This commit is contained in:
Sergi Delgado 2025-04-29 12:03:54 +02:00 committed by GitHub
commit 573f558643
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 628 additions and 51 deletions

View file

@ -536,7 +536,8 @@ public:
std::vector<TxOrphanage::OrphanTxBase> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
std::pair<size_t, size_t> GetFanoutPeersCount() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
void RelayTransaction(const uint256& txid, const uint256& wtxid, bool consider_fanout) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
void SetBestBlock(int height, std::chrono::seconds time) override
{
m_best_height = height;
@ -614,19 +615,19 @@ private:
/** Handle a transaction whose result was MempoolAcceptResult::ResultType::VALID.
* Updates m_txrequest, m_orphanage, and vExtraTxnForCompact. Also queues the tx for relay. */
void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions, bool consider_fanout)
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
/** Handle the results of package validation: calls ProcessValidTx and ProcessInvalidTx for
* individual transactions, and caches rejection for the package as a group.
*/
void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result, bool consider_fanout)
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
/**
* Reconsider orphan transactions after a parent has been accepted to the mempool.
*
* @peer[in] peer The peer whose orphan transactions we will reconsider. Generally only
* @param[in] peer The peer whose orphan transactions we will reconsider. Generally only
* one orphan will be reconsidered on each call of this function. If an
* accepted orphan has orphaned children, those will need to be
* reconsidered, creating more work, possibly for other peers.
@ -637,6 +638,17 @@ private:
bool ProcessOrphanTx(Peer& peer)
EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
/** Whether we should fanout to a given peer or not. Always returns true for non-Erlay peers
* For Erlay-peers, if they are inbound, returns true as long as the peer has been selected for fanout.
* If they are outbound, returns true as long as the transaction was received via fanout (further filtering will be performed
* before sending out the next INV message to each peer).
* Returns false otherwise.
*
* @param[in] peer The peer we are making the decision on
* @param[in] consider_fanout Whether to consider fanout or not (only applies if the peer is outbound)
*/
bool ShouldFanoutTo(const PeerRef peer, bool consider_fanout) EXCLUSIVE_LOCKS_REQUIRED(m_peer_mutex);
/** Process a single headers message from a peer.
*
* @param[in] pfrom CNode of the peer
@ -1581,7 +1593,8 @@ void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
CTransactionRef tx = m_mempool.get(txid);
if (tx != nullptr) {
RelayTransaction(txid, tx->GetWitnessHash());
// Always consider fanout when relaying our own transactions
RelayTransaction(txid, tx->GetWitnessHash(), /*consider_fanout=*/true);
} else {
m_mempool.RemoveUnbroadcastTx(txid, true);
}
@ -2148,12 +2161,44 @@ void PeerManagerImpl::SendPings()
for(auto& it : m_peer_map) it.second->m_ping_queued = true;
}
void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
std::pair<size_t, size_t> PeerManagerImpl::GetFanoutPeersCount()
{
size_t inbounds_fanout_tx_relay = 0, outbounds_fanout_tx_relay = 0;
if (m_txreconciliation) {
LOCK(m_peer_mutex);
for(const auto& [peer_id, peer] : m_peer_map) {
if (const auto tx_relay = peer->GetTxRelay()) {
const bool peer_relays_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
if (peer_relays_txs && !m_txreconciliation->IsPeerRegistered(peer_id)) {
peer->m_is_inbound ? ++inbounds_fanout_tx_relay : ++outbounds_fanout_tx_relay;
}
}
}
}
return std::pair(inbounds_fanout_tx_relay, outbounds_fanout_tx_relay);
}
bool PeerManagerImpl::ShouldFanoutTo(const PeerRef peer, bool consider_fanout)
{
// We consider Erlay peers for fanout if they are within our inbound fanout targets, or if they are outbounds
// and the transaction was NOT received via set reconciliation. For the latter group, further filtering
// will be applied at relay time.
if (m_txreconciliation && m_txreconciliation->IsPeerRegistered(peer->m_id)) {
return (!peer->m_is_inbound && consider_fanout) || m_txreconciliation->IsInboundFanoutTarget(peer->m_id);
} else {
// For non-Erlay peers we always fanout (same applies if we do not support Erlay)
return true;
}
}
void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid, bool consider_fanout)
{
LOCK(m_peer_mutex);
for(auto& it : m_peer_map) {
Peer& peer = *it.second;
auto tx_relay = peer.GetTxRelay();
for(auto& [peer_id, peer] : m_peer_map) {
auto tx_relay = peer->GetTxRelay();
if (!tx_relay) continue;
LOCK(tx_relay->m_tx_inventory_mutex);
@ -2164,9 +2209,26 @@ void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid
// in the announcement.
if (tx_relay->m_next_inv_send_time == 0s) continue;
const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
const uint256& hash{peer->m_wtxid_relay ? wtxid : txid};
if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
tx_relay->m_tx_inventory_to_send.insert(hash);
bool fanout = ShouldFanoutTo(peer, consider_fanout);
// FIXME: This bit here and the corresponding one in SendMessage are basically identical.
