diff --git a/test/functional/feature_block.py b/test/functional/feature_block.py index 59c336e11d..e026e85a3c 100755 --- a/test/functional/feature_block.py +++ b/test/functional/feature_block.py @@ -53,6 +53,8 @@ from test_framework.key import CECKey from test_framework.script import * import struct +MAX_BLOCK_SIGOPS = 20000 + class PreviousSpendableOutput(): def __init__(self, tx=CTransaction(), n=-1): self.tx = tx @@ -97,16 +99,1100 @@ class FullBlockTest(ComparisonTestFramework): self.tip = None self.blocks = {} - def add_options(self, parser): - super().add_options(parser) - parser.add_option("--runbarelyexpensive", dest="runbarelyexpensive", default=True) - def run_test(self): self.test = TestManager(self, self.options.tmpdir) self.test.add_all_connections(self.nodes) network_thread_start() self.test.run() + def get_tests(self): + self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) + self.block_heights[self.genesis_hash] = 0 + self.spendable_outputs = [] + + # Create a new block + self.next_block(0) + self.save_spendable_output() + yield self.accepted() + + # Now we need that block to mature so we can spend the coinbase. + test = TestInstance(sync_every_block=False) + for i in range(99): + self.next_block(5000 + i) + test.blocks_and_transactions.append([self.tip, True]) + self.save_spendable_output() + yield test + + # collect spendable outputs now to avoid cluttering the code later on + out = [] + for i in range(33): + out.append(self.get_spendable_output()) + + # Start by building a couple of blocks on top (which output is spent is + # in parentheses): + # genesis -> b1 (0) -> b2 (1) + self.next_block(1, spend=out[0]) + self.save_spendable_output() + yield self.accepted() + + self.next_block(2, spend=out[1]) + yield self.accepted() + self.save_spendable_output() + + # so fork like this: + # + # genesis -> b1 (0) -> b2 (1) + # \-> b3 (1) + # + # Nothing should happen at this point. We saw b2 first so it takes priority. + self.move_tip(1) + b3 = self.next_block(3, spend=out[1]) + txout_b3 = PreviousSpendableOutput(b3.vtx[1], 0) + yield self.rejected() + + # Now we add another block to make the alternative chain longer. + # + # genesis -> b1 (0) -> b2 (1) + # \-> b3 (1) -> b4 (2) + self.next_block(4, spend=out[2]) + yield self.accepted() + + # ... and back to the first chain. + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b3 (1) -> b4 (2) + self.move_tip(2) + self.next_block(5, spend=out[2]) + self.save_spendable_output() + yield self.rejected() + + self.next_block(6, spend=out[3]) + yield self.accepted() + + # Try to create a fork that double-spends + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b7 (2) -> b8 (4) + # \-> b3 (1) -> b4 (2) + self.move_tip(5) + self.next_block(7, spend=out[2]) + yield self.rejected() + + self.next_block(8, spend=out[4]) + yield self.rejected() + + # Try to create a block that has too much fee + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b9 (4) + # \-> b3 (1) -> b4 (2) + self.move_tip(6) + self.next_block(9, spend=out[4], additional_coinbase_value=1) + yield self.rejected(RejectResult(16, b'bad-cb-amount')) + + # Create a fork that ends in a block with too much fee (the one that causes the reorg) + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b10 (3) -> b11 (4) + # \-> b3 (1) -> b4 (2) + self.move_tip(5) + self.next_block(10, spend=out[3]) + yield self.rejected() + + self.next_block(11, spend=out[4], additional_coinbase_value=1) + yield self.rejected(RejectResult(16, b'bad-cb-amount')) + + # Try again, but with a valid fork first + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b14 (5) + # (b12 added last) + # \-> b3 (1) -> b4 (2) + self.move_tip(5) + b12 = self.next_block(12, spend=out[3]) + self.save_spendable_output() + b13 = self.next_block(13, spend=out[4]) + # Deliver the block header for b12, and the block b13. + # b13 should be accepted but the tip won't advance until b12 is delivered. + yield TestInstance([[CBlockHeader(b12), None], [b13, False]]) + + self.save_spendable_output() + # b14 is invalid, but the node won't know that until it tries to connect + # Tip still can't advance because b12 is missing + self.next_block(14, spend=out[5], additional_coinbase_value=1) + yield self.rejected() + + yield TestInstance([[b12, True, b13.sha256]]) # New tip should be b13. + + # Add a block with MAX_BLOCK_SIGOPS and one with one more sigop + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6) + # \-> b3 (1) -> b4 (2) + + # Test that a block with a lot of checksigs is okay + lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1)) + self.move_tip(13) + self.next_block(15, spend=out[5], script=lots_of_checksigs) + yield self.accepted() + self.save_spendable_output() + + # Test that a block with too many checksigs is rejected + too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS)) + self.next_block(16, spend=out[6], script=too_many_checksigs) + yield self.rejected(RejectResult(16, b'bad-blk-sigops')) + + # Attempt to spend a transaction created on a different fork + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1]) + # \-> b3 (1) -> b4 (2) + self.move_tip(15) + self.next_block(17, spend=txout_b3) + yield