mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-25 18:53:23 -03:00
Merge pull request #7113
086ee67
Switch to a more efficient rolling Bloom filter (Pieter Wuille)
This commit is contained in:
commit
54a550bef8
3 changed files with 75 additions and 30 deletions
|
@ -216,30 +216,54 @@ void CBloomFilter::UpdateEmptyFull()
|
|||
isEmpty = empty;
|
||||
}
|
||||
|
||||
CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate) :
|
||||
b1(nElements * 2, fpRate, 0), b2(nElements * 2, fpRate, 0)
|
||||
CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate)
|
||||
{
|
||||
// Implemented using two bloom filters of 2 * nElements each.
|
||||
// We fill them up, and clear them, staggered, every nElements
|
||||
// inserted, so at least one always contains the last nElements
|
||||
// inserted.
|
||||
nInsertions = 0;
|
||||
nBloomSize = nElements * 2;
|
||||
|
||||
double logFpRate = log(fpRate);
|
||||
/* The optimal number of hash functions is log(fpRate) / log(0.5), but
|
||||
* restrict it to the range 1-50. */
|
||||
nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
|
||||
/* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
|
||||
nEntriesPerGeneration = (nElements + 1) / 2;
|
||||
uint32_t nMaxElements = nEntriesPerGeneration * 3;
|
||||
/* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
|
||||
* => pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
|
||||
* => 1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
|
||||
* => log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
|
||||
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
|
||||
* => nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
|
||||
*/
|
||||
uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
|
||||
data.clear();
|
||||
/* We store up to 16 'bits' per data element. */
|
||||
data.resize((nFilterBits + 15) / 16);
|
||||
reset();
|
||||
}
|
||||
|
||||
/* Similar to CBloomFilter::Hash */
|
||||
inline unsigned int CRollingBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const {
|
||||
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (data.size() * 16);
|
||||
}
|
||||
|
||||
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
|
||||
{
|
||||
if (nInsertions == 0) {
|
||||
b1.clear();
|
||||
} else if (nInsertions == nBloomSize / 2) {
|
||||
b2.clear();
|
||||
if (nEntriesThisGeneration == nEntriesPerGeneration) {
|
||||
nEntriesThisGeneration = 0;
|
||||
nGeneration++;
|
||||
if (nGeneration == 4) {
|
||||
nGeneration = 1;
|
||||
}
|
||||
b1.insert(vKey);
|
||||
b2.insert(vKey);
|
||||
if (++nInsertions == nBloomSize) {
|
||||
nInsertions = 0;
|
||||
/* Wipe old entries that used this generation number. */
|
||||
for (uint32_t p = 0; p < data.size() * 16; p++) {
|
||||
if (get(p) == nGeneration) {
|
||||
put(p, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
nEntriesThisGeneration++;
|
||||
|
||||
for (int n = 0; n < nHashFuncs; n++) {
|
||||
uint32_t h = Hash(n, vKey);
|
||||
put(h, nGeneration);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -251,10 +275,13 @@ void CRollingBloomFilter::insert(const uint256& hash)
|
|||
|
||||
bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
|
||||
{
|
||||
if (nInsertions < nBloomSize / 2) {
|
||||
return b2.contains(vKey);
|
||||
for (int n = 0; n < nHashFuncs; n++) {
|
||||
uint32_t h = Hash(n, vKey);
|
||||
if (get(h) == 0) {
|
||||
return false;
|
||||
}
|
||||
return b1.contains(vKey);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CRollingBloomFilter::contains(const uint256& hash) const
|
||||
|
@ -265,8 +292,10 @@ bool CRollingBloomFilter::contains(const uint256& hash) const
|
|||
|
||||
void CRollingBloomFilter::reset()
|
||||
{
|
||||
unsigned int nNewTweak = GetRand(std::numeric_limits<unsigned int>::max());
|
||||
b1.reset(nNewTweak);
|
||||
b2.reset(nNewTweak);
|
||||
nInsertions = 0;
|
||||
nTweak = GetRand(std::numeric_limits<unsigned int>::max());
|
||||
nEntriesThisGeneration = 0;
|
||||
nGeneration = 1;
|
||||
for (std::vector<uint32_t>::iterator it = data.begin(); it != data.end(); it++) {
|
||||
*it = 0;
|
||||
}
|
||||
}
|
||||
|
|
26
src/bloom.h
26
src/bloom.h
|
@ -110,8 +110,11 @@ public:
|
|||
* reset() is provided, which also changes nTweak to decrease the impact of
|
||||
* false-positives.
|
||||
*
|
||||
* contains(item) will always return true if item was one of the last N things
|
||||
* contains(item) will always return true if item was one of the last N to 1.5*N
|
||||
* insert()'ed ... but may also return true for items that were not inserted.
|
||||
*
|
||||
* It needs around 1.8 bytes per element per factor 0.1 of false positive rate.
|
||||
* (More accurately: 3/(log(256)*log(2)) * log(1/fpRate) * nElements bytes)
|
||||
*/
|
||||
class CRollingBloomFilter
|
||||
{
|
||||
|
@ -129,10 +132,23 @@ public:
|
|||
void reset();
|
||||
|
||||
private:
|
||||
unsigned int nBloomSize;
|
||||
unsigned int nInsertions;
|
||||
CBloomFilter b1, b2;
|
||||
int nEntriesPerGeneration;
|
||||
int nEntriesThisGeneration;
|
||||
int nGeneration;
|
||||
std::vector<uint32_t> data;
|
||||
unsigned int nTweak;
|
||||
int nHashFuncs;
|
||||
|
||||
unsigned int Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const;
|
||||
|
||||
inline int get(uint32_t position) const {
|
||||
return (data[(position >> 4) % data.size()] >> (2 * (position & 0xF))) & 0x3;
|
||||
}
|
||||
|
||||
inline void put(uint32_t position, uint32_t val) {
|
||||
uint32_t& cell = data[(position >> 4) % data.size()];
|
||||
cell = (cell & ~(((uint32_t)3) << (2 * (position & 0xF)))) | (val << (2 * (position & 0xF)));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
#endif // BITCOIN_BLOOM_H
|
||||
|
|
|
@ -181,7 +181,7 @@ namespace {
|
|||
* million to make it highly unlikely for users to have issues with this
|
||||
* filter.
|
||||
*
|
||||
* Memory used: 1.7MB
|
||||
* Memory used: 1.3 MB
|
||||
*/
|
||||
boost::scoped_ptr<CRollingBloomFilter> recentRejects;
|
||||
uint256 hashRecentRejectsChainTip;
|
||||
|
|
Loading…
Add table
Reference in a new issue