// Check if there is a way to make them into a private function We would have to pass a
// lambda that does the "insert into a collection part", which is what's different from both
if (!fanout) {
Assume(m_txreconciliation);
const auto result = m_txreconciliation->AddToSet(peer_id, Wtxid::FromUint256(wtxid));
if (!result.m_succeeded) {
fanout = true;
if (const auto collision = result.m_collision; collision.has_value()) {
Assume(m_txreconciliation->TryRemovingFromSet(peer_id, collision.value()));
tx_relay->m_tx_inventory_to_send.insert(collision.value().ToUint256());
}
}
}
if (fanout) {
tx_relay->m_tx_inventory_to_send.insert(hash);
}
}
};
}
@ -3024,7 +3086,7 @@ std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId
return package_to_validate;
}
void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions, bool consider_fanout)
{
AssertLockNotHeld(m_peer_mutex);
AssertLockHeld(g_msgproc_mutex);
@ -3038,14 +3100,14 @@ void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, c
tx->GetWitnessHash().ToString(),
m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
RelayTransaction(tx->GetHash(), tx->GetWitnessHash(), consider_fanout);
for (const CTransactionRef& removedTx : replaced_transactions) {
AddToCompactExtraTransactions(removedTx);
}
}
void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result, bool consider_fanout)
{
AssertLockNotHeld(m_peer_mutex);
AssertLockHeld(g_msgproc_mutex);
@ -3075,7 +3137,7 @@ void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& packag
switch (tx_result.m_result_type) {
case MempoolAcceptResult::ResultType::VALID:
{
ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions, consider_fanout);
break;
}
case MempoolAcceptResult::ResultType::INVALID:
@ -3118,7 +3180,15 @@ bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
// When processing orphans after getting a missing parent, we always consider faning the out.
// TODO: This is a weird case. ProcessOrphanTx is triggered by the reception of a missing parent, but we do not keep track of
// when the orphan was received, so it could be the case that we end up here when the orphan is still in its early propagation
// state, or far after. If we are late, relaying the transaction may not be worth it, our peers may already know (reconciling
// would even be worse than fanout, since it would simply add more roundtrips to the same outcome: annoincing a transaction that is
// already known).
// This should only happen if we connect to the network and receive a depending transaction late on its propagation.
// However, it may be worth considering how to deal with this case in a followup to reduce unnecessary traffic.
ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions, /*consider_fanout=*/true);
return true;
} else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
@ -4262,6 +4332,9 @@ void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type,
LOCK2(cs_main, m_tx_download_mutex);
// TODO: Until the Erlay p2p flow is defined, all transactions are flagged for fanout
bool consider_fanout = true;
const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
if (!should_validate) {
if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) {
@ -4274,7 +4347,7 @@ void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type,
} else {
LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
RelayTransaction(tx.GetHash(), tx.GetWitnessHash(), consider_fanout);
}
}
@ -4282,7 +4355,7 @@ void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type,
const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
package_result.m_state.IsValid() ? "package accepted" : "package rejected");
ProcessPackageResult(package_to_validate.value(), package_result);
ProcessPackageResult(package_to_validate.value(), package_result, consider_fanout);
}
return;
}
@ -4294,7 +4367,7 @@ void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type,
const TxValidationState& state = result.m_state;
if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) {
ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions, consider_fanout);
pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
}
if (state.IsInvalid()) {
@ -4302,7 +4375,7 @@ void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type,
const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
package_result.m_state.IsValid() ? "package accepted" : "package rejected");
ProcessPackageResult(package_to_validate.value(), package_result);
ProcessPackageResult(package_to_validate.value(), package_result, consider_fanout);
}
}
@ -5702,10 +5775,12 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
peer->m_blocks_for_inv_relay.clear();
}
// Check whether periodic sends should happen
bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
std::vector<std::pair<uint256, uint16_t>> to_be_announced{};
{
LOCK(tx_relay->m_tx_inventory_mutex);
// Check whether periodic sends should happen
bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
if (tx_relay->m_next_inv_send_time < current_time) {
fSendTrickle = true;
if (pto->IsInboundConn()) {
@ -5715,6 +5790,12 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
}
}
// Rotate inbound fanout targets if the timer has gone off
if (m_txreconciliation && m_txreconciliation->GetNextInboundPeerRotationTime() < current_time) {
m_txreconciliation->SetNextInboundPeerRotationTime(m_rng.rand_exp_duration(INBOUND_FANOUT_ROTATION_INTERVAL));
m_txreconciliation->RotateInboundFanoutTargets();
}
// Time to send but the peer has requested we not relay transactions.
