diff --git a/src/Makefile.test.include b/src/Makefile.test.include index 4d867fdc2f..d6992640ff 100644 --- a/src/Makefile.test.include +++ b/src/Makefile.test.include @@ -248,6 +248,7 @@ test_fuzz_fuzz_SOURCES = \ test/fuzz/chain.cpp \ test/fuzz/checkqueue.cpp \ test/fuzz/coins_view.cpp \ + test/fuzz/coinscache_sim.cpp \ test/fuzz/connman.cpp \ test/fuzz/crypto.cpp \ test/fuzz/crypto_aes256.cpp \ diff --git a/src/test/fuzz/coinscache_sim.cpp b/src/test/fuzz/coinscache_sim.cpp new file mode 100644 index 0000000000..c3f732f075 --- /dev/null +++ b/src/test/fuzz/coinscache_sim.cpp @@ -0,0 +1,461 @@ +// Copyright (c) 2023 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include + +namespace { + +/** Number of distinct COutPoint values used in this test. */ +constexpr uint32_t NUM_OUTPOINTS = 256; +/** Number of distinct Coin values used in this test (ignoring nHeight). */ +constexpr uint32_t NUM_COINS = 256; +/** Maximum number CCoinsViewCache objects used in this test. */ +constexpr uint32_t MAX_CACHES = 4; +/** Data type large enough to hold NUM_COINS-1. */ +using coinidx_type = uint8_t; + +struct PrecomputedData +{ + //! Randomly generated COutPoint values. + COutPoint outpoints[NUM_OUTPOINTS]; + + //! Randomly generated Coin values. + Coin coins[NUM_COINS]; + + PrecomputedData() + { + static const uint8_t PREFIX_O[1] = {'o'}; /** Hash prefix for outpoint hashes. */ + static const uint8_t PREFIX_S[1] = {'s'}; /** Hash prefix for coins scriptPubKeys. */ + static const uint8_t PREFIX_M[1] = {'m'}; /** Hash prefix for coins nValue/fCoinBase. */ + + for (uint32_t i = 0; i < NUM_OUTPOINTS; ++i) { + uint32_t idx = (i * 1200U) >> 12; /* Map 3 or 4 entries to same txid. */ + const uint8_t ser[4] = {uint8_t(idx), uint8_t(idx >> 8), uint8_t(idx >> 16), uint8_t(idx >> 24)}; + CSHA256().Write(PREFIX_O, 1).Write(ser, sizeof(ser)).Finalize(outpoints[i].hash.begin()); + outpoints[i].n = i; + } + + for (uint32_t i = 0; i < NUM_COINS; ++i) { + const uint8_t ser[4] = {uint8_t(i), uint8_t(i >> 8), uint8_t(i >> 16), uint8_t(i >> 24)}; + uint256 hash; + CSHA256().Write(PREFIX_S, 1).Write(ser, sizeof(ser)).Finalize(hash.begin()); + /* Convert hash to scriptPubkeys. */ + switch (i % 5U) { + case 0: /* P2PKH */ + coins[i].out.scriptPubKey.resize(25); + coins[i].out.scriptPubKey[0] = OP_DUP; + coins[i].out.scriptPubKey[1] = OP_HASH160; + coins[i].out.scriptPubKey[2] = 20; + std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 3); + coins[i].out.scriptPubKey[23] = OP_EQUALVERIFY; + coins[i].out.scriptPubKey[24] = OP_CHECKSIG; + break; + case 1: /* P2SH */ + coins[i].out.scriptPubKey.resize(23); + coins[i].out.scriptPubKey[0] = OP_HASH160; + coins[i].out.scriptPubKey[1] = 20; + std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 2); + coins[i].out.scriptPubKey[12] = OP_EQUAL; + break; + case 2: /* P2WPKH */ + coins[i].out.scriptPubKey.resize(22); + coins[i].out.scriptPubKey[0] = OP_0; + coins[i].out.scriptPubKey[1] = 20; + std::copy(hash.begin(), hash.begin() + 20, coins[i].out.scriptPubKey.begin() + 2); + break; + case 3: /* P2WSH */ + coins[i].out.scriptPubKey.resize(34); + coins[i].out.scriptPubKey[0] = OP_0; + coins[i].out.scriptPubKey[1] = 32; + std::copy(hash.begin(), hash.begin() + 32, coins[i].out.scriptPubKey.begin() + 2); + break; + case 4: /* P2TR */ + coins[i].out.scriptPubKey.resize(34); + coins[i].out.scriptPubKey[0] = OP_1; + coins[i].out.scriptPubKey[1] = 32; + std::copy(hash.begin(), hash.begin() + 32, coins[i].out.scriptPubKey.begin() + 2); + break; + } + /* Hash again to construct nValue and fCoinBase. */ + CSHA256().Write(PREFIX_M, 1).Write(ser, sizeof(ser)).Finalize(hash.begin()); + coins[i].out.nValue = CAmount(hash.GetUint64(0) % MAX_MONEY); + coins[i].fCoinBase = (hash.GetUint64(1) & 7) == 0; + coins[i].nHeight = 0; /* Real nHeight used in simulation