self.rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) + + # Attempt to spend a transaction created on a different fork (on a fork this time) + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b15 (5) + # \-> b18 (b3.vtx[1]) -> b19 (6) + # \-> b3 (1) -> b4 (2) + self.move_tip(13) + self.next_block(18, spend=txout_b3) + yield self.rejected() + + self.next_block(19, spend=out[6]) + yield self.rejected() + + # Attempt to spend a coinbase at depth too low + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7) + # \-> b3 (1) -> b4 (2) + self.move_tip(15) + self.next_block(20, spend=out[7]) + yield self.rejected(RejectResult(16, b'bad-txns-premature-spend-of-coinbase')) + + # Attempt to spend a coinbase at depth too low (on a fork this time) + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b15 (5) + # \-> b21 (6) -> b22 (5) + # \-> b3 (1) -> b4 (2) + self.move_tip(13) + self.next_block(21, spend=out[6]) + yield self.rejected() + + self.next_block(22, spend=out[5]) + yield self.rejected() + + # Create a block on either side of MAX_BLOCK_BASE_SIZE and make sure its accepted/rejected + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) + # \-> b24 (6) -> b25 (7) + # \-> b3 (1) -> b4 (2) + self.move_tip(15) + b23 = self.next_block(23, spend=out[6]) + tx = CTransaction() + script_length = MAX_BLOCK_BASE_SIZE - len(b23.serialize()) - 69 + script_output = CScript([b'\x00' * script_length]) + tx.vout.append(CTxOut(0, script_output)) + tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0))) + b23 = self.update_block(23, [tx]) + # Make sure the math above worked out to produce a max-sized block + assert_equal(len(b23.serialize()), MAX_BLOCK_BASE_SIZE) + yield self.accepted() + self.save_spendable_output() + + # Make the next block one byte bigger and check that it fails + self.move_tip(15) + b24 = self.next_block(24, spend=out[6]) + script_length = MAX_BLOCK_BASE_SIZE - len(b24.serialize()) - 69 + script_output = CScript([b'\x00' * (script_length + 1)]) + tx.vout = [CTxOut(0, script_output)] + b24 = self.update_block(24, [tx]) + assert_equal(len(b24.serialize()), MAX_BLOCK_BASE_SIZE + 1) + yield self.rejected(RejectResult(16, b'bad-blk-length')) + + self.next_block(25, spend=out[7]) + yield self.rejected() + + # Create blocks with a coinbase input script size out of range + # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) + # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) + # \-> ... (6) -> ... (7) + # \-> b3 (1) -> b4 (2) + self.move_tip(15) + b26 = self.next_block(26, spend=out[6]) + b26.vtx[0].vin[0].scriptSig = b'\x00' + b26.vtx[0].rehash() + # update_block causes the merkle root to get updated, even with no new + # transactions, and updates the required state. + b26 = self.update_block(26, []) + yield self.rejected(RejectResult(16, b'bad-cb-length')) + + # Extend the b26 chain to make sure bitcoind isn't accepting b26 + self.next_block(27, spend=out[7]) + yield self.rejected(False) + + # Now try a too-large-coinbase script + self.move_tip(15) + b28 = self.next_block(28, spend=out[6]) + b28.vtx[0].vin[0].scriptSig = b'\x00' * 101 + b28.vtx[0].rehash() + b28 = self.update_block(28, []) + yield self.rejected(RejectResult(16, b'bad-cb-length')) + + # Extend the b28 chain to make sure bitcoind isn't accepting b28 + self.next_block(29, spend=out[7]) + yield self.rejected(False) + + # b30 has a max-sized coinbase scriptSig. + self.move_tip(23) + b30 = self.next_block(30) + b30.vtx[0].vin[0].scriptSig = b'\x00' * 100 + b30.vtx[0].rehash() + b30 = self.update_block(30, []) + yield self.accepted() + self.save_spendable_output() + + # b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY + # + # genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) + # \-> b36 (11) + # \-> b34 (10) + # \-> b32 (9) + # + + # MULTISIG: each op code counts as 20 sigops. To create the edge case, pack another 19 sigops at the end. + lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19) + b31 = self.next_block(31, spend=out[8], script=lots_of_multisigs) + assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS) + yield self.accepted() + self.save_spendable_output() + + # this goes over the limit because the coinbase has one sigop + too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20)) + b32 = self.next_block(32, spend=out[9], script=too_many_multisigs) + assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1) + yield self.rejected(RejectResult(16, b'bad-blk-sigops')) + + # CHECKMULTISIGVERIFY + self.move_tip(31) + lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19) + self.next_block(33, spend=out[9], script=lots_of_multisigs) + yield self.accepted() + self.save_spendable_output() + + too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20)) + self.next_block(34, spend=out[10], script=too_many_multisigs) + yield self.rejected(RejectResult(16, b'bad-blk-sigops')) + + # CHECKSIGVERIFY + self.move_tip(33) + lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1)) + b35 = self.next_block(35, spend=out[10], script=lots_of_checksigs) + yield self.accepted() + self.save_spendable_output() + + too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS)) + self.next_block(36, spend=out[11], script=too_many_checksigs) + yield