if (fSendTrickle) {
LOCK(tx_relay->m_bloom_filter_mutex);
@ -5779,7 +5860,6 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
std::set<uint256>::iterator it = vInvTx.back();
vInvTx.pop_back();
uint256 hash = *it;
CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
// Remove it from the to-be-sent set
tx_relay->m_tx_inventory_to_send.erase(it);
// Check if not in the filter already
@ -5787,7 +5867,7 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
continue;
}
// Not in the mempool anymore? don't bother sending it.
auto txinfo = m_mempool.info(ToGenTxid(inv));
auto txinfo = m_mempool.info(GenTxid(peer->m_wtxid_relay ? GenTxid::Wtxid(hash) : GenTxid::Txid(hash)));
if (!txinfo.tx) {
continue;
}
@ -5796,20 +5876,81 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
continue;
}
if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
// Send
vInv.push_back(inv);
// Flag to be sent.
// Initialize with the counter at 0. This in only relevant for Erlay nodes and will be updated in the
// following context after releasing m_tx_inventory_mutex
to_be_announced.emplace_back(hash, 0);
nRelayedTransactions++;
if (vInv.size() == MAX_INV_SZ) {
MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
vInv.clear();
}
tx_relay->m_tx_inventory_known_filter.insert(hash);
}
// Ensure we'll respond to GETDATA requests for anything we've just announced
LOCK(m_mempool.cs);
tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
}
} // Unlock the m_tx_inventory_mutex so we can count over m_peer_map
// Only care about fanout count if we support Erlay
if (m_txreconciliation) {
LOCK(m_peer_mutex);
for (auto& [hash, out_fanout_count] : to_be_announced) {
for (const auto& [cur_peer_id, cur_peer] : m_peer_map) {
if (auto peer_tx_relay = cur_peer->GetTxRelay()) {
LOCK(peer_tx_relay->m_tx_inventory_mutex);
if (!pto->IsInboundConn() && peer_tx_relay->m_tx_inventory_known_filter.contains(hash)) {
out_fanout_count+=1;
}
}
}
}
}
// Re-lock
LOCK(tx_relay->m_tx_inventory_mutex);
for (auto& [hash, out_fanout_count] : to_be_announced) {
// Send
bool should_fanout = true;
// For non-Erlay and inbound peer simply fanout. Erlay-enabled inbounds have been assigned transaction to reconcile
// in RelayTransaction, so everything that was added to m_tx_inventory_to_send is to be fanout
if (!pto->IsInboundConn() && m_txreconciliation && m_txreconciliation->IsPeerRegistered(pto->GetId())) {
// For Erlay-enabled outbound peers we fanout based on how we have heard about this transaction
// and how many announcements of this transactions have we sent and receivedx
// TODO: If we are the transaction source, we should reduce the threshold by 1, since this the only case
// where we are not accounting for at least one reception
should_fanout = out_fanout_count <= OUTBOUND_FANOUT_THRESHOLD;
}
CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
auto add_to_inv_vec = [&](const CInv inv) EXCLUSIVE_LOCKS_REQUIRED(tx_relay->m_tx_inventory_mutex) {
vInv.push_back(inv);
if (vInv.size() == MAX_INV_SZ) {
MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
vInv.clear();
}
tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
};
if (!should_fanout) {
// Note we are not handling the case of ancestors being reconciled and descendants being fanout.
// This can propagate descendants faster than ancestors, making them orphans. However, transactions
// are picked for reconciliation if we consider they have been propagated enough, so in this case
// odds are that the peer already knows about the parent (and it's queued to be announced or reconciled to us).
Assume(m_txreconciliation);
const auto result = m_txreconciliation->AddToSet(pto->GetId(), Wtxid::FromUint256(hash));
if (!result.m_succeeded) {
should_fanout = true;
if (const auto collision = result.m_collision; collision.has_value()) {
// In case of a collision, this loop will increase nRelayedTransactions twice
Assume(m_txreconciliation->TryRemovingFromSet(pto->GetId(), collision.value()));
add_to_inv_vec(CInv(MSG_WTX, collision.value()));
}
}
}
if (should_fanout) {
add_to_inv_vec(inv);
}
}
if (fSendTrickle) {
// Ensure we'll respond to GETDATA requests for anything we've just announced
LOCK(m_mempool.cs);
tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
}
}
if (!vInv.empty())
MakeAndPushMessage(*pto, NetMsgType::INV, vInv);

View file

@ -119,7 +119,10 @@ public:
virtual PeerManagerInfo GetInfo() const = 0;
/** Relay transaction to all peers. */
virtual void RelayTransaction(const uint256& txid, const uint256& wtxid) = 0;
virtual void RelayTransaction(const uint256& txid, const uint256& wtxid, bool consider_fanout) = 0;
/** Get the amount of inbounds (first) and outbounds fanout peers (second). */
virtual std::pair<size_t, size_t> GetFanoutPeersCount() = 0;
/** Send ping message to all peers */
virtual void SendPings() = 0;

View file

@ -117,7 +117,8 @@ TransactionError BroadcastTransaction(NodeContext& node, const CTransactionRef t
}
if (relay) {
node.peerman->RelayTransaction(txid, wtxid);
// Always consider fanout for out own transactions
node.peerman->RelayTransaction(txid, wtxid, /*consider_fanout=*/true);
}
return TransactionError::OK;

View file

@ -7,7 +7,9 @@
#include <common/system.h>
#include <logging.h>
#include <util/check.h>
#include <util/hasher.h>
#include <cmath>
#include <unordered_map>
#include <variant>
@ -36,27 +38,49 @@ class TxReconciliationState
{
public:
/**
* TODO: This field is public to ignore -Wunused-private-field. Make private once used in
* the following commits.
