This commit is contained in:
Pieter Wuille 2025-01-08 20:42:56 +01:00 committed by GitHub
commit 38e455011b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 3413 additions and 14 deletions

View file

@ -280,6 +280,7 @@ add_library(bitcoin_node STATIC EXCLUDE_FROM_ALL
signet.cpp
torcontrol.cpp
txdb.cpp
txgraph.cpp
txmempool.cpp
txorphanage.cpp
txrequest.cpp

View file

@ -309,6 +309,17 @@ public:
return a < b;
});
}
/** Check if this graph is acyclic. */
bool IsAcyclic() const noexcept
{
for (auto i : Positions()) {
if ((Ancestors(i) & Descendants(i)) != SetType::Singleton(i)) {
return false;
}
}
return true;
}
};
/** A set of transactions together with their aggregate feerate. */
@ -1336,6 +1347,35 @@ std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph,
return ret;
}
/** Make linearization topological, retaining its ordering where possible. */
template<typename SetType>
void FixLinearization(const DepGraph<SetType>& depgraph, Span<ClusterIndex> linearization) noexcept
{
// This algorithm can be summarized as moving every element in the linearization backwards
// until it is placed after all this ancestors.
SetType done;
const auto len = linearization.size();
// Iterate over the elements of linearization from back to front (i is distance from back).
for (ClusterIndex i = 0; i < len; ++i) {
/** The element at that position. */
ClusterIndex elem = linearization[len - 1 - i];
/** j represents how far from the back of the linearization elem should be placed. */
ClusterIndex j = i;
// Figure out which elements elem needs to be placed before.
SetType place_before = done & depgraph.Ancestors(elem);
// Find which position to place elem in (updating j), continuously moving the elements
// in between forward.
while (place_before.Any()) {
auto to_swap = linearization[len - 1 - (j - 1)];
place_before.Reset(to_swap);
linearization[len - 1 - (j--)] = to_swap;
}
// Put elem in its final position and mark it as done.
linearization[len - 1 - j] = elem;
done.Set(elem);
}
}
} // namespace cluster_linearize
#endif // BITCOIN_CLUSTER_LINEARIZE_H

View file

@ -122,6 +122,7 @@ add_executable(fuzz
tx_in.cpp
tx_out.cpp
tx_pool.cpp
txgraph.cpp
txorphan.cpp
txrequest.cpp
# Visual Studio 2022 version 17.12 introduced a bug

View file

@ -407,7 +407,7 @@ FUZZ_TARGET(clusterlin_depgraph_serialization)
SanityCheck(depgraph);
// Verify the graph is a DAG.
assert(IsAcyclic(depgraph));
assert(depgraph.IsAcyclic());
}
FUZZ_TARGET(clusterlin_components)
@ -1118,3 +1118,58 @@ FUZZ_TARGET(clusterlin_merge)
auto cmp2 = CompareChunks(chunking_merged, chunking2);
assert(cmp2 >= 0);
}
FUZZ_TARGET(clusterlin_fix_linearization)
{
// Verify expected properties of FixLinearization() on arbitrary linearizations.
// Retrieve a depgraph from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
// Construct an arbitrary linearization (not necessarily topological for depgraph).
std::vector<ClusterIndex> linearization;
/** Which transactions of depgraph are yet to be included in linearization. */
TestBitSet todo = depgraph.Positions();
/** Whether the linearization constructed so far is topological. */
bool topological{true};
/** How long the prefix of the constructed linearization is which is topological. */
size_t topo_prefix = 0;
while (todo.Any()) {
// Figure out the index in all elements of todo to append to linearization next.
uint64_t val{0};
try {
reader >> VARINT(val);
} catch (const std::ios_base::failure&) {}
val %= todo.Count();
// Find which element in todo that corresponds to.
for (auto i : todo) {
if (val == 0) {
// Found it.
linearization.push_back(i);
// Track whether or not the linearization is topological for depgraph.
todo.Reset(i);
if (todo.Overlaps(depgraph.Ancestors(i))) topological = false;
topo_prefix += topological;
break;
}
--val;
}
}
assert(linearization.size() == depgraph.TxCount());
// Then make a fixed copy of linearization.
auto linearization_fixed = linearization;
FixLinearization(depgraph, linearization_fixed);
// Sanity check it (which includes testing whether it is topological).
SanityCheck(depgraph, linearization_fixed);
// If the linearization was topological already, FixLinearization cannot have modified it.
if (topological) assert(linearization_fixed == linearization);
// In any case, the topo_prefix long prefix of linearization cannot be changed.
assert(std::equal(linearization.begin(), linearization.begin() + topo_prefix,
linearization_fixed.begin()));
}

