mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-11 20:32:35 -03:00
Nothing-up-my-sleeving blinding for a*G
This commit is contained in:
parent
d531b04ea9
commit
62c3f55a9d
2 changed files with 52 additions and 32 deletions
|
@ -36,7 +36,7 @@ Implementation details
|
|||
* Point multiplication for signing
|
||||
* Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
|
||||
* Slice the precomputed table in memory per byte, so memory access to the table becomes uniform.
|
||||
* Not fully constant-time.
|
||||
* Not fully constant-time, but the precomputed tables add and eventually subtract points for which no known scalar (private key) is known, blinding non-constant time effects even from an attacker with control over the private key used.
|
||||
|
||||
Build steps
|
||||
-----------
|
||||
|
|
|
@ -73,14 +73,16 @@ typedef struct {
|
|||
// For accelerating the computation of a*G:
|
||||
// To harden against timing attacks, use the following mechanism:
|
||||
// * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
|
||||
// * Compute sum((n_i + 1) * 16^i * G, i=0..63).
|
||||
// * Subtract sum(1 * 16^i * G, i=0..63).
|
||||
// For each i, and each of the 16 possible values of n_i, ((n_i + 1) * 16^i * G) is
|
||||
// precomputed (call it prec(i,n_i), as well as -sum(1 * 16^i * G) (called fin).
|
||||
// The formula now becomes sum(prec(i, n_i), i=0..63) + fin.
|
||||
// To make memory access uniform, the bytes of prec(i,n_i) are sliced per value of n_i.
|
||||
unsigned char prec[64][sizeof(secp256k1_ge_t)][16]; // prec[j][k][i] = k'th byte of (16^j * (i+1) * G)
|
||||
secp256k1_ge_t fin; // -(sum(prec[j][0], j=0..63))
|
||||
// * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
|
||||
// * U_i = U * 2^i (for i=0..62)
|
||||
// * U_i = U * (1-2^63) (for i=63)
|
||||
// where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
|
||||
// For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
|
||||
// precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
|
||||
// None of the resulting prec group elements have a known scalar, and neither do any of
|
||||
// the intermediate sums while computing a*G.
|
||||
// To make memory access uniform, the bytes of prec(i, n_i) are sliced per value of n_i.
|
||||
unsigned char prec[64][sizeof(secp256k1_ge_t)][16]; // prec[j][k][i] = k'th byte of (16^j * i * G + U_i)
|
||||
} secp256k1_ecmult_consts_t;
|
||||
|
||||
static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL;
|
||||
|
@ -105,34 +107,53 @@ static void secp256k1_ecmult_start(void) {
|
|||
secp256k1_ecmult_table_precomp_ge(ret->pre_g, &gj, WINDOW_G);
|
||||
secp256k1_ecmult_table_precomp_ge(ret->pre_g_128, &g_128j, WINDOW_G);
|
||||
|
||||
// compute prec and fin
|
||||
secp256k1_gej_t tj[961];
|
||||
int pos = 0;
|
||||
secp256k1_gej_t fn; secp256k1_gej_set_infinity(&fn);
|
||||
for (int j=0; j<64; j++) {
|
||||
secp256k1_gej_add(&fn, &fn, &gj);
|
||||
secp256k1_gej_t adj = gj;
|
||||
for (int i=1; i<16; i++) {
|
||||
secp256k1_gej_add(&gj, &gj, &adj);
|
||||
tj[pos++] = gj;
|
||||
}
|
||||
// Construct a group element with no known corresponding scalar (nothing up my sleeve).
|
||||
secp256k1_gej_t nums_gej;
|
||||
{
|
||||
static const unsigned char nums_b32[32] = "The scalar for this x is unknown";
|
||||
secp256k1_fe_t nums_x;
|
||||
secp256k1_fe_set_b32(&nums_x, nums_b32);
|
||||
secp256k1_ge_t nums_ge;
|
||||
VERIFY_CHECK(secp256k1_ge_set_xo(&nums_ge, &nums_x, 0));
|
||||
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
|
||||
// Add G to make the bits in x uniformly distributed.
|
||||
secp256k1_gej_add_ge(&nums_gej, &nums_gej, g);
|
||||
}
|
||||
|
||||
// compute prec.
|
||||
secp256k1_ge_t prec[1024];
|
||||
{
|
||||
secp256k1_gej_t precj[1024]; // Jacobian versions of prec.
|
||||
int j = 0;
|
||||
secp256k1_gej_t gbase; gbase = gj; // 16^j * G
|
||||
secp256k1_gej_t numsbase; numsbase = nums_gej; // 2^j * nums.
|
||||
for (int j=0; j<64; j++) {
|
||||
// Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase).
|
||||
precj[j*16] = numsbase;
|
||||
for (int i=1; i<16; i++) {
|
||||
secp256k1_gej_add(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase);
|
||||
}
|
||||
// Multiply gbase by 16.
|
||||
for (int i=0; i<4; i++) {
|
||||
secp256k1_gej_double(&gbase, &gbase);
|
||||
}
|
||||
// Multiply numbase by 2.
|
||||
secp256k1_gej_double(&numsbase, &numsbase);
|
||||
if (j == 62) {
|
||||
// In the last iteration, numsbase is (1 - 2^j) * nums instead.
|
||||
secp256k1_gej_neg(&numsbase, &numsbase);
|
||||
secp256k1_gej_add(&numsbase, &numsbase, &nums_gej);
|
||||
}
|
||||
}
|
||||
secp256k1_ge_set_all_gej(1024, prec, precj);
|
||||
}
|
||||
VERIFY_CHECK(pos == 960);
|
||||
tj[pos] = fn;
|
||||
secp256k1_ge_t t[961]; secp256k1_ge_set_all_gej(961, t, tj);
|
||||
pos = 0;
|
||||
const unsigned char *raw = (const unsigned char*)g;
|
||||
for (int j=0; j<64; j++) {
|
||||
for (int k=0; k<sizeof(secp256k1_ge_t); k++)
|
||||
ret->prec[j][k][0] = raw[k];
|
||||
for (int i=1; i<16; i++) {
|
||||
raw = (const unsigned char*)(&t[pos++]);
|
||||
for (int i=0; i<16; i++) {
|
||||
const unsigned char* raw = (const unsigned char*)(&prec[j*16 + i]);
|
||||
for (int k=0; k<sizeof(secp256k1_ge_t); k++)
|
||||
ret->prec[j][k][i] = raw[k];
|
||||
}
|
||||
}
|
||||
VERIFY_CHECK(pos == 960);
|
||||
secp256k1_ge_neg(&ret->fin, &t[pos]);
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_stop(void) {
|
||||
|
@ -202,7 +223,6 @@ void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn)
|
|||
secp256k1_ge_clear(&add);
|
||||
secp256k1_num_clear(&n);
|
||||
secp256k1_num_free(&n);
|
||||
secp256k1_gej_add_ge(r, r, &c->fin);
|
||||
}
|
||||
|
||||
void static secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng) {
|
||||
|
|
Loading…
Reference in a new issue