings.h>
|
||||
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <numeric>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
|
@ -303,3 +307,79 @@ FUZZ_TARGET_INIT(key, initialize_key)
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
FUZZ_TARGET_INIT(ellswift_roundtrip, initialize_key)
|
||||
{
|
||||
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
|
||||
|
||||
auto key_bytes = fdp.ConsumeBytes<uint8_t>(32);
|
||||
key_bytes.resize(32);
|
||||
CKey key;
|
||||
key.Set(key_bytes.begin(), key_bytes.end(), true);
|
||||
if (!key.IsValid()) return;
|
||||
|
||||
auto ent32 = fdp.ConsumeBytes<std::byte>(32);
|
||||
ent32.resize(32);
|
||||
|
||||
auto encoded_ellswift = key.EllSwiftCreate(ent32);
|
||||
auto decoded_pubkey = encoded_ellswift.Decode();
|
||||
|
||||
assert(key.VerifyPubKey(decoded_pubkey));
|
||||
}
|
||||
|
||||
FUZZ_TARGET_INIT(bip324_ecdh, initialize_key)
|
||||
{
|
||||
FuzzedDataProvider fdp{buffer.data(), buffer.size()};
|
||||
|
||||
// We generate private key, k1.
|
||||
auto rnd32 = fdp.ConsumeBytes<uint8_t>(32);
|
||||
rnd32.resize(32);
|
||||
CKey k1;
|
||||
k1.Set(rnd32.begin(), rnd32.end(), true);
|
||||
if (!k1.IsValid()) return;
|
||||
|
||||
// They generate private key, k2.
|
||||
rnd32 = fdp.ConsumeBytes<uint8_t>(32);
|
||||
rnd32.resize(32);
|
||||
CKey k2;
|
||||
k2.Set(rnd32.begin(), rnd32.end(), true);
|
||||
if (!k2.IsValid()) return;
|
||||
|
||||
// We construct an ellswift encoding for our key, k1_ellswift.
|
||||
auto ent32_1 = fdp.ConsumeBytes<std::byte>(32);
|
||||
ent32_1.resize(32);
|
||||
auto k1_ellswift = k1.EllSwiftCreate(ent32_1);
|
||||
|
||||
// They construct an ellswift encoding for their key, k2_ellswift.
|
||||
auto ent32_2 = fdp.ConsumeBytes<std::byte>(32);
|
||||
ent32_2.resize(32);
|
||||
auto k2_ellswift = k2.EllSwiftCreate(ent32_2);
|
||||
|
||||
// They construct another (possibly distinct) ellswift encoding for their key, k2_ellswift_bad.
|
||||
auto ent32_2_bad = fdp.ConsumeBytes<std::byte>(32);
|
||||
ent32_2_bad.resize(32);
|
||||
auto k2_ellswift_bad = k2.EllSwiftCreate(ent32_2_bad);
|
||||
assert((ent32_2_bad == ent32_2) == (k2_ellswift_bad == k2_ellswift));
|
||||
|
||||
// Determine who is who.
|
||||
bool initiating = fdp.ConsumeBool();
|
||||
|
||||
// We compute our shared secret using our key and their public key.
|
||||
auto ecdh_secret_1 = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, initiating);
|
||||
// They compute their shared secret using their key and our public key.
|
||||
auto ecdh_secret_2 = k2.ComputeBIP324ECDHSecret(k1_ellswift, k2_ellswift, !initiating);
|
||||
// Those must match, as everyone is behaving correctly.
|
||||
assert(ecdh_secret_1 == ecdh_secret_2);
|
||||
|
||||
if (k1_ellswift != k2_ellswift) {
|
||||
// Unless the two keys are exactly identical, acting as the wrong party breaks things.
|
||||
auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift, k1_ellswift, !initiating);
|
||||
assert(ecdh_secret_bad != ecdh_secret_1);
|
||||
}
|
||||
|
||||
if (k2_ellswift_bad != k2_ellswift) {
|
||||
// Unless both encodings created by them are identical, using the second one breaks things.
|
||||
auto ecdh_secret_bad = k1.ComputeBIP324ECDHSecret(k2_ellswift_bad, k1_ellswift, initiating);
|
||||
assert(ecdh_secret_bad != ecdh_secret_1);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -344,4 +344,24 @@ BOOST_AUTO_TEST_CASE(bip340_test_vectors)
|
|||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(key_ellswift)
|
||||
{
|
||||
for (const auto& secret : {strSecret1, strSecret2, strSecret1C, strSecret2C}) {
|
||||
CKey key = DecodeSecret(secret);
|
||||
BOOST_CHECK(key.IsValid());
|
||||
|
||||
uint256 ent32 = InsecureRand256();
|
||||
auto ellswift = key.EllSwiftCreate(AsBytes(Span{ent32}));
|
||||
|
||||
CPubKey decoded_pubkey = ellswift.Decode();
|
||||
if (!key.IsCompressed()) {
|
||||
// The decoding constructor returns a compressed pubkey. If the
|
||||
// original was uncompressed, we must decompress the decoded one
|
||||
// to compare.
|
||||
decoded_pubkey.Decompress();
|
||||
}
|
||||
BOOST_CHECK(key.GetPubKey() == decoded_pubkey);
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
|
Loading…
Add table
Reference in a new issue