*
* Reconciliation protocol assumes using one role consistently: either a reconciliation
* initiator (requesting sketches), or responder (sending sketches). This defines our role,
* based on the direction of the p2p connection.
*
*/
bool m_we_initiate;
/**
* TODO: These fields are public to ignore -Wunused-private-field. Make private once used in
* the following commits.
*
* Store all wtxids which we would announce to the peer (policy checks passed, etc.)
* in this set instead of announcing them right away. When reconciliation time comes, we will
* compute a compressed representation of this set ("sketch") and use it to efficiently
* reconcile this set with a set on the peer's side.
*/
std::unordered_set<Wtxid, SaltedTxidHasher> m_local_set;
/**
* Reconciliation sketches are computed over short transaction IDs.
* This is a cache of these IDs enabling faster lookups of full wtxids,
* useful when peer will ask for missing transactions by short IDs
* at the end of a reconciliation round.
* We also use this to keep track of short ID collisions. In case of a
* collision, both transactions should be fanout.
*/
std::map<uint32_t, Wtxid> m_short_id_mapping;
TxReconciliationState(bool we_initiate, uint64_t k0, uint64_t k1) : m_we_initiate(we_initiate), m_k0(k0), m_k1(k1) {}
/**
* Reconciliation sketches are computed over short transaction IDs.
* Short IDs are salted with a link-specific constant value.
*/
uint32_t ComputeShortID(const uint256 wtxid) const
{
const uint64_t s = SipHashUint256(m_k0, m_k1, wtxid);
const uint32_t short_txid = 1 + (s & 0xFFFFFFFF);
return short_txid;
}
private:
/**
* These values are used to salt short IDs, which is necessary for transaction reconciliations.
*/
uint64_t m_k0, m_k1;
TxReconciliationState(bool we_initiate, uint64_t k0, uint64_t k1) : m_we_initiate(we_initiate), m_k0(k0), m_k1(k1) {}
};
} // namespace
/** Actual implementation for TxReconciliationTracker's data structure. */
@ -76,16 +100,40 @@ private:
*/
std::unordered_map<NodeId, std::variant<uint64_t, TxReconciliationState>> m_states GUARDED_BY(m_txreconciliation_mutex);
/*
* Keeps track of how many of the registered peers are inbound. Updated on registering or
* forgetting peers.
*/
size_t m_inbounds_count GUARDED_BY(m_txreconciliation_mutex){0};
/**
* Collection of inbound peers selected for fanout. Should get periodically rotated using RotateInboundFanoutTargets.
*/
std::unordered_set<NodeId> m_inbound_fanout_targets;
/**
* Next time m_inbound_fanout_targets need to be rotated.
*/
std::chrono::microseconds GUARDED_BY(m_txreconciliation_mutex) m_next_inbound_peer_rotation_time{0};
TxReconciliationState* GetRegisteredPeerState(NodeId peer_id) EXCLUSIVE_LOCKS_REQUIRED(m_txreconciliation_mutex)
{
AssertLockHeld(m_txreconciliation_mutex);
auto salt_or_state = m_states.find(peer_id);
if (salt_or_state == m_states.end()) return nullptr;
return std::get_if<TxReconciliationState>(&salt_or_state->second);
}
public:
explicit Impl(uint32_t recon_version) : m_recon_version(recon_version) {}
uint64_t PreRegisterPeer(NodeId peer_id) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
uint64_t PreRegisterPeer(NodeId peer_id, uint64_t local_salt) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
{
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
LogPrintLevel(BCLog::TXRECONCILIATION, BCLog::Level::Debug, "Pre-register peer=%d\n", peer_id);
const uint64_t local_salt{FastRandomContext().rand64()};
// We do this exactly once per peer (which are unique by NodeId, see GetNewNodeId) so it's
// safe to assume we don't have this record yet.