887
src/test/fuzz/txgraph.cpp Normal file
View file

@ -0,0 +1,887 @@
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <txgraph.h>
#include <cluster_linearize.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/util/random.h>
#include <util/bitset.h>
#include <util/feefrac.h>
#include <algorithm>
#include <iterator>
#include <map>
#include <memory>
#include <set>
#include <stdint.h>
#include <utility>
using namespace cluster_linearize;
namespace {
/** Data type representing a naive simulated TxGraph, keeping all transactions (even from
* disconnected components) in a single DepGraph. Unlike the real TxGraph, this only models
* a single graph, and multiple instances are used to simulate main/staging. */
struct SimTxGraph
{
/** Maximum number of transactions to support simultaneously. Set this higher than txgraph's
* cluster count, so we can exercise situations with more transactions than fit in one
* cluster. */
static constexpr unsigned MAX_TRANSACTIONS = MAX_CLUSTER_COUNT_LIMIT * 2;
/** Set type to use in the simulation. */
using SetType = BitSet<MAX_TRANSACTIONS>;
/** Data type for representing positions within SimTxGraph::graph. */
using Pos = ClusterIndex;
/** Constant to mean "missing in this graph". */
static constexpr auto MISSING = Pos(-1);
/** The dependency graph (for all transactions in the simulation, regardless of
* connectivity/clustering). */
DepGraph<SetType> graph;
/** For each position in graph, which TxGraph::Ref it corresponds with (if any). Use shared_ptr
* so that a SimTxGraph can be copied to create a staging one, while sharing Refs with
* the main graph. */
std::array<std::shared_ptr<TxGraph::Ref>, MAX_TRANSACTIONS> simmap;
/** For each TxGraph::Ref in graph, the position it corresponds with. */
std::map<const TxGraph::Ref*, Pos> simrevmap;
/** The set of TxGraph::Ref entries that have been removed, but not yet Cleanup()'ed in
* the real TxGraph. */
std::vector<std::shared_ptr<TxGraph::Ref>> removed;
/** Whether the graph is oversized (true = yes, false = no, std::nullopt = unknown). */
std::optional<bool> oversized;
/** The configured maximum number of transactions per cluster. */
ClusterIndex max_cluster_count;
/** Construct a new SimTxGraph with the specified maximum cluster count. */
explicit SimTxGraph(ClusterIndex max_cluster) : max_cluster_count(max_cluster) {}
// Permit copying and moving.
SimTxGraph(const SimTxGraph&) noexcept = default;
SimTxGraph& operator=(const SimTxGraph&) noexcept = default;
SimTxGraph(SimTxGraph&&) noexcept = default;
SimTxGraph& operator=(SimTxGraph&&) noexcept = default;
/** Check whether this graph is oversized (contains a connected component whose number of
* transactions exceeds max_cluster_count. */
bool IsOversized()
{
if (!oversized.has_value()) {
// Only recompute when oversized isn't already known.
oversized = false;
auto todo = graph.Positions();
// Iterate over all connected components of the graph.
while (todo.Any()) {
auto component = graph.FindConnectedComponent(todo);
if (component.Count() > max_cluster_count) oversized = true;
todo -= component;
}
}
return *oversized;
}
/** Determine the number of (non-removed) transactions in the graph. */
ClusterIndex GetTransactionCount() const { return graph.TxCount(); }
/** Get the sum of all fees/sizes in the graph. */
FeeFrac SumAll() const
{
FeeFrac ret;
for (auto i : graph.Positions()) {
ret += graph.FeeRate(i);
}
return ret;
}
/** Get the position where ref occurs in this simulated graph, or -1 if it does not. */
Pos Find(const TxGraph::Ref& ref) const
{
if (!ref) return MISSING;
auto it = simrevmap.find(&ref);
if (it != simrevmap.end()) return it->second;
return MISSING;
}
/** Given a position in this simulated graph, get the corresponding TxGraph::Ref. */
TxGraph::Ref& GetRef(Pos pos)
{
assert(graph.Positions()[pos]);
assert(simmap[pos]);
return *simmap[pos].get();
}
/** Add a new transaction to the simulation. */
TxGraph::Ref& AddTransaction(const FeeFrac& feerate)
{
assert(graph.TxCount() < MAX_TRANSACTIONS);
auto simpos = graph.AddTransaction(feerate);
assert(graph.Positions()[simpos]);
simmap[simpos] = std::make_shared<TxGraph::Ref>();
auto ptr = simmap[simpos].get();
simrevmap[ptr] = simpos;
return *ptr;
}
/** Add a dependency between two positions in this graph. */
void AddDependency(TxGraph::Ref& parent, TxGraph::Ref& child)
{
auto par_pos = Find(parent);
if (par_pos == MISSING) return;
auto chl_pos = Find(child);
if (chl_pos == MISSING) return;
graph.AddDependencies(SetType::Singleton(par_pos), chl_pos);
// This may invalidate our cached oversized value.
if (oversized.has_value() && !*oversized) oversized = std::nullopt;
}
/** Modify the transaction fee of a ref, if it exists. */
void SetTransactionFee(TxGraph::Ref& ref, int64_t fee)
{
auto pos = Find(ref);
if (pos == MISSING) return;
graph.FeeRate(pos).fee = fee;
}
/** Remove the transaction in the specified position from the graph. */
void RemoveTransaction(TxGraph::Ref& ref)
{
auto pos = Find(ref);
if (pos == MISSING) return;
graph.RemoveTransactions(SetType::Singleton(pos));
simrevmap.erase(simmap[pos].get());
// Remember the TxGraph::Ref corresponding to this position, because we still expect
// to see it when calling Cleanup().
removed.push_back(std::move(simmap[pos]));
simmap[pos].reset();
// This may invalidate our cached oversized value.
if (oversized.has_value() && *oversized) oversized = std::nullopt;
}
/** Destroy the transaction from the graph, including from the removed set. This will
* trigger TxGraph::Ref::~Ref. reset_oversize controls whether the cached oversized
* value is cleared (destroying does not clear oversizedness in TxGraph of the main
* graph while staging exists). */
void DestroyTransaction(TxGraph::Ref& ref, bool reset_oversize)
{
// Special case the empty Ref.
if (!ref) return;
auto pos = Find(ref);
if (pos == MISSING) {
// Wipe the ref, if it exists, from the removed vector. Use std::partition rather
// than std::erase because we don't care about the order of the entries that
// remain.
auto remove = std::partition(removed.begin(), removed.end(), [&](auto& arg) { return arg.get() != &ref; });
removed.erase(remove, removed.end());
} else {
graph.RemoveTransactions(SetType::Singleton(pos));
simrevmap.erase(simmap[pos].get());
simmap[pos].reset();
// This may invalidate our cached oversized value.
if (reset_oversize && oversized.has_value() && *oversized) {
oversized = std::nullopt;
}
}
}
/** Construct the set with all positions in this graph corresponding to the specified
* TxGraph::Refs. All of them must occur in this graph and not be removed. */
SetType MakeSet(std::span<TxGraph::Ref* const> arg)