is set dynamically. */ + } + } +}; + +enum class EntryType : uint8_t +{ + /* This entry in the cache does not exist (so we'd have to look in the parent cache). */ + NONE, + + /* This entry in the cache corresponds to an unspent coin. */ + UNSPENT, + + /* This entry in the cache corresponds to a spent coin. */ + SPENT, +}; + +struct CacheEntry +{ + /* Type of entry. */ + EntryType entrytype; + + /* Index in the coins array this entry corresponds to (only if entrytype == UNSPENT). */ + coinidx_type coinidx; + + /* nHeight value for this entry (so the coins[coinidx].nHeight value is ignored; only if entrytype == UNSPENT). */ + uint32_t height; +}; + +struct CacheLevel +{ + CacheEntry entry[NUM_OUTPOINTS]; + + void Wipe() { + for (uint32_t i = 0; i < NUM_OUTPOINTS; ++i) { + entry[i].entrytype = EntryType::NONE; + } + } +}; + +/** Class for the base of the hierarchy (roughly simulating a memory-backed CCoinsViewDB). */ +class CoinsViewBottom final : public CCoinsView +{ + std::map m_data; + +public: + bool GetCoin(const COutPoint& outpoint, Coin& coin) const final + { + auto it = m_data.find(outpoint); + if (it == m_data.end()) { + return false; + } else { + coin = it->second; + return true; + } + } + + bool HaveCoin(const COutPoint& outpoint) const final + { + return m_data.count(outpoint); + } + + uint256 GetBestBlock() const final { return {}; } + std::vector GetHeadBlocks() const final { return {}; } + std::unique_ptr Cursor() const final { return {}; } + size_t EstimateSize() const final { return m_data.size(); } + + bool BatchWrite(CCoinsMap& data, const uint256&, bool erase) final + { + for (auto it = data.begin(); it != data.end(); it = erase ? data.erase(it) : std::next(it)) { + if (it->second.flags & CCoinsCacheEntry::DIRTY) { + if (it->second.coin.IsSpent()) { + m_data.erase(it->first); + } else if (erase) { + m_data[it->first] = std::move(it->second.coin); + } else { + m_data[it->first] = it->second.coin; + } + } else { + /* For non-dirty entries being written, compare them with what we have. */ + if (it->second.coin.IsSpent()) { + assert(m_data.count(it->first) == 0); + } else { + auto it2 = m_data.find(it->first); + assert(it2 != m_data.end()); + assert(it->second.coin.out == it2->second.out); + assert(it->second.coin.fCoinBase == it2->second.fCoinBase); + assert(it->second.coin.nHeight == it2->second.nHeight); + } + } + } + return true; + } +}; + +} // namespace + +FUZZ_TARGET(coinscache_sim) +{ + /** Precomputed COutPoint and CCoins values. */ + static const PrecomputedData data; + + /** Dummy coinsview instance (base of the hierarchy). */ + CoinsViewBottom bottom; + /** Real CCoinsViewCache objects. */ + std::vector> caches; + /** Simulated cache data (sim_caches[0] matches bottom, sim_caches[i+1] matches caches[i]). */ + CacheLevel sim_caches[MAX_CACHES + 1]; + /** Current height in the simulation. */ + uint32_t current_height = 1U; + + // Initialize bottom simulated cache. + sim_caches[0].Wipe(); + + /** Helper lookup function in the simulated cache stack. */ + auto lookup = [&](uint32_t outpointidx, int sim_idx = -1) -> std::optional> { + uint32_t cache_idx = sim_idx == -1 ? caches.size() : sim_idx; + while (true) { + const auto& entry = sim_caches[cache_idx].entry[outpointidx]; + if (entry.entrytype == EntryType::UNSPENT) { + return {{entry.coinidx, entry.height}}; + } else if (entry.entrytype == EntryType::SPENT) { + return std::nullopt; + }; + if (cache_idx == 0) break; + --cache_idx; + } + return std::nullopt; + }; + + /** Flush changes in top cache to the one below. */ + auto flush = [&]() { + assert(caches.size() >= 1); + auto& cache = sim_caches[caches.size()]; + auto& prev_cache = sim_caches[caches.size() - 1]; + for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) { + if (cache.entry[outpointidx].entrytype != EntryType::NONE) { + prev_cache.entry[outpointidx] = cache.entry[outpointidx]; + cache.entry[outpointidx].entrytype = EntryType::NONE; + } + } + }; + + // Main simulation loop: read commands from the fuzzer input, and apply them + // to both the real cache stack and the simulation. + FuzzedDataProvider provider(buffer.data(), buffer.size()); + LIMITED_WHILE(provider.remaining_bytes(), 10000) { + // Every operation (except "Change height") moves current height forward, + // so it functions as a kind of epoch, making ~all UTXOs unique. + ++current_height; + // Make sure there is always at least one CCoinsViewCache. + if (caches.empty()) { + caches.emplace_back(new CCoinsViewCache(&bottom)); + sim_caches[caches.size()].Wipe(); + } + + // Execute command. + CallOneOf( + provider, + + [&]() { // GetCoin + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + // Look up in simulation data. + auto sim = lookup(outpointidx); + // Look up in real caches. + Coin realcoin; + auto real = caches.back()->GetCoin(data.outpoints[outpointidx], realcoin); + // Compare results. + if (!sim.has_value()) { + assert(!real); + } else { + assert(!realcoin.IsSpent()); + const auto& simcoin = data.coins[sim->first]; + assert(realcoin.out == simcoin.out); + assert(realcoin.fCoinBase == simcoin.fCoinBase); + assert(realcoin.nHeight == sim->second); + } + }, + + [&]() { // HaveCoin + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + // Look up in simulation data. + auto sim = lookup(outpointidx); + // Look up in real caches. + auto real = caches.back()->HaveCoin(data.outpoints[outpointidx]); + // Compare results. + assert(sim.has_value() == real); + }, + + [&]() { // HaveCoinInCache + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + // Invoke on real cache (there is no equivalent in simulation, so nothing to compare result with). + (void)caches.back()->HaveCoinInCache(data.outpoints[outpointidx]); + }, + + [&]() { // AccessCoin + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + // Look up in simulation data. + auto sim = lookup(outpointidx); + // Look up in real caches. + const auto& realcoin = caches.back()->AccessCoin(data.outpoints[outpointidx]); + // Compare results. + if (!sim.has_value()) { + assert(realcoin.IsSpent()); + } else { + assert(!realcoin.IsSpent()); + const auto& simcoin = data.coins[sim->first]; + assert(simcoin.out == realcoin.out); + assert(simcoin.fCoinBase == realcoin.fCoinBase); + assert(realcoin.nHeight == sim->second); + } + }, + + [&]() { // AddCoin (only possible_overwrite if necessary) + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + uint32_t coinidx = provider.ConsumeIntegralInRange(0, NUM_COINS - 1); + // Look up in simulation data (to know whether we must set possible_overwrite or not). + auto sim = lookup(outpointidx); + // Invoke on real caches. + Coin coin = data.coins[coinidx]; + coin.nHeight = current_height; + caches.back()->AddCoin(data.outpoints[outpointidx], std::move(coin), sim.has_value()); + // Apply to simulation data. + auto& entry = sim_caches[caches.size()].entry[outpointidx]; + entry.entrytype = EntryType::UNSPENT; + entry.coinidx = coinidx; + entry.height = current_height; + }, + + [&]() { // AddCoin (always possible_overwrite) + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + uint32_t coinidx = provider.ConsumeIntegralInRange(0, NUM_COINS - 1); + // Invoke on real caches. + Coin coin = data.coins[coinidx]; + coin.nHeight = current_height; + caches.back()->AddCoin(data.outpoints[outpointidx], std::move(coin), true); + // Apply to simulation data. + auto& entry = sim_caches[caches.size()].entry[outpointidx]; + entry.entrytype = EntryType::UNSPENT; + entry.coinidx = coinidx; + entry.height = current_height; + }, + + [&]() { // SpendCoin (moveto = nullptr) + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + // Invoke on real