self.rejected(RejectResult(16, b'bad-blk-sigops')) + + # Check spending of a transaction in a block which failed to connect + # + # b6 (3) + # b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) + # \-> b37 (11) + # \-> b38 (11/37) + # + + # save 37's spendable output, but then double-spend out11 to invalidate the block + self.move_tip(35) + b37 = self.next_block(37, spend=out[11]) + txout_b37 = PreviousSpendableOutput(b37.vtx[1], 0) + tx = self.create_and_sign_transaction(out[11].tx, out[11].n, 0) + b37 = self.update_block(37, [tx]) + yield self.rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) + + # attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid + self.move_tip(35) + self.next_block(38, spend=txout_b37) + yield self.rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) + + # Check P2SH SigOp counting + # + # + # 13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12) + # \-> b40 (12) + # + # b39 - create some P2SH outputs that will require 6 sigops to spend: + # + # redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG + # p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL + # + self.move_tip(35) + b39 = self.next_block(39) + b39_outputs = 0 + b39_sigops_per_output = 6 + + # Build the redeem script, hash it, use hash to create the p2sh script + redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY] * 5 + [OP_CHECKSIG]) + redeem_script_hash = hash160(redeem_script) + p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL]) + + # Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE + # This must be signed because it is spending a coinbase + spend = out[11] + tx = self.create_tx(spend.tx, spend.n, 1, p2sh_script) + tx.vout.append(CTxOut(spend.tx.vout[spend.n].nValue - 1, CScript([OP_TRUE]))) + self.sign_tx(tx, spend.tx, spend.n) + tx.rehash() + b39 = self.update_block(39, [tx]) + b39_outputs += 1 + + # Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE + tx_new = None + tx_last = tx + total_size = len(b39.serialize()) + while(total_size < MAX_BLOCK_BASE_SIZE): + tx_new = self.create_tx(tx_last, 1, 1, p2sh_script) + tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE]))) + tx_new.rehash() + total_size += len(tx_new.serialize()) + if total_size >= MAX_BLOCK_BASE_SIZE: + break + b39.vtx.append(tx_new) # add tx to block + tx_last = tx_new + b39_outputs += 1 + + b39 = self.update_block(39, []) + yield self.accepted() + self.save_spendable_output() + + # Test sigops in P2SH redeem scripts + # + # b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops. + # The first tx has one sigop and then at the end we add 2 more to put us just over the max. + # + # b41 does the same, less one, so it has the maximum sigops permitted. + # + self.move_tip(39) + b40 = self.next_block(40, spend=out[12]) + sigops = get_legacy_sigopcount_block(b40) + numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output + assert_equal(numTxes <= b39_outputs, True) + + lastOutpoint = COutPoint(b40.vtx[1].sha256, 0) + new_txs = [] + for i in range(1, numTxes + 1): + tx = CTransaction() + tx.vout.append(CTxOut(1, CScript([OP_TRUE]))) + tx.vin.append(CTxIn(lastOutpoint, b'')) + # second input is corresponding P2SH output from b39 + tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b'')) + # Note: must pass the redeem_script (not p2sh_script) to the signature hash function + (sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL) + sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL])) + scriptSig = CScript([sig, redeem_script]) + + tx.vin[1].scriptSig = scriptSig + tx.rehash() + new_txs.append(tx) + lastOutpoint = COutPoint(tx.sha256, 0) + + b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1 + tx = CTransaction() + tx.vin.append(CTxIn(lastOutpoint, b'')) + tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill))) + tx.rehash() + new_txs.append(tx) + self.update_block(40, new_txs) + yield self.rejected(RejectResult(16, b'bad-blk-sigops')) + + # same as b40, but one less sigop + self.move_tip(39) + self.next_block(41, spend=None) + self.update_block(41, b40.vtx[1:-1]) + b41_sigops_to_fill = b40_sigops_to_fill - 1 + tx = CTransaction() + tx.vin.append(CTxIn(lastOutpoint, b'')) + tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill))) + tx.rehash() + self.update_block(41, [tx]) + yield self.accepted() + + # Fork off of b39 to create a constant base again + # + # b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) + # \-> b41 (12) + # + self.move_tip(39) + self.next_block(42, spend=out[12]) + yield self.rejected() + self.save_spendable_output() + + self.next_block(43, spend=out[13]) + yield self.accepted() + self.save_spendable_output() + + # Test a number of really invalid scenarios + # + # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14) + # \-> ??? (15) + + # The next few blocks are going to be created "by hand" since they'll do funky things, such as having + # the first transaction be non-coinbase, etc. The purpose of b44 is to make sure this works. + height = self.block_heights[self.tip.sha256] + 1 + coinbase = create_coinbase(height, self.coinbase_pubkey) + b44 = CBlock() + b44.nTime = self.tip.nTime + 1 + b44.hashPrevBlock = self.tip.sha256 + b44.nBits = 0x207fffff + b44.vtx.append(coinbase) + b44.hashMerkleRoot = b44.calc_merkle_root() + b44.solve() + self.tip = b44 + self.block_heights[b44.sha256] = height + self.blocks[44] = b44 + yield self.accepted() + + # A block with a non-coinbase as the first tx + non_coinbase = self.create_tx(out[15].tx, out[15].n, 1) + b45 = CBlock() + b45.nTime = self.tip.nTime + 1 + b45.hashPrevBlock = self.tip.sha256 + b45.nBits = 0x207fffff + b45.vtx.append(non_coinbase) + b45.hashMerkleRoot = b45.calc_merkle_root() + b45.calc_sha256() + b45.solve() + self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256] + 1 + self.tip = b45 + self.blocks[45] = b45 + yield self.rejected(RejectResult(16, b'bad-cb-missing')) + + # A block with no txns + self.move_tip(44) + b46 = CBlock() + b46.nTime = b44.nTime + 1 + b46.hashPrevBlock = b44.sha256 + b46.nBits = 0x207fffff + b46.vtx = [] + b46.hashMerkleRoot = 0 + b46.solve() + self.block_heights[b46.sha256] = self.block_heights[b44.sha256] + 1 + self.tip = b46 + assert 46 not in self.blocks + self.blocks[46] = b46 + yield self.rejected(RejectResult(16, b'bad-blk-length')) + + # A block with invalid work + self.move_tip(44) + b47 = self.next_block(47, solve=False) + target = uint256_from_compact(b47.nBits) + while b47.sha256 < target: # changed > to < + b47.nNonce += 1 + b47.rehash() + yield self.rejected(RejectResult(16, b'high-hash')) + + # A block with timestamp > 2 hrs in the future + self.move_tip(44) + b48 = self.next_block(48, solve=False) + b48.nTime = int(time.time()) + 60 * 60 * 3 + b48.solve() + yield self.rejected(RejectResult(16, b'time-too-new')) + + # A block with an invalid merkle hash + self.move_tip(44) + b49 = self.next_block(49) + b49.hashMerkleRoot += 1 + b49.solve() + yield self.rejected(RejectResult(16, b'bad-txnmrklroot')) + + # A block with an incorrect POW limit + self.move_tip(44) + b50 = self.next_block(50) + b50.nBits = b50.nBits - 1 + b50.solve() + yield self.rejected(RejectResult(16, b'bad-diffbits')) + + # A block with two coinbase txns + self.move_tip(44) + self.next_block(51) + cb2 = create_coinbase(51, self.coinbase_pubkey) + self.update_block(51, [cb2]) + yield self.rejected(RejectResult(16, b'bad-cb-multiple')) + + # A block w/ duplicate txns + # Note: txns have to be in the right position in the merkle tree to trigger this error + self.move_tip(44) + b52 = self.next_block(52, spend=out[15]) + tx = self.create_tx(b52.vtx[1], 0, 1) + b52 = self.update_block(52, [tx, tx]) + yield self.rejected(RejectResult(16, b'bad-txns-duplicate')) + + # Test block timestamps + # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) + # \-> b54 (15) + # + self.move_tip(43) + self.next_block(53, spend=out[14]) + yield self.rejected() # rejected since b44 is at same height + self.save_spendable_output() + + # invalid timestamp (b35 is 5 blocks back, so its time is MedianTimePast) + b54 = self.next_block(54, spend=out[15]) + b54.nTime = b35.nTime - 1 + b54.solve() + yield self.rejected(RejectResult(16, b'time-too-old')) + + # valid timestamp + self.move_tip(53) + b55 = self.next_block(55, spend=out[15]) + b55.nTime = b35.nTime + self.update_block(55, []) + yield self.accepted() + self.save_spendable_output() + + # Test CVE-2012-2459 + # + # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16) + # \-> b57 (16) + # \-> b56p2 (16) + # \-> b56 (16) + # + # Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without + # affecting the merkle root of a block, while still invalidating it. + # See: src/consensus/merkle.h + # + # b57 has three txns: coinbase, tx, tx1. The merkle root computation will duplicate tx. + # Result: OK + # + # b56 copies b57 but duplicates tx1 and does not recalculate the block hash. So it has a valid merkle + # root but duplicate transactions. + # Result: Fails + # + # b57p2 has six transactions in its merkle tree: + # - coinbase, tx, tx1, tx2, tx3, tx4 + # Merkle root calculation will duplicate as necessary. + # Result: OK. + # + # b56p2 copies b57p2 but adds both tx3 and tx4. The purpose of the test is to make sure the code catches + # duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates + # that the error was caught early, avoiding a DOS vulnerability.) + + # b57 - a good block with 2 txs, don't submit until end + self.move_tip(55) + b57 = self.next_block(57) + tx = self.create_and_sign_transaction(out[16].tx, out[16].n, 1) + tx1 = self.create_tx(tx, 0, 1) + b57 = self.update_block(57, [tx, tx1]) + + # b56 - copy b57, add a duplicate tx + self.move_tip(55) + b56 = copy.deepcopy(b57) + self.blocks[56] = b56 + assert_equal(len(b56.vtx), 3) + b56 = self.update_block(56, [tx1]) + assert_equal(b56.hash, b57.hash) + yield self.rejected(RejectResult(16, b'bad-txns-duplicate')) + + # b57p2 - a good block with 6 tx'es, don't submit until end + self.move_tip(55) + b57p2 = self.next_block("57p2") + tx = self.create_and_sign_transaction(out[16].tx, out[16].n, 1) + tx1 = self.create_tx(tx, 0, 1) + tx2 = self.create_tx(tx1, 0, 1) + tx3 = self.create_tx(tx2, 0, 1) + tx4 = self.create_tx(tx3, 0, 1) + b57p2 = self.update_block("57p2", [tx, tx1, tx2, tx3, tx4]) + + # b56p2 - copy b57p2, duplicate two non-consecutive tx's + self.move_tip(55) + b56p2 = copy.deepcopy(b57p2) + self.blocks["b56p2"] = b56p2 + assert_equal(b56p2.hash, b57p2.hash) + assert_equal(len(b56p2.vtx), 6) + b56p2 = self.update_block("b56p2", [tx3, tx4]) + yield self.rejected(RejectResult(16, b'bad-txns-duplicate')) + + self.move_tip("57p2") + yield self.accepted() + + self.move_tip(57) + yield self.rejected() # rejected because 57p2 seen first + self.save_spendable_output() + + # Test a few invalid tx types + # + # -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) + # \-> ??? (17) + # + + # tx with prevout.n out of range + self.move_tip(57) + self.next_block(58, spend=out[17]) + tx = CTransaction() + assert(len(out[17].tx.vout) < 42) + tx.vin.append(CTxIn(COutPoint(out[17].tx.sha256, 42), CScript([OP_TRUE]), 0xffffffff)) + tx.vout.append(CTxOut(0, b"")) + tx.calc_sha256() + self.update_block(58, [tx]) + yield self.rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) + + # tx with output value > input value out of range + self.move_tip(57) + self.next_block(59) + tx = self.create_and_sign_transaction(out[17].tx, out[17].n, 51 * COIN) + self.update_block(59, [tx]) + yield self.rejected(RejectResult(16, b'bad-txns-in-belowout')) + + # reset to good chain + self.move_tip(57) + b60 = self.next_block(60, spend=out[17]) + yield self.accepted() + self.save_spendable_output() + + # Test BIP30 + # + # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) + # \-> b61 (18) + # + # Blocks are not allowed to contain a transaction whose id matches that of an earlier, + # not-fully-spent transaction in the same chain. To test, make identical coinbases; + # the second one should be rejected. + # + self.move_tip(60) + b61 = self.next_block(61, spend=out[18]) + b61.vtx[0].vin[0].scriptSig = b60.vtx[0].vin[0].scriptSig # equalize the coinbases + b61.vtx[0].rehash() + b61 = self.update_block(61, []) + assert_equal(b60.vtx[0].serialize(), b61.vtx[0].serialize()) + yield self.rejected(RejectResult(16, b'bad-txns-BIP30')) + + # Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests) + # + # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) + # \-> b62 (18) + # + self.move_tip(60) + self.next_block(62) + tx = CTransaction() + tx.nLockTime = 0xffffffff # this locktime is non-final + assert(out[18].n < len(out[18].tx.vout)) + tx.vin.append(CTxIn(COutPoint(out[18].tx.sha256, out[18].n))) # don't set nSequence + tx.vout.append(CTxOut(0, CScript([OP_TRUE]))) + assert(tx.vin[0].nSequence < 0xffffffff) + tx.calc_sha256() + self.update_block(62, [tx]) + yield self.rejected(RejectResult(16, b'bad-txns-nonfinal')) + + # Test a non-final coinbase is also rejected + # + # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) + # \-> b63 (-) + # + self.move_tip(60) + b63 = self.next_block(63) + b63.vtx[0].nLockTime = 0xffffffff + b63.vtx[0].vin[0].nSequence = 0xDEADBEEF + b63.vtx[0].rehash() + b63 = self.update_block(63, []) + yield self.rejected(RejectResult(16, b'bad-txns-nonfinal')) + + # This checks that a block with a bloated VARINT between the block_header and the array of tx such that + # the block is > MAX_BLOCK_BASE_SIZE with the bloated varint, but <= MAX_BLOCK_BASE_SIZE without the bloated varint, + # does not cause a subsequent, identical block with canonical encoding to be rejected. The test does not + # care whether the bloated block is accepted or rejected; it only cares that the second block is accepted. + # + # What matters is that the receiving node should not reject the bloated block, and then reject the canonical + # block on the basis that it's the same as an already-rejected block (which would be a consensus failure.) + # + # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) + # \ + # b64a (18) + # b64a is a bloated block (non-canonical varint) + # b64 is a good block (same as b64 but w/ canonical varint) + # + self.move_tip(60) + regular_block = self.next_block("64a", spend=out[18]) + + # make it a "broken_block," with non-canonical serialization + b64a = CBrokenBlock(regular_block) + b64a.initialize(regular_block) + self.blocks["64a"] = b64a + self.tip = b64a + tx = CTransaction() + + # use canonical serialization to calculate size + script_length = MAX_BLOCK_BASE_SIZE - len(b64a.normal_serialize()) - 69 + script_output = CScript([b'\x00' * script_length]) + tx.vout.append(CTxOut(0, script_output)) + tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0))) + b64a = self.update_block("64a", [tx]) + assert_equal(len(b64a.serialize()), MAX_BLOCK_BASE_SIZE + 8) + yield TestInstance([[self.tip, None]]) + + # comptool workaround: to make sure b64 is delivered, manually erase b64a from blockstore + self.test.block_store.erase(b64a.sha256) + + self.move_tip(60) + b64 = CBlock(b64a) + b64.vtx = copy.deepcopy(b64a.vtx) + assert_equal(b64.hash, b64a.hash) + assert_equal(len(b64.serialize()), MAX_BLOCK_BASE_SIZE) + self.blocks[64] = b64 + self.update_block(64, []) + yield self.accepted() + self.save_spendable_output() + + # Spend an output created in the block itself + # + # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) + # + self.move_tip(64) + self.next_block(65) + tx1 = self.create_and_sign_transaction(out[19].tx, out[19].n, out[19].tx.vout[0].nValue) + tx2 = self.create_and_sign_transaction(tx1, 0, 0) + self.update_block(65, [tx1, tx2]) + yield self.accepted() + self.save_spendable_output() + + # Attempt to spend an output created later in the same block + # + # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) + # \-> b66 (20) + self.move_tip(65) + self.next_block(66) + tx1 = self.create_and_sign_transaction(out[20].tx, out[20].n, out[20].tx.vout[0].nValue) + tx2 = self.create_and_sign_transaction(tx1, 0, 1) + self.update_block(66, [tx2, tx1]) + yield self.rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) + + # Attempt to double-spend a transaction created in a block + # + # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) + # \-> b67 (20) + # + # + self.move_tip(65) + self.next_block(67) + tx1 = self.create_and_sign_transaction(out[20].tx, out[20].n, out[20].tx.vout[0].nValue) + tx2 = self.create_and_sign_transaction(tx1, 0, 1) + tx3 = self.create_and_sign_transaction(tx1, 0, 2) + self.update_block(67, [tx1, tx2, tx3]) + yield self.rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) + + # More tests of block subsidy + # + # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) + # \-> b68 (20) + # + # b68 - coinbase with an extra 10 satoshis, + # creates a tx that has 9 satoshis from out[20] go to fees + # this fails because the coinbase is trying to claim 1 satoshi too much in fees + # + # b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee + # this succeeds + # + self.move_tip(65) + self.next_block(68, additional_coinbase_value=10) + tx = self.create_and_sign_transaction(out[20].tx, out[20].n, out[20].tx.vout[0].nValue - 9) + self.update_block(68, [tx]) + yield self.rejected(RejectResult(16, b'bad-cb-amount')) + + self.move_tip(65) + b69 = self.next_block(69, additional_coinbase_value=10) + tx = self.create_and_sign_transaction(out[20].tx, out[20].n, out[20].tx.vout[0].nValue - 10) + self.update_block(69, [tx]) + yield self.accepted() + self.save_spendable_output() + + # Test spending the outpoint of a non-existent transaction + # + # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) + # \-> b70 (21) + # + self.move_tip(69) + self.next_block(70, spend=out[21]) + bogus_tx = CTransaction() + bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c") + tx = CTransaction() + tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", 0xffffffff)) + tx.vout.append(CTxOut(1, b"")) + self.update_block(70, [tx]) + yield self.rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) + + # Test accepting an invalid block which has the same hash as a valid one (via merkle tree tricks) + # + # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) + # \-> b71 (21) + # + # b72 is a good block. + # b71 is a copy of 72, but re-adds one of its transactions. However, it has the same hash as b71. + # + self.move_tip(69) + b72 = self.next_block(72) + tx1 = self.create_and_sign_transaction(out[21].tx, out[21].n, 2) + tx2 = self.create_and_sign_transaction(tx1, 0, 1) + b72 = self.update_block(72, [tx1, tx2]) # now tip is 72 + b71 = copy.deepcopy(b72) + b71.vtx.append(tx2) # add duplicate tx2 + self.block_heights[b71.sha256] = self.block_heights[b69.sha256] + 1 # b71 builds off b69 + self.blocks[71] = b71 + + assert_equal(len(b71.vtx), 4) + assert_equal(len(b72.vtx), 3) + assert_equal(b72.sha256, b71.sha256) + + self.move_tip(71) + yield self.rejected(RejectResult(16, b'bad-txns-duplicate')) + self.move_tip(72) + yield self.accepted() + self.save_spendable_output() + + # Test some invalid scripts and MAX_BLOCK_SIGOPS + # + # -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) + # \-> b** (22) + # + + # b73 - tx with excessive sigops that are placed after an excessively large script element. + # The purpose of the test is to make sure those sigops are counted. + # + # script is a bytearray of size 20,526 + # + # bytearray[0-19,998] : OP_CHECKSIG + # bytearray[19,999] : OP_PUSHDATA4 + # bytearray[20,000-20,003]: 521 (max_script_element_size+1, in little-endian format) + # bytearray[20,004-20,525]: unread data (script_element) + # bytearray[20,526] : OP_CHECKSIG (this puts us over the limit) + # + self.move_tip(72) + b73 = self.next_block(73) + size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1 + a = bytearray([OP_CHECKSIG] * size) + a[MAX_BLOCK_SIGOPS - 1] = int("4e", 16) # OP_PUSHDATA4 + + element_size = MAX_SCRIPT_ELEMENT_SIZE + 1 + a[MAX_BLOCK_SIGOPS] = element_size % 256 + a[MAX_BLOCK_SIGOPS + 1] = element_size // 256 + a[MAX_BLOCK_SIGOPS + 2] = 0 + a[MAX_BLOCK_SIGOPS + 3] = 0 + + tx = self.create_and_sign_transaction(out[22].tx, 0, 1, CScript(a)) + b73 = self.update_block(73, [tx]) + assert_equal(get_legacy_sigopcount_block(b73), MAX_BLOCK_SIGOPS + 1) + yield self.rejected(RejectResult(16, b'bad-blk-sigops')) + + # b74/75 - if we push an invalid script element, all prevous sigops are counted, + # but sigops after the element are not counted. + # + # The invalid script element is that the push_data indicates that + # there will be a large amount of data (0xffffff bytes), but we only + # provide