{
SetType ret;
for (TxGraph::Ref* ptr : arg) {
auto pos = Find(*ptr);
assert(pos != Pos(-1));
ret.Set(pos);
}
return ret;
}
/** Get the set of ancestors (desc=false) or descendants (desc=true) in this graph. */
SetType GetAncDesc(TxGraph::Ref& arg, bool desc)
{
auto pos = Find(arg);
if (pos == MISSING) return {};
return desc ? graph.Descendants(pos) : graph.Ancestors(pos);
}
/** Given a set of Refs (given as a vector of pointers), expand the set to include all its
* ancestors (desc=false) or all its descendants (desc=true) in this graph. */
void IncludeAncDesc(std::vector<TxGraph::Ref*>& arg, bool desc)
{
std::vector<TxGraph::Ref*> ret;
for (auto ptr : arg) {
auto simpos = Find(*ptr);
if (simpos != MISSING) {
for (auto i : desc ? graph.Descendants(simpos) : graph.Ancestors(simpos)) {
ret.push_back(simmap[i].get());
}
} else {
ret.push_back(ptr);
}
}
// Deduplicate.
std::sort(ret.begin(), ret.end());
ret.erase(std::unique(ret.begin(), ret.end()), ret.end());
// Replace input.
arg = std::move(ret);
}
};
} // namespace
FUZZ_TARGET(txgraph)
{
SeedRandomStateForTest(SeedRand::ZEROS);
FuzzedDataProvider provider(buffer.data(), buffer.size());
/** Internal test RNG, used only for decisions which would require significant amount of data
* to be read from the provider, without realistically impacting test sensitivity. */
InsecureRandomContext rng(0xdecade2009added + buffer.size());
/** Variable used whenever an empty TxGraph::Ref is needed. */
TxGraph::Ref empty_ref;
// Decide the maximum number of transactions per cluster we will use in this simulation.
auto max_count = provider.ConsumeIntegralInRange<ClusterIndex>(1, MAX_CLUSTER_COUNT_LIMIT);
// Construct a real graph, and a vector of simulated graphs (main, and possibly staging).
auto real = MakeTxGraph(max_count);
std::vector<SimTxGraph> sims;
sims.reserve(2);
sims.emplace_back(max_count);
/** Function to pick any Ref (in either sim graph, either sim.removed, or empty). */
auto pick_fn = [&]() noexcept -> TxGraph::Ref& {
size_t tx_count[2] = {sims[0].GetTransactionCount(), 0};
/** The number of possible choices. */
size_t choices = tx_count[0] + sims[0].removed.size() + 1;
if (sims.size() == 2) {
tx_count[1] = sims[1].GetTransactionCount();
choices += tx_count[1] + sims[1].removed.size();
}
/** Pick one of them. */
auto choice = provider.ConsumeIntegralInRange<size_t>(0, choices - 1);
// Consider both main and (if it exists) staging.
for (size_t level = 0; level < sims.size(); ++level) {
auto& sim = sims[level];
if (choice < tx_count[level]) {
// Return from graph.
for (auto i : sim.graph.Positions()) {
if (choice == 0) return sim.GetRef(i);
--choice;
}
assert(false);
} else {
choice -= tx_count[level];
}
if (choice < sim.removed.size()) {
// Return from removed.
return *sim.removed[choice];
} else {
choice -= sim.removed.size();
}
}
// Return empty.
assert(choice == 0);
return empty_ref;
};
/** Function to construct the full diagram for a simulated graph. This works by fetching the
* clusters and chunking them manually, so it works for both main and staging
* (GetMainChunkFeerate only works for main). */
auto get_diagram_fn = [&](bool main_only) -> std::vector<FeeFrac> {
int level = main_only ? 0 : sims.size() - 1;
auto& sim = sims[level];
// For every transaction in the graph, request its cluster, and throw them into a set.
std::set<std::vector<TxGraph::Ref*>> clusters;
for (auto i : sim.graph.Positions()) {
auto& ref = sim.GetRef(i);
clusters.insert(real->GetCluster(ref, main_only));
}
// Compute the chunkings of each (deduplicated) cluster.
size_t num_tx{0};
std::vector<FeeFrac> ret;
for (const auto& cluster : clusters) {
num_tx += cluster.size();
std::vector<SimTxGraph::Pos> linearization;
linearization.reserve(cluster.size());
for (auto refptr : cluster) linearization.push_back(sim.Find(*refptr));
for (const FeeFrac& chunk_feerate : ChunkLinearization(sim.graph, linearization)) {
ret.push_back(chunk_feerate);
}
}
// Verify the number of transactions after deduplicating clusters. This implicitly verifies
// that GetCluster on each element of a cluster reports the cluster transactions in the same
// order.
assert(num_tx == sim.GetTransactionCount());
// Sort by feerate (we don't care about respecting ordering within clusters, as these are
// just feerates).
std::sort(ret.begin(), ret.end(), std::greater{});
return ret;
};
LIMITED_WHILE(provider.remaining_bytes() > 0, 200) {
// Read a one-byte command.
int command = provider.ConsumeIntegral<uint8_t>();
// Treat the lowest bit of a command as a flag (which selects a variant of some of the
// operations), and the second-lowest bit as a way of selecting main vs. staging, and leave
// the rest of the bits in command.
bool alt = command & 1;
bool use_main = command & 2;
command >>= 2;
// Provide convenient aliases for the top simulated graph (main, or staging if it exists),
// one for the simulated graph selected based on use_main (for operations that can operate
// on both graphs), and one that always refers to the main graph.
auto& top_sim = sims.back();
auto& sel_sim = use_main ? sims[0] : top_sim;
auto& main_sim = sims[0];
// Keep decrementing command for each applicable operation, until one is hit. Multiple
// iterations may be necessary.
while (true) {
if (top_sim.GetTransactionCount() < SimTxGraph::MAX_TRANSACTIONS && command-- == 0) {
// AddTransaction.
int64_t fee;
int32_t size;
if (alt) {
fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
} else {
fee = provider.ConsumeIntegral<uint8_t>();
size = provider.ConsumeIntegral<uint8_t>() + 1;
}
FeeFrac feerate{fee, size};
// Create a real TxGraph::Ref.
auto ref = real->AddTransaction(feerate);
// Create a shared_ptr place in the simulation to put the Ref in.
auto& ref_loc = top_sim.AddTransaction(feerate);
// Move it in place.
ref_loc = std::move(ref);
break;
} else if (top_sim.GetTransactionCount() + top_sim.removed.size() > 1 && command-- == 0) {
// AddDependency.
auto& par = pick_fn();
auto& chl = pick_fn();
auto pos_par = top_sim.Find(par);
auto pos_chl = top_sim.Find(chl);
if (pos_par != SimTxGraph::MISSING && pos_chl != SimTxGraph::MISSING) {
// Determine if adding this would introduce a cycle (not allowed by TxGraph),
// and if so, skip.
if (top_sim.graph.Ancestors(pos_par)[pos_chl]) break;
}
top_sim.AddDependency(par, chl);
real->AddDependency(par, chl);
break;
} else if (top_sim.removed.size() < 100 && command-- == 0) {
// RemoveTransaction. Either all its ancestors or all its descendants are also
// removed (if any), to make sure TxGraph's reordering of removals and dependencies
// has no effect.