caches. + caches.back()->SpendCoin(data.outpoints[outpointidx], nullptr); + // Apply to simulation data. + sim_caches[caches.size()].entry[outpointidx].entrytype = EntryType::SPENT; + }, + + [&]() { // SpendCoin (with moveto) + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + // Look up in simulation data (to compare the returned *moveto with). + auto sim = lookup(outpointidx); + // Invoke on real caches. + Coin realcoin; + caches.back()->SpendCoin(data.outpoints[outpointidx], &realcoin); + // Apply to simulation data. + sim_caches[caches.size()].entry[outpointidx].entrytype = EntryType::SPENT; + // Compare *moveto with the value expected based on simulation data. + if (!sim.has_value()) { + assert(realcoin.IsSpent()); + } else { + assert(!realcoin.IsSpent()); + const auto& simcoin = data.coins[sim->first]; + assert(simcoin.out == realcoin.out); + assert(simcoin.fCoinBase == realcoin.fCoinBase); + assert(realcoin.nHeight == sim->second); + } + }, + + [&]() { // Uncache + uint32_t outpointidx = provider.ConsumeIntegralInRange(0, NUM_OUTPOINTS - 1); + // Apply to real caches (there is no equivalent in our simulation). + caches.back()->Uncache(data.outpoints[outpointidx]); + }, + + [&]() { // Add a cache level (if not already at the max). + if (caches.size() != MAX_CACHES) { + // Apply to real caches. + caches.emplace_back(new CCoinsViewCache(&*caches.back())); + // Apply to simulation data. + sim_caches[caches.size()].Wipe(); + } + }, + + [&]() { // Remove a cache level. + // Apply to real caches (this reduces caches.size(), implicitly doing the same on the simulation data). + caches.pop_back(); + }, + + [&]() { // Flush. + // Apply to simulation data. + flush(); + // Apply to real caches. + caches.back()->Flush(); + }, + + [&]() { // Sync. + // Apply to simulation data (note that in our simulation, syncing and flushing is the same thing). + flush(); + // Apply to real caches. + caches.back()->Sync(); + }, + + [&]() { // Flush + ReallocateCache. + // Apply to simulation data. + flush(); + // Apply to real caches. + caches.back()->Flush(); + caches.back()->ReallocateCache(); + }, + + [&]() { // GetCacheSize + (void)caches.back()->GetCacheSize(); + }, + + [&]() { // DynamicMemoryUsage + (void)caches.back()->DynamicMemoryUsage(); + }, + + [&]() { // Change height + current_height = provider.ConsumeIntegralInRange(1, current_height - 1); + } + ); + } + + // Full comparison between caches and simulation data, from bottom to top, + // as AccessCoin on a higher cache may affect caches below it. + for (unsigned sim_idx = 1; sim_idx <= caches.size(); ++sim_idx) { + auto& cache = *caches[sim_idx - 1]; + size_t cache_size = 0; + + for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) { + cache_size += cache.HaveCoinInCache(data.outpoints[outpointidx]); + const auto& real = cache.AccessCoin(data.outpoints[outpointidx]); + auto sim = lookup(outpointidx, sim_idx); + if (!sim.has_value()) { + assert(real.IsSpent()); + } else { + assert(!real.IsSpent()); + assert(real.out == data.coins[sim->first].out); + assert(real.fCoinBase == data.coins[sim->first].fCoinBase); + assert(real.nHeight == sim->second); + } + } + + // HaveCoinInCache ignores spent coins, so GetCacheSize() may exceed it. */ + assert(cache.GetCacheSize() >= cache_size); + } + + // Compare the bottom coinsview (not a CCoinsViewCache) with sim_cache[0]. + for (uint32_t outpointidx = 0; outpointidx < NUM_OUTPOINTS; ++outpointidx) { + Coin realcoin; + bool real = bottom.GetCoin(data.outpoints[outpointidx], realcoin); + auto sim = lookup(outpointidx, 0); + if (!sim.has_value()) { + assert(!real); + } else { + assert(!realcoin.IsSpent()); + assert(realcoin.out == data.coins[sim->first].out); + assert(realcoin.fCoinBase == data.coins[sim->first].fCoinBase); + assert(realcoin.nHeight == sim->second); + } + } +}