@ -93,6 +141,21 @@ public:
return local_salt;
}
bool HasCollision(TxReconciliationState *peer_state, const Wtxid& wtxid, Wtxid& collision, uint32_t &short_id) EXCLUSIVE_LOCKS_REQUIRED(m_txreconciliation_mutex)
{
AssertLockHeld(m_txreconciliation_mutex);
short_id = peer_state->ComputeShortID(wtxid);
const auto iter = peer_state->m_short_id_mapping.find(short_id);
if (iter != peer_state->m_short_id_mapping.end()) {
collision = iter->second;
return true;
}
return false;
}
ReconciliationRegisterResult RegisterPeer(NodeId peer_id, bool is_peer_inbound, uint32_t peer_recon_version,
uint64_t remote_salt) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
{
@ -121,19 +184,116 @@ public:
peer_id, is_peer_inbound);
const uint256 full_salt{ComputeSalt(local_salt, remote_salt)};
recon_state->second = TxReconciliationState(!is_peer_inbound, full_salt.GetUint64(0), full_salt.GetUint64(1));
auto new_state = TxReconciliationState(!is_peer_inbound, full_salt.GetUint64(0), full_salt.GetUint64(1));;
m_states.erase(recon_state);
bool emplaced = m_states.emplace(peer_id, std::move(new_state)).second;
Assume(emplaced);
if (is_peer_inbound && m_inbounds_count < std::numeric_limits<size_t>::max()) {
++m_inbounds_count;
if (m_inbound_fanout_targets.size() < std::floor(m_inbounds_count * INBOUND_FANOUT_DESTINATIONS_FRACTION)) {
// Scale up fanout targets as we get more connections. Targets will be rotated periodically via RotateInboundFanoutTargets
if (FastRandomContext().randrange(10) <= INBOUND_FANOUT_DESTINATIONS_FRACTION * 10) {
m_inbound_fanout_targets.insert(peer_id);
}
}
}
return ReconciliationRegisterResult::SUCCESS;
}
AddToSetResult AddToSet(NodeId peer_id, const Wtxid& wtxid) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
{
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
auto peer_state = GetRegisteredPeerState(peer_id);
if (!peer_state) return AddToSetResult::Failed();
// Bypass if the wtxid is already in the set
if (peer_state->m_local_set.contains(wtxid)) {
LogPrintLevel(BCLog::TXRECONCILIATION, BCLog::Level::Debug, "%s already in reconciliation set for peer=%d. Bypassing.\n",
wtxid.ToString(), peer_id);
return AddToSetResult::Succeeded();
}
// Make sure there is no short id collision between the wtxid we are trying to add
// and any existing one in the reconciliation set
Wtxid collision;
uint32_t short_id;
if (HasCollision(peer_state, wtxid, collision, short_id)) {
return AddToSetResult::Collision(collision);
}
// Transactions which don't make it to the set due to the limit are announced via fanout.
if (peer_state->m_local_set.size() >= MAX_RECONSET_SIZE) {
LogPrintLevel(BCLog::TXRECONCILIATION, BCLog::Level::Debug, "Reconciliation set maximum size reached for peer=%d.\n", peer_id);
return AddToSetResult::Failed();
}
if (peer_state->m_local_set.insert(wtxid).second) {
peer_state->m_short_id_mapping.emplace(short_id, wtxid);
LogPrintLevel(BCLog::TXRECONCILIATION, BCLog::Level::Debug, "Added %s to the reconciliation set for peer=%d. "
"Now the set contains %i transactions.\n",
wtxid.ToString(), peer_id, peer_state->m_local_set.size());
}
return AddToSetResult::Succeeded();
}
bool IsTransactionInSet(NodeId peer_id, const Wtxid& wtxid) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
{
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
auto peer_state = GetRegisteredPeerState(peer_id);
if (!peer_state) return false;
return peer_state->m_local_set.contains(wtxid);
}
bool TryRemovingFromSet(NodeId peer_id, const Wtxid& wtxid) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
{
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
auto peer_state = GetRegisteredPeerState(peer_id);
if (!peer_state) return false;
auto removed = peer_state->m_local_set.erase(wtxid) > 0;
if (removed) {
peer_state->m_short_id_mapping.erase(peer_state->ComputeShortID(wtxid));
LogPrintLevel(BCLog::TXRECONCILIATION, BCLog::Level::Debug, "Removed %s from the reconciliation set for peer=%d. "
"Now the set contains %i transactions.\n",
wtxid.ToString(), peer_id, peer_state->m_local_set.size());
} else {
LogPrintLevel(BCLog::TXRECONCILIATION, BCLog::Level::Debug, "Couldn't remove %s from the reconciliation set for peer=%d. "
"Transaction not found\n",
wtxid.ToString(), peer_id);
}
return removed;
}
void ForgetPeer(NodeId peer_id) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
{
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
const auto peer = m_states.find(peer_id);
if (peer == m_states.end()) return;
const auto registered = std::get_if<TxReconciliationState>(&peer->second);
if (registered && !registered->m_we_initiate) {
Assert(m_inbounds_count > 0);
--m_inbounds_count;
m_inbound_fanout_targets.erase(peer_id);
}
if (m_states.erase(peer_id)) {
LogPrintLevel(BCLog::TXRECONCILIATION, BCLog::Level::Debug, "Forget txreconciliation state of peer=%d\n", peer_id);
}
}
/**
* For calls within this class use GetRegisteredPeerState instead.