std::vector<TxGraph::Ref*> to_remove;
to_remove.push_back(&pick_fn());
top_sim.IncludeAncDesc(to_remove, alt);
// The order in which these ancestors/descendants are removed should not matter;
// randomly shuffle them.
std::shuffle(to_remove.begin(), to_remove.end(), rng);
for (TxGraph::Ref* ptr : to_remove) {
real->RemoveTransaction(*ptr);
top_sim.RemoveTransaction(*ptr);
}
break;
} else if (sel_sim.GetTransactionCount() > 0 && command-- == 0) {
// SetTransactionFee.
int64_t fee;
if (alt) {
fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
} else {
fee = provider.ConsumeIntegral<uint8_t>();
}
auto& ref = pick_fn();
real->SetTransactionFee(ref, fee);
for (auto& sim : sims) {
sim.SetTransactionFee(ref, fee);
}
break;
} else if (command-- == 0) {
// ~Ref.
std::vector<TxGraph::Ref*> to_destroy;
to_destroy.push_back(&pick_fn());
while (true) {
// Keep adding either the ancestors or descendants the already picked
// transactions have in both graphs (main and staging) combined. Destroying
// will trigger deletions in both, so to have consistent TxGraph behavior, the
// set must be closed under ancestors, or descendants, in both graphs.
auto old_size = to_destroy.size();
for (auto& sim : sims) sim.IncludeAncDesc(to_destroy, alt);
if (to_destroy.size() == old_size) break;
}
// The order in which these ancestors/descendants are destroyed should not matter;
// randomly shuffle them.
std::shuffle(to_destroy.begin(), to_destroy.end(), rng);
for (TxGraph::Ref* ptr : to_destroy) {
for (size_t level = 0; level < sims.size(); ++level) {
sims[level].DestroyTransaction(*ptr, level == sims.size() - 1);
}
}
break;
} else if (command-- == 0) {
// Cleanup.
auto cleaned = real->Cleanup();
if (sims.size() == 1 && !top_sim.IsOversized()) {
assert(top_sim.removed.size() == cleaned.size());
std::sort(cleaned.begin(), cleaned.end());
std::sort(top_sim.removed.begin(), top_sim.removed.end());
for (size_t i = 0; i < top_sim.removed.size(); ++i) {
assert(cleaned[i] == top_sim.removed[i].get());
}
top_sim.removed.clear();
} else {
assert(cleaned.empty());
}
break;
} else if (command-- == 0) {
// GetTransactionCount.
assert(real->GetTransactionCount(use_main) == sel_sim.GetTransactionCount());
break;
} else if (command-- == 0) {
// Exists.
auto& ref = pick_fn();
bool exists = real->Exists(ref, use_main);
bool should_exist = sel_sim.Find(ref) != SimTxGraph::MISSING;
assert(exists == should_exist);
break;
} else if (command-- == 0) {
// IsOversized.
assert(sel_sim.IsOversized() == real->IsOversized(use_main));
break;
} else if (command-- == 0) {
// GetIndividualFeerate.
auto& ref = pick_fn();
auto feerate = real->GetIndividualFeerate(ref);
bool found{false};
for (auto& sim : sims) {
auto simpos = sim.Find(ref);
if (simpos != SimTxGraph::MISSING) {
found = true;
assert(feerate == sim.graph.FeeRate(simpos));
}
}
if (!found) assert(feerate.IsEmpty());
break;
} else if (!main_sim.IsOversized() && command-- == 0) {
// GetMainChunkFeerate.
auto& ref = pick_fn();
auto feerate = real->GetMainChunkFeerate(ref);
auto simpos = main_sim.Find(ref);
if (simpos == SimTxGraph::MISSING) {
assert(feerate.IsEmpty());
} else {
// Just do some quick checks that the reported value is in range. A full
// recomputation of expected chunk feerates is done at the end.
assert(feerate.size >= main_sim.graph.FeeRate(simpos).size);
assert(feerate.size <= main_sim.SumAll().size);
}
break;
} else if (!sel_sim.IsOversized() && command-- == 0) {
// GetAncestors/GetDescendants.
auto& ref = pick_fn();
auto result = alt ? real->GetDescendants(ref, use_main)
: real->GetAncestors(ref, use_main);
assert(result.size() <= max_count);
auto result_set = sel_sim.MakeSet(result);
assert(result.size() == result_set.Count());
auto expect_set = sel_sim.GetAncDesc(ref, alt);
assert(result_set == expect_set);
break;
} else if (!sel_sim.IsOversized() && command-- == 0) {
// GetCluster.
auto& ref = pick_fn();
auto result = real->GetCluster(ref, use_main);
// Check cluster count limit.
assert(result.size() <= max_count);
// Require the result to be topologically valid and not contain duplicates.
auto left = sel_sim.graph.Positions();
for (auto refptr : result) {
auto simpos = sel_sim.Find(*refptr);
assert(simpos != SimTxGraph::MISSING);
assert(left[simpos]);
left.Reset(simpos);
assert(!sel_sim.graph.Ancestors(simpos).Overlaps(left));
}
// Require the set to be connected.
auto result_set = sel_sim.MakeSet(result);
assert(sel_sim.graph.IsConnected(result_set));
// If ref exists, the result must contain it. If not, it must be empty.
auto simpos = sel_sim.Find(ref);
if (simpos != SimTxGraph::MISSING) {
assert(result_set[simpos]);
} else {
assert(result_set.None());
}
// Require the set not to have ancestors or descendants outside of it.
for (auto i : result_set) {
assert(sel_sim.graph.Ancestors(i).IsSubsetOf(result_set));
assert(sel_sim.graph.Descendants(i).IsSubsetOf(result_set));
}
break;
} else if (command-- == 0) {
// HaveStaging.
assert((sims.size() == 2) == real->HaveStaging());
break;
} else if (sims.size() < 2 && command-- == 0) {
// StartStaging.
sims.emplace_back(sims.back());
real->StartStaging();
break;
} else if (sims.size() > 1 && command-- == 0) {
// AbortStaging/CommitStaging.
if (alt) {
real->AbortStaging();
sims.pop_back();
// Reset the cached oversized value (if TxGraph::Ref destructions triggered
// removals of main transactions while staging was active, then aborting will
// cause it to be re-evaluated in TxGraph).
sims.back().oversized = std::nullopt;
} else {
real->CommitStaging();
sims.erase(sims.begin());
}
break;
} else if (main_sim.GetTransactionCount() > 0 && !main_sim.IsOversized() && command-- == 0) {
// CompareMainOrder.
auto& ref_a = pick_fn();
auto& ref_b = pick_fn();
auto sim_a = main_sim.Find(ref_a);
auto sim_b = main_sim.Find(ref_b);
// Both transactions must exist in the main graph.
if (sim_a == SimTxGraph::MISSING || sim_b == SimTxGraph::MISSING) break;
auto cmp = real->CompareMainOrder(ref_a, ref_b);
// Distinct transactions have distinct places.
if (sim_a != sim_b) assert(cmp != 0);
// Ancestors go before descendants.
if (main_sim.graph.Ancestors(sim_a)[sim_b]) assert(cmp >= 0);
if (main_sim.graph.Descendants(sim_a)[sim_b]) assert(cmp <= 0);
// Do not verify consistency with chunk feerates, as we cannot easily determine
// these here without making more calls to real, which could affect its internal
// state. A full comparison is done at the end.
break;
} else if (sims.size() == 2 && !sims[0].IsOversized() && !sims[1].IsOversized() && command-- == 0) {
// GetMainStagingDiagrams()
auto [main_diagram, staged_diagram] = real->GetMainStagingDiagrams();
