mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-04-29 14:59:39 -04:00
[MOVEONLY] Move unused Merkle branch code to tests
This commit is contained in:
parent
4437d6e1f3
commit
4defdfab94
3 changed files with 118 additions and 124 deletions
|
@ -42,93 +42,6 @@
|
||||||
root.
|
root.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
|
|
||||||
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
|
|
||||||
if (pbranch) pbranch->clear();
|
|
||||||
if (leaves.size() == 0) {
|
|
||||||
if (pmutated) *pmutated = false;
|
|
||||||
if (proot) *proot = uint256();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
bool mutated = false;
|
|
||||||
// count is the number of leaves processed so far.
|
|
||||||
uint32_t count = 0;
|
|
||||||
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
|
||||||
// level (0 being the leaves).
|
|
||||||
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
|
||||||
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
|
||||||
// the last leaf. The other inner entries are undefined.
|
|
||||||
uint256 inner[32];
|
|
||||||
// Which position in inner is a hash that depends on the matching leaf.
|
|
||||||
int matchlevel = -1;
|
|
||||||
// First process all leaves into 'inner' values.
|
|
||||||
while (count < leaves.size()) {
|
|
||||||
uint256 h = leaves[count];
|
|
||||||
bool matchh = count == branchpos;
|
|
||||||
count++;
|
|
||||||
int level;
|
|
||||||
// For each of the lower bits in count that are 0, do 1 step. Each
|
|
||||||
// corresponds to an inner value that existed before processing the
|
|
||||||
// current leaf, and each needs a hash to combine it.
|
|
||||||
for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
|
|
||||||
if (pbranch) {
|
|
||||||
if (matchh) {
|
|
||||||
pbranch->push_back(inner[level]);
|
|
||||||
} else if (matchlevel == level) {
|
|
||||||
pbranch->push_back(h);
|
|
||||||
matchh = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
mutated |= (inner[level] == h);
|
|
||||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
|
||||||
}
|
|
||||||
// Store the resulting hash at inner position level.
|
|
||||||
inner[level] = h;
|
|
||||||
if (matchh) {
|
|
||||||
matchlevel = level;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Do a final 'sweep' over the rightmost branch of the tree to process
|
|
||||||
// odd levels, and reduce everything to a single top value.
|
|
||||||
// Level is the level (counted from the bottom) up to which we've sweeped.
|
|
||||||
int level = 0;
|
|
||||||
// As long as bit number level in count is zero, skip it. It means there
|
|
||||||
// is nothing left at this level.
|
|
||||||
while (!(count & (((uint32_t)1) << level))) {
|
|
||||||
level++;
|
|
||||||
}
|
|
||||||
uint256 h = inner[level];
|
|
||||||
bool matchh = matchlevel == level;
|
|
||||||
while (count != (((uint32_t)1) << level)) {
|
|
||||||
// If we reach this point, h is an inner value that is not the top.
|
|
||||||
// We combine it with itself (Bitcoin's special rule for odd levels in
|
|
||||||
// the tree) to produce a higher level one.
|
|
||||||
if (pbranch && matchh) {
|
|
||||||
pbranch->push_back(h);
|
|
||||||
}
|
|
||||||
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
|
||||||
// Increment count to the value it would have if two entries at this
|
|
||||||
// level had existed.
|
|
||||||
count += (((uint32_t)1) << level);
|
|
||||||
level++;
|
|
||||||
// And propagate the result upwards accordingly.
|
|
||||||
while (!(count & (((uint32_t)1) << level))) {
|
|
||||||
if (pbranch) {
|
|
||||||
if (matchh) {
|
|
||||||
pbranch->push_back(inner[level]);
|
|
||||||
} else if (matchlevel == level) {
|
|
||||||
pbranch->push_back(h);
|
|
||||||
matchh = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
|
||||||
level++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Return result.