a much smaller number. These bytes are CHECKSIGS so they would + # cause b75 to fail for excessive sigops, if those bytes were counted. + # + # b74 fails because we put MAX_BLOCK_SIGOPS+1 before the element + # b75 succeeds because we put MAX_BLOCK_SIGOPS before the element + # + # + self.move_tip(72) + self.next_block(74) + size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 # total = 20,561 + a = bytearray([OP_CHECKSIG] * size) + a[MAX_BLOCK_SIGOPS] = 0x4e + a[MAX_BLOCK_SIGOPS + 1] = 0xfe + a[MAX_BLOCK_SIGOPS + 2] = 0xff + a[MAX_BLOCK_SIGOPS + 3] = 0xff + a[MAX_BLOCK_SIGOPS + 4] = 0xff + tx = self.create_and_sign_transaction(out[22].tx, 0, 1, CScript(a)) + self.update_block(74, [tx]) + yield self.rejected(RejectResult(16, b'bad-blk-sigops')) + + self.move_tip(72) + self.next_block(75) + size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 + a = bytearray([OP_CHECKSIG] * size) + a[MAX_BLOCK_SIGOPS - 1] = 0x4e + a[MAX_BLOCK_SIGOPS] = 0xff + a[MAX_BLOCK_SIGOPS + 1] = 0xff + a[MAX_BLOCK_SIGOPS + 2] = 0xff + a[MAX_BLOCK_SIGOPS + 3] = 0xff + tx = self.create_and_sign_transaction(out[22].tx, 0, 1, CScript(a)) + self.update_block(75, [tx]) + yield self.accepted() + self.save_spendable_output() + + # Check that if we push an element filled with CHECKSIGs, they are not counted + self.move_tip(75) + self.next_block(76) + size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + a = bytearray([OP_CHECKSIG] * size) + a[MAX_BLOCK_SIGOPS - 1] = 0x4e # PUSHDATA4, but leave the following bytes as just checksigs + tx = self.create_and_sign_transaction(out[23].tx, 0, 1, CScript(a)) + self.update_block(76, [tx]) + yield self.accepted() + self.save_spendable_output() + + # Test transaction resurrection + # + # -> b77 (24) -> b78 (25) -> b79 (26) + # \-> b80 (25) -> b81 (26) -> b82 (27) + # + # b78 creates a tx, which is spent in b79. After b82, both should be in mempool + # + # The tx'es must be unsigned and pass the node's mempool policy. It is unsigned for the + # rather obscure reason that the Python signature code does not distinguish between + # Low-S and High-S values (whereas the bitcoin code has custom code which does so); + # as a result of which, the odds are 50% that the python code will use the right + # value and the transaction will be accepted into the mempool. Until we modify the + # test framework to support low-S signing, we are out of luck. + # + # To get around this issue, we construct transactions which are not signed and which + # spend to OP_TRUE. If the standard-ness rules change, this test would need to be + # updated. (Perhaps to spend to a P2SH OP_TRUE script) + # + self.move_tip(76) + self.next_block(77) + tx77 = self.create_and_sign_transaction(out[24].tx, out[24].n, 10 * COIN) + self.update_block(77, [tx77]) + yield self.accepted() + self.save_spendable_output() + + self.next_block(78) + tx78 = self.create_tx(tx77, 0, 9 * COIN) + self.update_block(78, [tx78]) + yield self.accepted() + + self.next_block(79) + tx79 = self.create_tx(tx78, 0, 8 * COIN) + self.update_block(79, [tx79]) + yield self.accepted() + + # mempool should be empty + assert_equal(len(self.nodes[0].getrawmempool()), 0) + + self.move_tip(77) + self.next_block(80, spend=out[25]) + yield self.rejected() + self.save_spendable_output() + + self.next_block(81, spend=out[26]) + yield self.rejected() # other chain is same length + self.save_spendable_output() + + self.next_block(82, spend=out[27]) + yield self.accepted() # now this chain is longer, triggers re-org + self.save_spendable_output() + + # now check that tx78 and tx79 have been put back into the peer's mempool + mempool = self.nodes[0].getrawmempool() + assert_equal(len(mempool), 2) + assert(tx78.hash in mempool) + assert(tx79.hash in mempool) + + # Test invalid opcodes in dead execution paths. + # + # -> b81 (26) -> b82 (27) -> b83 (28) + # + self.next_block(83) + op_codes = [OP_IF, OP_INVALIDOPCODE, OP_ELSE, OP_TRUE, OP_ENDIF] + script = CScript(op_codes) + tx1 = self.create_and_sign_transaction(out[28].tx, out[28].n, out[28].tx.vout[0].nValue, script) + + tx2 = self.create_and_sign_transaction(tx1, 0, 0, CScript([OP_TRUE])) + tx2.vin[0].scriptSig = CScript([OP_FALSE]) + tx2.rehash() + + self.update_block(83, [tx1, tx2]) + yield self.accepted() + self.save_spendable_output() + + # Reorg on/off blocks that have OP_RETURN in them (and try to spend them) + # + # -> b81 (26) -> b82 (27) -> b83 (28) -> b84 (29) -> b87 (30) -> b88 (31) + # \-> b85 (29) -> b86 (30) \-> b89a (32) + # + # + self.next_block(84) + tx1 = self.create_tx(out[29].tx, out[29].n, 0, CScript([OP_RETURN])) + tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) + tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) + tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) + tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) + tx1.calc_sha256() + self.sign_tx(tx1, out[29].tx, out[29].n) + tx1.rehash() + tx2 = self.create_tx(tx1, 1, 0, CScript([OP_RETURN])) + tx2.vout.append(CTxOut(0, CScript([OP_RETURN]))) + tx3 = self.create_tx(tx1, 2, 0, CScript([OP_RETURN])) + tx3.vout.append(CTxOut(0, CScript([OP_TRUE]))) + tx4 = self.create_tx(tx1, 3, 