auto sum_main = std::accumulate(main_diagram.begin(), main_diagram.end(), FeeFrac{});
auto sum_staged = std::accumulate(staged_diagram.begin(), staged_diagram.end(), FeeFrac{});
auto diagram_gain = sum_staged - sum_main;
auto real_gain = sims[1].SumAll() - sims[0].SumAll();
// Just check that the total fee gained/lost and size gained/lost according to the
// diagram matches the difference in these values in the simulated graph. A more
// complete check of the GetMainStagingDiagrams result is performed at the end.
assert(diagram_gain == real_gain);
// Check that the feerates in each diagram are monotonically decreasing.
for (size_t i = 1; i < main_diagram.size(); ++i) {
assert(FeeRateCompare(main_diagram[i], main_diagram[i - 1]) <= 0);
}
for (size_t i = 1; i < staged_diagram.size(); ++i) {
assert(FeeRateCompare(staged_diagram[i], staged_diagram[i - 1]) <= 0);
}
break;
} else if (!main_sim.IsOversized() && command-- == 0) {
// GetBlockBuilder.
uint8_t frac = provider.ConsumeIntegral<uint8_t>();
auto builder = real->GetBlockBuilder();
SimTxGraph::SetType done;
FeeFrac prev_chunk_feerate;
while (*builder) {
// Chunk feerates must be monotonously decreasing.
if (!prev_chunk_feerate.IsEmpty()) {
assert(FeeRateCompare(builder->GetCurrentChunkFeerate(), prev_chunk_feerate) <= 0);
}
prev_chunk_feerate = builder->GetCurrentChunkFeerate();
// Only include a fraction of frac/255 out of all chunks.
if (rng.randrange(255) <= frac) {
FeeFrac sum_feerate;
for (TxGraph::Ref* ref : builder->GetCurrentChunk()) {
// Each transaction in the chunk must exist in the main graph.
auto simpos = main_sim.Find(*ref);
assert(simpos != SimTxGraph::MISSING);
// Verify the claimed chunk feerate.
sum_feerate += main_sim.graph.FeeRate(simpos);
// Make sure the chunk contains no duplicate transactions.
assert(!done[simpos]);
done.Set(simpos);
// The concatenation of all included chunks, in order, must be
// topologically valid.
assert(main_sim.graph.Ancestors(simpos).IsSubsetOf(done));
}
assert(sum_feerate == builder->GetCurrentChunkFeerate());
builder->Include();
} else {
builder->Skip();
}
}
break;
} else if (/*sims.size() == 1 &&*/ !main_sim.IsOversized() && command-- == 0) {
// GetEvictor.
auto num_to_evict = provider.ConsumeIntegralInRange<int32_t>(0, main_sim.GetTransactionCount());
auto evictor = real->GetEvictor();
SimTxGraph::SetType done;
FeeFrac prev_chunk_feerate;
while (*evictor && num_to_evict >= 0) {
// Chunk feerates must be monotonously increasing.
if (!prev_chunk_feerate.IsEmpty()) {
assert(FeeRateCompare(evictor->GetCurrentChunkFeerate(), prev_chunk_feerate) >= 0);
}
prev_chunk_feerate = evictor->GetCurrentChunkFeerate();
FeeFrac sum_feerate;
for (TxGraph::Ref* ref : evictor->GetCurrentChunk()) {
// Each transaction in the chunk must exist in the main graph.
auto simpos = main_sim.Find(*ref);
assert(simpos != SimTxGraph::MISSING);
// Verify the claimed chunk feerate.
sum_feerate += main_sim.graph.FeeRate(simpos);
// Make sure the chunk contains no duplicate transactions.
assert(!done[simpos]);
done.Set(simpos);
// The concatenation of all reported transaction, in order, must be
// anti-topologically valid (all children before parents).
assert(main_sim.graph.Descendants(simpos).IsSubsetOf(done));
if (num_to_evict > 0) {
// Before destroying Ref, also remove any descendants it may have in
// staging, so that dependencies are consistent.
if (sims.size() == 2) {
auto stage_simpos = top_sim.Find(*ref);
if (stage_simpos != SimTxGraph::MISSING) {
for (auto desc : top_sim.graph.Descendants(stage_simpos)) {
auto& desc_ref = top_sim.GetRef(desc);
top_sim.RemoveTransaction(desc_ref);
real->RemoveTransaction(desc_ref);
}
}
}
// Destroy the Ref for both sims.
for (auto& sim : sims) sim.DestroyTransaction(*ref, true);
--num_to_evict;
}
}
assert(sum_feerate == evictor->GetCurrentChunkFeerate());
evictor->Next();
}
break;
}
}
}
// After running all modifications, perform an internal sanity check (before invoking
// inspectors that may modify the internal state).
real->SanityCheck();
if (!sims[0].IsOversized()) {
// If the main graph is not oversized, verify the total ordering implied by
// CompareMainOrder.
// First construct two distinct randomized permutations of the positions in sims[0].
std::vector<SimTxGraph::Pos> vec1;
for (auto i : sims[0].graph.Positions()) vec1.push_back(i);
std::shuffle(vec1.begin(), vec1.end(), rng);
auto vec2 = vec1;
std::shuffle(vec2.begin(), vec2.end(), rng);
if (vec1 == vec2) std::next_permutation(vec2.begin(), vec2.end());
// Sort both according to CompareMainOrder. By having randomized starting points, the order
// of CompareMainOrder invocations is somewhat randomized as well.
auto cmp = [&](SimTxGraph::Pos a, SimTxGraph::Pos b) noexcept {
return real->CompareMainOrder(sims[0].GetRef(a), sims[0].GetRef(b)) < 0;
};
std::sort(vec1.begin(), vec1.end(), cmp);
std::sort(vec2.begin(), vec2.end(), cmp);
// Verify the resulting orderings are identical. This could only fail if the ordering was
// not total.
assert(vec1 == vec2);
// Verify that the ordering is topological.
auto todo = sims[0].graph.Positions();
for (auto i : vec1) {
todo.Reset(i);
assert(!sims[0].graph.Ancestors(i).Overlaps(todo));
}
assert(todo.None());
// For every transaction in the total ordering, find a random one before it and after it,
// and compare their chunk feerates, which must be consistent with the ordering.
for (size_t pos = 0; pos < vec1.size(); ++pos) {
auto pos_feerate = real->GetMainChunkFeerate(sims[0].GetRef(vec1[pos]));
if (pos > 0) {
size_t before = rng.randrange<size_t>(pos);
auto before_feerate = real->GetMainChunkFeerate(sims[0].GetRef(vec1[before]));
assert(FeeRateCompare(before_feerate, pos_feerate) >= 0);
}
if (pos + 1 < vec1.size()) {
size_t after = pos + 1 + rng.randrange<size_t>(vec1.size() - 1 - pos);
auto after_feerate = real->GetMainChunkFeerate(sims[0].GetRef(vec1[after]));
assert(FeeRateCompare(after_feerate, pos_feerate) <= 0);
}
}
// The same order should be obtained through a BlockBuilder, if nothing is skipped.
auto builder = real->GetBlockBuilder();
std::vector<SimTxGraph::Pos> vec_builder;
while (*builder) {
FeeFrac sum;
for (TxGraph::Ref* ref : builder->GetCurrentChunk()) {
// The reported chunk feerate must match the chunk feerate obtained by asking
// it for each of the chunk's transactions individually.
assert(real->GetMainChunkFeerate(*ref) == builder->GetCurrentChunkFeerate());
// Verify the chunk feerate matches the sum of the reported individual feerates.
sum += real->GetIndividualFeerate(*ref);
// Chunks must contain transactions that exist in the graph.