*/
bool IsPeerRegistered(NodeId peer_id) const EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex)
{
AssertLockNotHeld(m_txreconciliation_mutex);
@ -142,15 +302,89 @@ public:
return (recon_state != m_states.end() &&
std::holds_alternative<TxReconciliationState>(recon_state->second));
}
bool IsInboundFanoutTarget(NodeId peer_id) const EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex) {
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
return m_inbound_fanout_targets.contains(peer_id);
}
std::chrono::microseconds GetNextInboundPeerRotationTime() EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex) {
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
return m_next_inbound_peer_rotation_time;
}
void SetNextInboundPeerRotationTime(std::chrono::microseconds next_time) EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex) {
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
m_next_inbound_peer_rotation_time = next_time;
}
void RotateInboundFanoutTargets() EXCLUSIVE_LOCKS_REQUIRED(!m_txreconciliation_mutex) {
AssertLockNotHeld(m_txreconciliation_mutex);
LOCK(m_txreconciliation_mutex);
auto targets_size = std::floor(m_inbounds_count * INBOUND_FANOUT_DESTINATIONS_FRACTION);
if (targets_size == 0) {
return;
}
std::vector<NodeId> inbound_recon_peers;
inbound_recon_peers.reserve(m_inbounds_count);
// Collect all inbound reconciling peers ids in a vector and shuffle it
for (const auto& [peer_id, op_peer_state]: m_states) {
const auto peer_state = std::get_if<TxReconciliationState>(&op_peer_state);
if (peer_state && !peer_state->m_we_initiate) {
inbound_recon_peers.push_back(peer_id);
}
}
std::shuffle(inbound_recon_peers.begin(), inbound_recon_peers.end(), FastRandomContext());
// Pick the new selection of inbound fanout peers
Assume(inbound_recon_peers.size() > targets_size);
m_inbound_fanout_targets.clear();
m_inbound_fanout_targets.reserve(targets_size);
m_inbound_fanout_targets.insert(inbound_recon_peers.begin(), inbound_recon_peers.begin() + targets_size);
}
};
AddToSetResult::AddToSetResult(bool succeeded, std::optional<Wtxid> collision)
{
m_succeeded = succeeded;
m_collision = collision;
}
AddToSetResult AddToSetResult::Succeeded()
{
return AddToSetResult(true, std::nullopt);
}
AddToSetResult AddToSetResult::Failed()
{
return AddToSetResult(false, std::nullopt);
}
AddToSetResult AddToSetResult::Collision(Wtxid wtxid)
{
return AddToSetResult(false, std::make_optional(wtxid));
}
TxReconciliationTracker::TxReconciliationTracker(uint32_t recon_version) : m_impl{std::make_unique<TxReconciliationTracker::Impl>(recon_version)} {}
TxReconciliationTracker::~TxReconciliationTracker() = default;
uint64_t TxReconciliationTracker::PreRegisterPeer(NodeId peer_id)
{
return m_impl->PreRegisterPeer(peer_id);
const uint64_t local_salt{FastRandomContext().rand64()};
return m_impl->PreRegisterPeer(peer_id, local_salt);
}
void TxReconciliationTracker::PreRegisterPeerWithSalt(NodeId peer_id, uint64_t local_salt)
{
m_impl->PreRegisterPeer(peer_id, local_salt);
}
ReconciliationRegisterResult TxReconciliationTracker::RegisterPeer(NodeId peer_id, bool is_peer_inbound,
@ -159,6 +393,22 @@ ReconciliationRegisterResult TxReconciliationTracker::RegisterPeer(NodeId peer_i
return m_impl->RegisterPeer(peer_id, is_peer_inbound, peer_recon_version, remote_salt);
}
AddToSetResult TxReconciliationTracker::AddToSet(NodeId peer_id, const Wtxid& wtxid)
{
return m_impl->AddToSet(peer_id, wtxid);
}
bool TxReconciliationTracker::IsTransactionInSet(NodeId peer_id, const Wtxid& wtxid)
{
return m_impl->IsTransactionInSet(peer_id, wtxid);
}
bool TxReconciliationTracker::TryRemovingFromSet(NodeId peer_id, const Wtxid& wtxid)
{
return m_impl->TryRemovingFromSet(peer_id, wtxid);
}
void TxReconciliationTracker::ForgetPeer(NodeId peer_id)
{
m_impl->ForgetPeer(peer_id);
@ -168,3 +418,21 @@ bool TxReconciliationTracker::IsPeerRegistered(NodeId peer_id) const
{
return m_impl->IsPeerRegistered(peer_id);
}
bool TxReconciliationTracker::IsInboundFanoutTarget(NodeId peer_id)
{
return m_impl->IsInboundFanoutTarget(peer_id);
}
std::chrono::microseconds TxReconciliationTracker::GetNextInboundPeerRotationTime(){
return m_impl->GetNextInboundPeerRotationTime();
}
void TxReconciliationTracker::SetNextInboundPeerRotationTime(std::chrono::microseconds next_time) {
return m_impl->SetNextInboundPeerRotationTime(next_time);
}
void TxReconciliationTracker::RotateInboundFanoutTargets()
{
return m_impl->RotateInboundFanoutTargets();
}

View file

@ -10,10 +10,29 @@
#include <memory>
#include <tuple>
#include <optional>
/** Supported transaction reconciliation protocol version */
static constexpr uint32_t TXRECONCILIATION_VERSION{1};
/**
* Maximum number of wtxids stored in a peer local set, bounded to protect the memory use of
* reconciliation sets and short ids mappings, and CPU used for sketch computation.
