mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-25 10:43:19 -03:00
gej_add_ge: fix degenerate case when computing P + (-lambda)P
If two points (x1, y1) and (x2, y2) are given to gej_add_ge with x1 != x2 but y1 = -y2, the function gives a wrong answer since this causes it to compute "lambda = 0/0" during an intermediate step. (Here lambda refers to an auxiallary variable in the point addition formula, not the cube-root of 1 used by the endomorphism optimization.) This commit catches the 0/0 and replaces it with an alternate expression for lambda, cmov'ing it in place if necessary.
This commit is contained in:
parent
bcf2fcfd3a
commit
5de4c5dffd
1 changed files with 70 additions and 15 deletions
|
@ -464,7 +464,8 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
|
|||
/* Operations: 7 mul, 5 sqr, 5 normalize, 17 mul_int/add/negate/cmov */
|
||||
static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
||||
secp256k1_fe_t zz, u1, u2, s1, s2, z, t, tt, m, n, q, rr;
|
||||
int infinity;
|
||||
secp256k1_fe_t m_alt, rr_alt;
|
||||
int infinity, degenerate;
|
||||
VERIFY_CHECK(!b->infinity);
|
||||
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
|
||||
|
||||
|
@ -488,6 +489,34 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
|
|||
* Y3 = 4*(R*(3*Q-2*R^2)-M^4)
|
||||
* Z3 = 2*M*Z
|
||||
* (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
|
||||
*
|
||||
* This formula has the benefit of being the same for both addition
|
||||
* of distinct points and doubling. However, it breaks down in the
|
||||
* case that either point is infinity, or that y1 = -y2. We handle
|
||||
* these cases in the following ways:
|
||||
*
|
||||
* - If b is infinity we simply bail by means of a VERIFY_CHECK.
|
||||
*
|
||||
* - If a is infinity, we detect this, and at the end of the
|
||||
* computation replace the result (which will be meaningless,
|
||||
* but we compute to be constant-time) with b.x : b.y : 1.
|
||||
*
|
||||
* - If a = -b, we have y1 = -y2, which is a degenerate case.
|
||||
* But here the answer is infinity, so we simply set the
|
||||
* infinity flag of the result, overriding the computed values
|
||||
* without even needing to cmov.
|
||||
*
|
||||
* - If y1 = -y2 but x1 != x2, which does occur thanks to certain
|
||||
* properties of our curve (specifically, 1 has nontrivial cube
|
||||
* roots in our field, and the curve equation has no x coefficient)
|
||||
* then the answer is not infinity but also not given by the above
|
||||
* equation. In this case, we cmov in place an alternate expression
|
||||
* for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
|
||||
* expressions for lambda are defined, they are equal, and can be
|
||||
* obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
|
||||
* then substitution of x^3 + 7 for y^2 (using the curve equation).
|
||||
* For all pairs of nonzero points (a, b) at least one is defined,
|
||||
* so this covers everything.
|
||||
*/
|
||||
|
||||
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
|
||||
|
@ -500,28 +529,54 @@ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, c
|
|||
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
|
||||
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
|
||||
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
|
||||
secp256k1_fe_mul(&tt, &u1, &u2); secp256k1_fe_negate(&tt, &tt, 1); /* t = -U1*U2 (2) */
|
||||
secp256k1_fe_mul(&tt, &u1, &u2); secp256k1_fe_negate(&tt, &tt, 1); /* tt = -U1*U2 (2) */
|
||||
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
|
||||
secp256k1_fe_sqr(&n, &m); /* n = M^2 (1) */
|
||||
secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*M^2 (1) */
|
||||
secp256k1_fe_sqr(&n, &n); /* n = M^4 (1) */
|
||||
secp256k1_fe_sqr(&t, &rr); /* t = R^2 (1) */
|
||||
secp256k1_fe_mul(&r->z, &m, &z); /* r->z = M*Z (1) */
|
||||
/** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
|
||||
* case that Z = z1z2 = 0, and this is special-cased later on). */
|
||||
degenerate = secp256k1_fe_normalizes_to_zero(&m) &
|
||||
secp256k1_fe_normalizes_to_zero(&rr);
|
||||
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
|
||||
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
|
||||
* a nontrivial cube root of one. In either case, an alternate
|
||||
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
|
||||
* so we set R/M equal to this. */
|
||||
secp256k1_fe_negate(&rr_alt, &s2, 1); /* rr = -Y2*Z1^3 */
|
||||
secp256k1_fe_add(&rr_alt, &s1); /* rr = Y1*Z2^3 - Y2*Z1^3 */
|
||||
secp256k1_fe_negate(&m_alt, &u2, 1); /* m = -X2*Z1^2 */
|
||||
secp256k1_fe_add(&m_alt, &u1); /* m = X1*Z2^2 - X2*Z1^2 */
|
||||
|
||||
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
|
||||
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
|
||||
/* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
|
||||
* From here on out Ralt and Malt represent the numerator
|
||||
* and denominator of lambda; R and M represent the explicit
|
||||
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
|
||||
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
|
||||
secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
|
||||
/* These two lines use the observation that either M == Malt or M == 0,
|
||||
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
|
||||
* zero (which is "computed" by cmov). So the cost is one squaring
|
||||
* versus two multiplications. */
|
||||
secp256k1_fe_sqr(&n, &n); /* n = M^3 * Malt (1) */
|
||||
secp256k1_fe_cmov(&n, &m, degenerate);
|
||||
secp256k1_fe_normalize_weak(&n);
|
||||
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
|
||||
secp256k1_fe_mul(&r->z, &m_alt, &z); /* r->z = Malt*Z (1) */
|
||||
infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
|
||||
secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*M*Z (2) */
|
||||
r->x = t; /* r->x = R^2 (1) */
|
||||
secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
|
||||
r->x = t; /* r->x = Ralt^2 (1) */
|
||||
secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
|
||||
secp256k1_fe_add(&r->x, &q); /* r->x = R^2-Q (3) */
|
||||
secp256k1_fe_add(&r->x, &q); /* r->x = Ralt^2-Q (3) */
|
||||
secp256k1_fe_normalize(&r->x);
|
||||
t = r->x;
|
||||
secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
|
||||
secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (8) */
|
||||
secp256k1_fe_mul(&t, &t, &rr); /* t = R*(2*x3 - Q) (1) */
|
||||
secp256k1_fe_add(&t, &n); /* t = R*(2*R^2-3*Q)+M^4 (2) */
|
||||
secp256k1_fe_negate(&r->y, &t, 2); /* r->y = R*(3*Q-2*R^2)-M^4 (3) */
|
||||
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
|
||||
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (2) */
|
||||
secp256k1_fe_negate(&r->y, &t, 2); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (3) */
|
||||
secp256k1_fe_normalize_weak(&r->y);
|
||||
secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(R^2-Q) */
|
||||
secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) */
|
||||
secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
|
||||
secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
|
||||
|
||||
/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
|
||||
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
|
||||
|
|
Loading…
Add table
Reference in a new issue