auto simpos = sims[0].Find(*ref);
assert(simpos != SimTxGraph::MISSING);
vec_builder.push_back(simpos);
}
assert(sum == builder->GetCurrentChunkFeerate());
builder->Include();
}
assert(vec_builder == vec1);
builder.reset();
// The reverse order should be obtained through an Evictor, if nothing is destroyed.
auto evictor = real->GetEvictor();
std::vector<SimTxGraph::Pos> vec_evictor;
while (*evictor) {
FeeFrac sum;
for (TxGraph::Ref* ref : evictor->GetCurrentChunk()) {
// The reported chunk feerate must match the chunk feerate obtained by asking
// it for each of the chunk's transactions individually.
assert(real->GetMainChunkFeerate(*ref) == evictor->GetCurrentChunkFeerate());
// Verify the chunk feerate matches the sum of the reported individual feerates.
sum += real->GetIndividualFeerate(*ref);
// Chunks must contain transactions that exist in the graph.
auto simpos = sims[0].Find(*ref);
assert(simpos != SimTxGraph::MISSING);
vec_evictor.push_back(simpos);
}
assert(sum == evictor->GetCurrentChunkFeerate());
evictor->Next();
}
std::reverse(vec_evictor.begin(), vec_evictor.end());
assert(vec_evictor == vec1);
evictor.reset();
// Check that the implied ordering gives rise to a combined diagram that matches the
// diagram constructed from the individual cluster linearization chunkings.
auto main_diagram = get_diagram_fn(true);
auto expected_main_diagram = ChunkLinearization(sims[0].graph, vec1);
assert(CompareChunks(main_diagram, expected_main_diagram) == 0);
if (sims.size() >= 2 && !sims[1].IsOversized()) {
// When the staging graph is not oversized as well, call GetMainStagingDiagrams, and
// fully verify the result.
auto [main_cmp_diagram, stage_cmp_diagram] = real->GetMainStagingDiagrams();
// Check that the feerates in each diagram are monotonically decreasing.
for (size_t i = 1; i < main_cmp_diagram.size(); ++i) {
assert(FeeRateCompare(main_cmp_diagram[i], main_cmp_diagram[i - 1]) <= 0);
}
for (size_t i = 1; i < stage_cmp_diagram.size(); ++i) {
assert(FeeRateCompare(stage_cmp_diagram[i], stage_cmp_diagram[i - 1]) <= 0);
}
// Apply total ordering on the feerate diagrams to make them comparable (the exact
// tie breaker among equal-feerate FeeFracs does not matter, but it has to be
// consistent with the one used in main_diagram and stage_diagram).
std::sort(main_cmp_diagram.begin(), main_cmp_diagram.end(), std::greater{});
std::sort(stage_cmp_diagram.begin(), stage_cmp_diagram.end(), std::greater{});
// Find the chunks that appear in main_diagram but are missing from main_cmp_diagram.
// This is allowed, because GetMainStagingDiagrams omits clusters in main unaffected
// by staging.
std::vector<FeeFrac> missing_main_cmp;
std::set_difference(main_diagram.begin(), main_diagram.end(),
main_cmp_diagram.begin(), main_cmp_diagram.end(),
std::inserter(missing_main_cmp, missing_main_cmp.end()),
std::greater{});
assert(main_cmp_diagram.size() + missing_main_cmp.size() == main_diagram.size());
// Do the same for chunks in stage_diagram missign from stage_cmp_diagram.
auto stage_diagram = get_diagram_fn(false);
std::vector<FeeFrac> missing_stage_cmp;
std::set_difference(stage_diagram.begin(), stage_diagram.end(),
stage_cmp_diagram.begin(), stage_cmp_diagram.end(),
std::inserter(missing_stage_cmp, missing_stage_cmp.end()),
std::greater{});
assert(stage_cmp_diagram.size() + missing_stage_cmp.size() == stage_diagram.size());
// The missing chunks must be equal across main & staging (otherwise they couldn't have
// been omitted).
assert(missing_main_cmp == missing_stage_cmp);
}
}
assert(real->HaveStaging() == (sims.size() > 1));
// Try to run a full comparison, for both main_only=false and main_only=true in TxGraph
// inspector functions that support both.
for (int main_only = 0; main_only < 2; ++main_only) {
auto& sim = main_only ? sims[0] : sims.back();
// Compare simple properties of the graph with the simulation.
assert(real->IsOversized(main_only) == sim.IsOversized());
assert(real->GetTransactionCount(main_only) == sim.GetTransactionCount());
// If the graph (and the simulation) are not oversized, perform a full comparison.
if (!sim.IsOversized()) {
auto todo = sim.graph.Positions();
// Iterate over all connected components of the resulting (simulated) graph, each of which
// should correspond to a cluster in the real one.
while (todo.Any()) {
auto component = sim.graph.FindConnectedComponent(todo);
todo -= component;
// Iterate over the transactions in that component.
for (auto i : component) {
// Check its individual feerate against simulation.
assert(sim.graph.FeeRate(i) == real->GetIndividualFeerate(sim.GetRef(i)));
// Check its ancestors against simulation.
auto expect_anc = sim.graph.Ancestors(i);
auto anc = sim.MakeSet(real->GetAncestors(sim.GetRef(i), main_only));
assert(anc.Count() <= max_count);
assert(anc == expect_anc);
// Check its descendants against simulation.
auto expect_desc = sim.graph.Descendants(i);
auto desc = sim.MakeSet(real->GetDescendants(sim.GetRef(i), main_only));
assert(desc.Count() <= max_count);
assert(desc == expect_desc);
// Check the cluster the transaction is part of.
auto cluster = real->GetCluster(sim.GetRef(i), main_only);
assert(cluster.size() <= max_count);
assert(sim.MakeSet(cluster) == component);
// Check that the cluster is reported in a valid topological order (its
// linearization).
std::vector<ClusterIndex> simlin;
SimTxGraph::SetType done;
for (TxGraph::Ref* ptr : cluster) {
auto simpos = sim.Find(*ptr);
assert(sim.graph.Descendants(simpos).IsSubsetOf(component - done));
done.Set(simpos);
assert(sim.graph.Ancestors(simpos).IsSubsetOf(done));
simlin.push_back(simpos);
}
// Construct a chunking object for the simulated graph, using the reported cluster
// linearization as ordering, and compare it against the reported chunk feerates.
if (sims.size() == 1 || main_only) {
cluster_linearize::LinearizationChunking simlinchunk(sim.graph, simlin);
ClusterIndex idx{0};
for (unsigned chunknum = 0; chunknum < simlinchunk.NumChunksLeft(); ++chunknum) {
auto chunk = simlinchunk.GetChunk(chunknum);
// Require that the chunks of cluster linearizations are connected (this must
// be the case as all linearizations inside are PostLinearized).
assert(sim.graph.IsConnected(chunk.transactions));
// Check the chunk feerates of all transactions in the cluster.
while (chunk.transactions.Any()) {
assert(chunk.transactions[simlin[idx]]);
chunk.transactions.Reset(simlin[idx]);
assert(chunk.feerate == real->GetMainChunkFeerate(*cluster[idx]));
++idx;
}
}
}
}
}
}
}
// Sanity check again (because invoking inspectors may modify internal unobservable state).
real->SanityCheck();
}