*/
constexpr size_t MAX_RECONSET_SIZE = 3000;
/**
* Announce transactions via full wtxid to a limited number of inbound and outbound peers.
* Justification for these values are provided here:
* TODO: ADD link to justification based on simulation results */
constexpr double INBOUND_FANOUT_DESTINATIONS_FRACTION = 0.1;
constexpr size_t OUTBOUND_FANOUT_THRESHOLD = 4;
/**
* Interval for inbound peer fanout selection. The subset is rotated on a timer.
*/
static constexpr auto INBOUND_FANOUT_ROTATION_INTERVAL{10min};
enum class ReconciliationRegisterResult {
NOT_FOUND,
SUCCESS,
@ -21,6 +40,23 @@ enum class ReconciliationRegisterResult {
PROTOCOL_VIOLATION,
};
/**
* Record whether or not a wtxid was successfully added to a reconciliation set.
* In case of failure, check whether this was due to a shortid collision and record
* the colliding wtxid.
*/
class AddToSetResult
{
public:
bool m_succeeded;
std::optional<Wtxid> m_collision;
explicit AddToSetResult(bool added, std::optional<Wtxid> conflict);
static AddToSetResult Succeeded();
static AddToSetResult Failed();
static AddToSetResult Collision(Wtxid);
};
/**
* Transaction reconciliation is a way for nodes to efficiently announce transactions.
* This object keeps track of all txreconciliation-related communications with the peers.
@ -67,6 +103,11 @@ public:
*/
uint64_t PreRegisterPeer(NodeId peer_id);
/**
* For testing purposes only. This SHOULD NEVER be used in production.
*/
void PreRegisterPeerWithSalt(NodeId peer_id, uint64_t local_salt);
/**
* Step 0. Once the peer agreed to reconcile txs with us, generate the state required to track
* ongoing reconciliations. Must be called only after pre-registering the peer and only once.
@ -74,6 +115,25 @@ public:
ReconciliationRegisterResult RegisterPeer(NodeId peer_id, bool is_peer_inbound,
uint32_t peer_recon_version, uint64_t remote_salt);
/**
* Step 1. Add a to-be-announced transaction to the local reconciliation set of the target peer.
* Returns false if the set is at capacity, or if the set contains a colliding transaction (alongside
* the colliding wtxid). Returns true if the transaction is added to the set (or if it was already in it).
*/
AddToSetResult AddToSet(NodeId peer_id, const Wtxid& wtxid);
/**
* Checks whether a transaction is part of the peer's reconciliation set.
*/
bool IsTransactionInSet(NodeId peer_id, const Wtxid& wtxid);
/**
* Before Step 2, we might want to remove a wtxid from the reconciliation set, for example if
* the peer just announced the transaction to us.
* Returns whether the wtxid was removed.
*/
bool TryRemovingFromSet(NodeId peer_id, const Wtxid& wtxid);
/**
* Attempts to forget txreconciliation-related state of the peer (if we previously stored any).
* After this, we won't be able to reconcile transactions with the peer.
@ -84,6 +144,26 @@ public:
* Check if a peer is registered to reconcile transactions with us.
*/
bool IsPeerRegistered(NodeId peer_id) const;
/**
* Whether a given peer is currently flagged for fanout.
*/
bool IsInboundFanoutTarget(NodeId peer_id);
/**
* Get the next time the inbound peer subset should be rotated.
*/
std::chrono::microseconds GetNextInboundPeerRotationTime();
/**
* Update the next inbound peer rotation time.