|
|
||||||
if (pmutated) *pmutated = mutated;
|
|
||||||
if (proot) *proot = h;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint256 ComputeMerkleRoot(std::vector<uint256> hashes, bool* mutated) {
|
uint256 ComputeMerkleRoot(std::vector<uint256> hashes, bool* mutated) {
|
||||||
bool mutation = false;
|
bool mutation = false;
|
||||||
|
@ -149,24 +62,6 @@ uint256 ComputeMerkleRoot(std::vector<uint256> hashes, bool* mutated) {
|
||||||
return hashes[0];
|
return hashes[0];
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
|
|
||||||
std::vector<uint256> ret;
|
|
||||||
MerkleComputation(leaves, nullptr, nullptr, position, &ret);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
|
|
||||||
uint256 hash = leaf;
|
|
||||||
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
|
|
||||||
if (nIndex & 1) {
|
|
||||||
hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
|
|
||||||
} else {
|
|
||||||
hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
|
|
||||||
}
|
|
||||||
nIndex >>= 1;
|
|
||||||
}
|
|
||||||
return hash;
|
|
||||||
}
|
|
||||||
|
|
||||||
uint256 BlockMerkleRoot(const CBlock& block, bool* mutated)
|
uint256 BlockMerkleRoot(const CBlock& block, bool* mutated)
|
||||||
{
|
{
|
||||||
|
@ -189,12 +84,3 @@ uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated)
|
||||||
return ComputeMerkleRoot(std::move(leaves), mutated);
|
return ComputeMerkleRoot(std::move(leaves), mutated);
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
|
|
||||||
{
|
|
||||||
std::vector<uint256> leaves;
|
|
||||||
leaves.resize(block.vtx.size());
|
|
||||||
for (size_t s = 0; s < block.vtx.size(); s++) {
|
|
||||||
leaves[s] = block.vtx[s]->GetHash();
|
|
||||||
}
|
|
||||||
return ComputeMerkleBranch(leaves, position);
|
|
||||||
}
|
|
||||||
|
|
|
@ -12,9 +12,7 @@
|
||||||
#include <primitives/block.h>
|
#include <primitives/block.h>
|
||||||
#include <uint256.h>
|
#include <uint256.h>
|
||||||
|
|
||||||
uint256 ComputeMerkleRoot(std::vector<uint256> hashes, bool* mutated);
|
uint256 ComputeMerkleRoot(std::vector<uint256> hashes, bool* mutated = nullptr);
|
||||||
std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position);
|
|
||||||
uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& branch, uint32_t position);
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Compute the Merkle root of the transactions in a block.
|
* Compute the Merkle root of the transactions in a block.
|
||||||
|
@ -28,11 +26,4 @@ uint256 BlockMerkleRoot(const CBlock& block, bool* mutated = nullptr);
|
||||||
*/
|
*/
|
||||||
uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated = nullptr);
|
uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated = nullptr);
|
||||||
|
|
||||||
/*
|
|
||||||
* Compute the Merkle branch for the tree of transactions in a block, for a
|
|
||||||
* given position.
|
|
||||||
* This can be verified using ComputeMerkleRootFromBranch.
|
|
||||||
*/
|
|
||||||
std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position);
|
|
||||||
|
|
||||||
#endif // BITCOIN_CONSENSUS_MERKLE_H
|
#endif // BITCOIN_CONSENSUS_MERKLE_H
|
||||||
|
|
|
@ -9,6 +9,123 @@
|
||||||
|
|
||||||
BOOST_FIXTURE_TEST_SUITE(merkle_tests, TestingSetup)
|
BOOST_FIXTURE_TEST_SUITE(merkle_tests, TestingSetup)
|
||||||
|
|
||||||
|
static uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
|
||||||
|
uint256 hash = leaf;
|
||||||
|
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
|
||||||
|
if (nIndex & 1) {
|
||||||
|
hash = Hash(BEGIN(*it), END(*it), BEGIN(hash), END(hash));
|
||||||
|
} else {
|
||||||
|
hash = Hash(BEGIN(hash), END(hash), BEGIN(*it), END(*it));
|
||||||
|
}
|
||||||
|
nIndex >>= 1;
|
||||||
|
}
|
||||||
|
return hash;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
|
||||||
|
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
|
||||||
|
if (pbranch) pbranch->clear();
|
||||||
|
if (leaves.size() == 0) {
|
||||||
|
if (pmutated) *pmutated = false;
|
||||||
|
if (proot) *proot = uint256();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
bool mutated = false;
|
||||||
|
// count is the number of leaves processed so far.
|
||||||
|
uint32_t count = 0;
|
||||||
|
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
||||||
|
// level (0 being the leaves).