View file

@ -23,18 +23,6 @@ using namespace cluster_linearize;
using TestBitSet = BitSet<32>;
/** Check if a graph is acyclic. */
template<typename SetType>
bool IsAcyclic(const DepGraph<SetType>& depgraph) noexcept
{
for (ClusterIndex i : depgraph.Positions()) {
if ((depgraph.Ancestors(i) & depgraph.Descendants(i)) != SetType::Singleton(i)) {
return false;
}
}
return true;
}
/** A formatter for a bespoke serialization for acyclic DepGraph objects.
*
* The serialization format outputs information about transactions in a topological order (parents
@ -337,7 +325,7 @@ void SanityCheck(const DepGraph<SetType>& depgraph)
assert((depgraph.Descendants(child) & children).IsSubsetOf(SetType::Singleton(child)));
}
}
if (IsAcyclic(depgraph)) {
if (depgraph.IsAcyclic()) {
// If DepGraph is acyclic, serialize + deserialize must roundtrip.
std::vector<unsigned char> ser;
VectorWriter writer(ser, 0);

2208
src/txgraph.cpp Normal file

File diff suppressed because it is too large Load diff

219
src/txgraph.h Normal file
View file

@ -0,0 +1,219 @@
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <compare>
#include <memory>
#include <optional>
#include <stdint.h>
#include <vector>
#include <utility>
#include <util/feefrac.h>
#ifndef BITCOIN_TXGRAPH_H
#define BITCOIN_TXGRAPH_H
static constexpr unsigned MAX_CLUSTER_COUNT_LIMIT{64};
/** Data structure to encapsulate fees, sizes, and dependencies for a set of transactions. */
class TxGraph
{
public:
/** Internal identifier for a transaction within a TxGraph. */
using GraphIndex = uint32_t;
/** Data type used to reference transactions within a TxGraph.
*
* Every transaction within a TxGraph has exactly one corresponding TxGraph::Ref, held by users
* of the class. Destroying the TxGraph::Ref removes the corresponding transaction.
*
* Users of the class can inherit from TxGraph::Ref. If all Refs are inherited this way, the
* Ref* pointers returned by TxGraph functions can be used as this inherited type.
*/
class Ref
{
// Allow TxGraph's GetRefGraph and GetRefIndex to access internals.
friend class TxGraph;
/** Which Graph the Entry lives in. nullptr if this Ref is empty. */
TxGraph* m_graph = nullptr;
/** Index into the Graph's m_entries. Only used if m_graph != nullptr. */
GraphIndex m_index = GraphIndex(-1);
public:
/** Construct an empty Ref (not pointing to any Entry). */
Ref() noexcept = default;
/** Test if this Ref is not empty. */
explicit operator bool() const noexcept { return m_graph != nullptr; }
/** Destroy this Ref. If it is not empty, the corresponding transaction is removed (in both
* main and staging, if it exists). */
virtual ~Ref();
// Support moving a Ref.
Ref& operator=(Ref&& other) noexcept;
Ref(Ref&& other) noexcept;
// Do not permit copy constructing or copy assignment. A TxGraph entry can have at most one
// Ref pointing to it.
Ref& operator=(const Ref&) = delete;
Ref(const Ref&) = delete;
};
/** Base class for BlockBuilder and Evictor. */
class ChunkIterator
{
protected:
/** The next chunk, in topological order plus feerate, or std::nullopt if done. */
std::optional<std::pair<std::span<Ref*>, FeeFrac>> m_current_chunk;
/** Make constructor non-public (use TxGraph::GetBlockBuilder()). */
ChunkIterator() noexcept = default;
public:
/** Support safe inheritance. */
virtual ~ChunkIterator() = default;
/** Determine whether there are more transactions to be processed. */
explicit operator bool() noexcept { return m_current_chunk.has_value(); }
/** Get the chunk that is currently suggested to be included. */
const std::span<Ref*>& GetCurrentChunk() noexcept { return m_current_chunk->first; }
/** Get the feerate of the currently suggested chunk. */
const FeeFrac& GetCurrentChunkFeerate() noexcept { return m_current_chunk->second; }
};
/** Interface returned by GetBlockBuilder. */
class BlockBuilder : public ChunkIterator
{
public:
/** Mark the current chunk as included, and progress to the next one. */
virtual void Include() noexcept = 0;
/** Mark the current chunk as skipped, and progress to the next one. */
virtual void Skip() noexcept = 0;
};
/** Interface returned by GetEvictor. */
class Evictor : public ChunkIterator
{
public:
/** Progress to the next chunk. It is allowed to destroy the Ref objects pointed to by
* GetCurrentChunk before calling Next(), but not other modifications to the main graph
* are allowed while the Evictor exists. Children will always be reported before parents.
*/
virtual void Next() noexcept = 0;
};
protected:
// Allow TxGraph::Ref to call UpdateRef and UnlinkRef.
friend class TxGraph::Ref;
/** Inform the TxGraph implementation that a TxGraph::Ref has moved. */
virtual void UpdateRef(GraphIndex index, Ref& new_location) noexcept = 0;
/** Inform the TxGraph implementation that a TxGraph::Ref was destroyed. */
virtual void UnlinkRef(GraphIndex index) noexcept = 0;
// Allow TxGraph implementations (inheriting from it) to access Ref internals.
static TxGraph*& GetRefGraph(Ref& arg) noexcept { return arg.m_graph; }
static TxGraph* GetRefGraph(const Ref& arg) noexcept { return arg.m_graph; }
static GraphIndex& GetRefIndex(Ref& arg) noexcept { return arg.m_index; }
static GraphIndex GetRefIndex(const Ref& arg) noexcept { return arg.m_index; }
public:
/** Virtual destructor, so inheriting is safe. */
virtual ~TxGraph() = default;
/** Construct a new transaction with the specified feerate, and return a Ref to it.
* If a staging graph exists, the new transaction is only created there. */
[[nodiscard]] virtual Ref AddTransaction(const FeeFrac& feerate) noexcept = 0;
/** Remove the specified transaction. If a staging graph exists, the removal only happens
* there. This is a no-op if the transaction was already removed.
*
* TxGraph may internally reorder transaction removals with dependency additions for
* performance reasons. If together with any transaction removal all its descendants, or all
* its ancestors, are removed as well (which is what always happens in realistic scenarios),
* this reordering will not affect the behavior of TxGraph.
*
* As an example, imagine 3 transactions A,B,C where B depends on A. If a dependency of C on B
* is added, and then B is deleted, C will still depend on A. If the deletion of B is reordered