*/
void SetNextInboundPeerRotationTime(std::chrono::microseconds next_time);
/**
* Picks a different subset of inbound peers to fanout to.
*/
void RotateInboundFanoutTargets();
};
#endif // BITCOIN_NODE_TXRECONCILIATION_H

View file

@ -81,4 +81,88 @@ BOOST_AUTO_TEST_CASE(IsPeerRegisteredTest)
BOOST_CHECK(!tracker.IsPeerRegistered(peer_id0));
}
BOOST_AUTO_TEST_CASE(AddToSetTest)
{
TxReconciliationTracker tracker(TXRECONCILIATION_VERSION);
NodeId peer_id0 = 0;
FastRandomContext frc{/*fDeterministic=*/true};
Wtxid wtxid{Wtxid::FromUint256(frc.rand256())};
// If the peer is not registered, adding to the set fails
BOOST_REQUIRE(!tracker.IsPeerRegistered(peer_id0));
auto r = tracker.AddToSet(peer_id0, wtxid);
BOOST_REQUIRE(!r.m_succeeded);
BOOST_REQUIRE(!r.m_collision.has_value());
// As long as the peer is registered, adding a new wtxid to the set should work
tracker.PreRegisterPeer(peer_id0);
BOOST_REQUIRE_EQUAL(tracker.RegisterPeer(peer_id0, true, 1, 1), ReconciliationRegisterResult::SUCCESS);
BOOST_CHECK(tracker.IsPeerRegistered(peer_id0));
r = tracker.AddToSet(peer_id0, wtxid);
BOOST_REQUIRE(r.m_succeeded);
BOOST_REQUIRE(!r.m_collision.has_value());
// If the peer is dropped, adding wtxids to its set should fail
tracker.ForgetPeer(peer_id0);
Wtxid wtxid2{Wtxid::FromUint256(frc.rand256())};
r = tracker.AddToSet(peer_id0, wtxid2);
BOOST_REQUIRE(!r.m_succeeded);
BOOST_REQUIRE(!r.m_collision.has_value());
NodeId peer_id1 = 1;
tracker.PreRegisterPeer(peer_id1);
BOOST_REQUIRE_EQUAL(tracker.RegisterPeer(peer_id1, true, 1, 1), ReconciliationRegisterResult::SUCCESS);
BOOST_CHECK(tracker.IsPeerRegistered(peer_id1));
// As long as the peer is registered, the transaction is not in the set, and there is no short id
// collision, adding should work
size_t added_txs = 0;
while (added_txs < MAX_RECONSET_SIZE) {
wtxid = Wtxid::FromUint256(frc.rand256());
Wtxid collision;
r = tracker.AddToSet(peer_id1, wtxid);
if (r.m_succeeded) {
BOOST_REQUIRE(!r.m_collision.has_value());
++added_txs;
} else {
BOOST_REQUIRE_EQUAL(r.m_collision.value(), collision);
}
}
// Adding one more item will fail due to the set being full
r = tracker.AddToSet(peer_id1, Wtxid::FromUint256(frc.rand256()));
BOOST_REQUIRE(!r.m_succeeded);
BOOST_REQUIRE(!r.m_collision.has_value());
// Trying to add the same item twice will just bypass
r = tracker.AddToSet(peer_id1, wtxid);
BOOST_REQUIRE(r.m_succeeded);
BOOST_REQUIRE(!r.m_collision.has_value());
}
BOOST_AUTO_TEST_CASE(AddToSetCollisionTest)
{
TxReconciliationTracker tracker(TXRECONCILIATION_VERSION);
NodeId peer_id0 = 0;
FastRandomContext frc{/*fDeterministic=*/true};
// Precompute collision
Wtxid wtxid{Wtxid::FromUint256(uint256("c70d778bccef36a81aed8da0b819d2bd28bd8653e56a5d40903df1a0ade0b876"))};
Wtxid collision{Wtxid::FromUint256(uint256("ae52a6ecb8733fba1f7af6022a8b9dd327d7825054229fafcad7e03c38ae2a50"))};
// Register the peer with a predefined salt so we can force the collision
tracker.PreRegisterPeerWithSalt(peer_id0, 2);
BOOST_REQUIRE_EQUAL(tracker.RegisterPeer(peer_id0, true, 1, 1), ReconciliationRegisterResult::SUCCESS);
BOOST_CHECK(tracker.IsPeerRegistered(peer_id0));
// Once the peer is registered, we can try to add both transactions and check
BOOST_REQUIRE(tracker.AddToSet(peer_id0, wtxid).m_succeeded);
auto r = tracker.AddToSet(peer_id0, collision);
BOOST_REQUIRE(!r.m_succeeded);
BOOST_REQUIRE_EQUAL(r.m_collision.value(), wtxid);
}
BOOST_AUTO_TEST_SUITE_END()