|
||||||
|
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
||||||
|
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
||||||
|
// the last leaf. The other inner entries are undefined.
|
||||||
|
uint256 inner[32];
|
||||||
|
// Which position in inner is a hash that depends on the matching leaf.
|
||||||
|
int matchlevel = -1;
|
||||||
|
// First process all leaves into 'inner' values.
|
||||||
|
while (count < leaves.size()) {
|
||||||
|
uint256 h = leaves[count];
|
||||||
|
bool matchh = count == branchpos;
|
||||||
|
count++;
|
||||||
|
int level;
|
||||||
|
// For each of the lower bits in count that are 0, do 1 step. Each
|
||||||
|
// corresponds to an inner value that existed before processing the
|
||||||
|
// current leaf, and each needs a hash to combine it.
|
||||||
|
for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
|
||||||
|
if (pbranch) {
|
||||||
|
if (matchh) {
|
||||||
|
pbranch->push_back(inner[level]);
|
||||||
|
} else if (matchlevel == level) {
|
||||||
|
pbranch->push_back(h);
|
||||||
|
matchh = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
mutated |= (inner[level] == h);
|
||||||
|
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||||
|
}
|
||||||
|
// Store the resulting hash at inner position level.
|
||||||
|
inner[level] = h;
|
||||||
|
if (matchh) {
|
||||||
|
matchlevel = level;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Do a final 'sweep' over the rightmost branch of the tree to process
|
||||||
|
// odd levels, and reduce everything to a single top value.
|
||||||
|
// Level is the level (counted from the bottom) up to which we've sweeped.
|
||||||
|
int level = 0;
|
||||||
|
// As long as bit number level in count is zero, skip it. It means there
|
||||||
|
// is nothing left at this level.
|
||||||
|
while (!(count & (((uint32_t)1) << level))) {
|
||||||
|
level++;
|
||||||
|
}
|
||||||
|
uint256 h = inner[level];
|
||||||
|
bool matchh = matchlevel == level;
|
||||||
|
while (count != (((uint32_t)1) << level)) {
|
||||||
|
// If we reach this point, h is an inner value that is not the top.
|
||||||
|
// We combine it with itself (Bitcoin's special rule for odd levels in
|
||||||
|
// the tree) to produce a higher level one.
|
||||||
|
if (pbranch && matchh) {
|
||||||
|
pbranch->push_back(h);
|
||||||
|
}
|
||||||
|
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||||
|
// Increment count to the value it would have if two entries at this
|
||||||
|
// level had existed.
|
||||||
|
count += (((uint32_t)1) << level);
|
||||||
|
level++;
|
||||||
|
// And propagate the result upwards accordingly.
|
||||||
|
while (!(count & (((uint32_t)1) << level))) {
|
||||||
|
if (pbranch) {
|
||||||
|
if (matchh) {
|
||||||
|
pbranch->push_back(inner[level]);
|
||||||
|
} else if (matchlevel == level) {
|
||||||
|
pbranch->push_back(h);
|
||||||
|
matchh = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
||||||
|
level++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Return result.
|
||||||
|
if (pmutated) *pmutated = mutated;
|
||||||
|
if (proot) *proot = h;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
|
||||||
|
std::vector<uint256> ret;
|
||||||
|
MerkleComputation(leaves, nullptr, nullptr, position, &ret);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
|
||||||
|
{
|
||||||
|
std::vector<uint256> leaves;
|
||||||
|
leaves.resize(block.vtx.size());
|
||||||
|
for (size_t s = 0; s < block.vtx.size(); s++) {
|
||||||
|
leaves[s] = block.vtx[s]->GetHash();
|
||||||
|
}
|
||||||
|
return ComputeMerkleBranch(leaves, position);
|
||||||
|
}
|
||||||
|
|
||||||
// Older version of the merkle root computation code, for comparison.
|
// Older version of the merkle root computation code, for comparison.
|
||||||
static uint256 BlockBuildMerkleTree(const CBlock& block, bool* fMutated, std::vector<uint256>& vMerkleTree)
|
static uint256 BlockBuildMerkleTree(const CBlock& block, bool* fMutated, std::vector<uint256>& vMerkleTree)
|
||||||
{
|
{
|
||||||
|
|
Loading…
Add table
Reference in a new issue