* before the C->B dependency is added, it has no effect instead. If, together with the
* deletion of B also either A or C is deleted, there is no distinction.
*/
virtual void RemoveTransaction(Ref& arg) noexcept = 0;
/** Add a dependency between two specified transactions. If a staging graph exists, the
* dependency is only added there. Parent may not be a descendant of child already (but may
* be an ancestor of it already, in which case this is a no-op). If either transaction is
* already removed, this is a no-op. */
virtual void AddDependency(Ref& parent, Ref& child) noexcept = 0;
/** Modify the fee of the specified transaction, in both the main graph and the staging
* graph if it exists. Wherever the transaction does not exist (or was removed), this has no
* effect. */
virtual void SetTransactionFee(Ref& arg, int64_t fee) noexcept = 0;
/** Return a vector of pointers to Ref objects for transactions which have been removed from
* the graph, and have not been destroyed yet. This has no effect if a staging graph exists,
* or if the graph is oversized (see below). Each transaction is only reported once by
* Cleanup(). Afterwards, all Refs will be empty. */
[[nodiscard]] virtual std::vector<Ref*> Cleanup() noexcept = 0;
/** Create a staging graph (which cannot exist already). This acts as if a full copy of
* the transaction graph is made, upon which further modifications are made. This copy can
* be inspected, and then either discarded, or the main graph can be replaced by it by
* commiting it. */
virtual void StartStaging() noexcept = 0;
/** Discard the existing active staging graph (which must exist). */
virtual void AbortStaging() noexcept = 0;
/** Replace the main graph with the staging graph (which must exist). */
virtual void CommitStaging() noexcept = 0;
/** Check whether a staging graph exists. */
virtual bool HaveStaging() const noexcept = 0;
/** Determine whether arg exists in the graph (i.e., was not removed). If main_only is false
* and a staging graph exists, it is queried; otherwise the main graph is queried. */
virtual bool Exists(const Ref& arg, bool main_only = false) noexcept = 0;
/** Determine whether the graph is oversized (contains a connected component of more than the
* configured maximum cluster count). If main_only is false and a staging graph exists, it is
* queried; otherwise the main graph is queried. Some of the functions below are not available
* for oversized graphs. The mutators above are always available. Removing a transaction by
* destroying its Ref while staging exists will not clear main's oversizedness until staging
* is aborted or committed. */
virtual bool IsOversized(bool main_only = false) noexcept = 0;
/** Get the feerate of the chunk which transaction arg is in in the main graph. Returns the
* empty FeeFrac if arg does not exist in the main graph. The main graph must not be
* oversized. */
virtual FeeFrac GetMainChunkFeerate(const Ref& arg) noexcept = 0;
/** Get the individual transaction feerate of transaction arg. Returns the empty FeeFrac if
* arg does not exist in either main or staging. This is available even for oversized
* graphs. */
virtual FeeFrac GetIndividualFeerate(const Ref& arg) noexcept = 0;
/** Get pointers to all transactions in the connected component ("cluster") which arg is in.
* The transactions will be returned in a topologically-valid order of acceptable quality.
* If main_only is false and a staging graph exists, it is queried; otherwise the main graph
* is queried. The queried graph must not be oversized. Returns {} if arg does not exist in
* the queried graph. */
virtual std::vector<Ref*> GetCluster(const Ref& arg, bool main_only = false) noexcept = 0;
/** Get pointers to all ancestors of the specified transaction. If main_only is false and a
* staging graph exists, it is queried; otherwise the main graph is queried. The queried
* graph must not be oversized. Returns {} if arg does not exist in the queried graph. */
virtual std::vector<Ref*> GetAncestors(const Ref& arg, bool main_only = false) noexcept = 0;
/** Get pointers to all descendants of the specified transaction. If main_only is false and a
* staging graph exists, it is queried; otherwise the main graph is queried. The queried
* graph must not be oversized. Returns {} if arg does not exist in the queried graph. */
virtual std::vector<Ref*> GetDescendants(const Ref& arg, bool main_only = false) noexcept = 0;
/** Get the total number of transactions in the graph. If main_only is false and a staging
* graph exists, it is queried; otherwise the main graph is queried. This is available even
* for oversized graphs. */
virtual GraphIndex GetTransactionCount(bool main_only = false) noexcept = 0;
/** Compare two transactions according to the total order in the main graph (topological, and
* from high to low chunk feerate). Both transactions must be in the main graph. The main
* graph must not be oversized. */
virtual std::strong_ordering CompareMainOrder(const Ref& a, const Ref& b) noexcept = 0;
/** Get feerate diagrams (comparable using CompareChunks()) for both main and staging (which
* must both exist and not be oversized), ignoring unmodified components in both. */
virtual std::pair<std::vector<FeeFrac>, std::vector<FeeFrac>> GetMainStagingDiagrams() noexcept = 0;
/** Construct a block builder, drawing from the main graph, which cannot be oversized. While
* the returned object exists, no mutators on the main graph are allowed. */
virtual std::unique_ptr<BlockBuilder> GetBlockBuilder() noexcept = 0;
/** Construct an evictor, drawing from the main graph, which cannot be oversized. While
* the returned object exists, no mutators on the main graph are allowed, except destroying
* the Refs reported by Evictor::GetCurrentChunk */
virtual std::unique_ptr<Evictor> GetEvictor() noexcept = 0;
/** Perform an internal consistency check on this object. */
virtual void SanityCheck() const = 0;
};
/** Construct a new TxGraph with the specified limit on transactions within a cluster. That
* number cannot exceed MAX_CLUSTER_COUNT_LIMIT. */
std::unique_ptr<TxGraph> MakeTxGraph(unsigned max_cluster_count) noexcept;
#endif // BITCOIN_TXGRAPH_H