0, CScript([OP_TRUE])) + tx4.vout.append(CTxOut(0, CScript([OP_RETURN]))) + tx5 = self.create_tx(tx1, 4, 0, CScript([OP_RETURN])) + + self.update_block(84, [tx1, tx2, tx3, tx4, tx5]) + yield self.accepted() + self.save_spendable_output() + + self.move_tip(83) + self.next_block(85, spend=out[29]) + yield self.rejected() + + self.next_block(86, spend=out[30]) + yield self.accepted() + + self.move_tip(84) + self.next_block(87, spend=out[30]) + yield self.rejected() + self.save_spendable_output() + + self.next_block(88, spend=out[31]) + yield self.accepted() + self.save_spendable_output() + + # trying to spend the OP_RETURN output is rejected + self.next_block("89a", spend=out[32]) + tx = self.create_tx(tx1, 0, 0, CScript([OP_TRUE])) + self.update_block("89a", [tx]) + yield self.rejected() + + self.move_tip(88) + LARGE_REORG_SIZE = 1088 + test1 = TestInstance(sync_every_block=False) + spend = out[32] + for i in range(89, LARGE_REORG_SIZE + 89): + b = self.next_block(i, spend) + tx = CTransaction() + script_length = MAX_BLOCK_BASE_SIZE - len(b.serialize()) - 69 + script_output = CScript([b'\x00' * script_length]) + tx.vout.append(CTxOut(0, script_output)) + tx.vin.append(CTxIn(COutPoint(b.vtx[1].sha256, 0))) + b = self.update_block(i, [tx]) + assert_equal(len(b.serialize()), MAX_BLOCK_BASE_SIZE) + test1.blocks_and_transactions.append([self.tip, True]) + self.save_spendable_output() + spend = self.get_spendable_output() + + yield test1 + chain1_tip = i + + # now create alt chain of same length + self.move_tip(88) + test2 = TestInstance(sync_every_block=False) + for i in range(89, LARGE_REORG_SIZE + 89): + self.next_block("alt" + str(i)) + test2.blocks_and_transactions.append([self.tip, False]) + yield test2 + + # extend alt chain to trigger re-org + self.next_block("alt" + str(chain1_tip + 1)) + yield self.accepted() + + # ... and re-org back to the first chain + self.move_tip(chain1_tip) + self.next_block(chain1_tip + 1) + yield self.rejected() + self.next_block(chain1_tip + 2) + yield self.accepted() + + chain1_tip += 2 + + # Helper methods + ################ + def add_transactions_to_block(self, block, tx_list): [tx.rehash() for tx in tx_list] block.vtx.extend(tx_list) @@ -162,1140 +1248,43 @@ class FullBlockTest(ComparisonTestFramework): self.blocks[number] = block return block - def get_tests(self): - self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) - self.block_heights[self.genesis_hash] = 0 - spendable_outputs = [] - - # save the current tip so it can be spent by a later block - def save_spendable_output(): - spendable_outputs.append(self.tip) - - # get an output that we previously marked as spendable - def get_spendable_output(): - return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) - - # returns a test case that asserts that the current tip was accepted - def accepted(): - return TestInstance([[self.tip, True]]) - - # returns a test case that asserts that the current tip was rejected - def rejected(reject=None): - if reject is None: - return TestInstance([[self.tip, False]]) - else: - return TestInstance([[self.tip, reject]]) - - # move the tip back to a previous block - def tip(number): - self.tip = self.blocks[number] - - # adds transactions to the block and updates state - def update_block(block_number, new_transactions): - block = self.blocks[block_number] - self.add_transactions_to_block(block, new_transactions) - old_sha256 = block.sha256 - block.hashMerkleRoot = block.calc_merkle_root() - block.solve() - # Update the internal state just like in next_block - self.tip = block - if block.sha256 != old_sha256: - self.block_heights[block.sha256] = self.block_heights[old_sha256] - del self.block_heights[old_sha256] - self.blocks[block_number] = block - return block - - # shorthand for functions - block = self.next_block - create_tx = self.create_tx - create_and_sign_tx = self.create_and_sign_transaction - - # these must be updated if consensus changes - MAX_BLOCK_SIGOPS = 20000 - - # Create a new block - block(0) - save_spendable_output() - yield accepted() - - # Now we need that block to mature so we can spend the coinbase. - test = TestInstance(sync_every_block=False) - for i in range(99): - block(5000 + i) - test.blocks_and_transactions.append([self.tip, True]) - save_spendable_output() - yield test - - # collect spendable outputs now to avoid cluttering the code later on - out = [] - for i in range(33): - out.append(get_spendable_output()) - - # Start by building a couple of blocks on top (which output is spent is - # in parentheses): - # genesis -> b1 (0) -> b2 (1) - block(1, spend=out[0]) - save_spendable_output() - yield accepted() - - block(2, spend=out[1]) - yield accepted() - save_spendable_output() - - # so fork like this: - # - # genesis -> b1 (0) -> b2 (1) - # \-> b3 (1) - # - # Nothing should happen at this point. We saw b2 first so it takes priority. - tip(1) - b3 = block(3, spend=out[1]) - txout_b3 = PreviousSpendableOutput(b3.vtx[1], 0) - yield rejected() - - # Now we add another block to make the alternative chain longer. - # - # genesis -> b1 (0) -> b2 (1) - # \-> b3 (1) -> b4 (2) - block(4, spend=out[2]) - yield accepted() - - # ... and back to the first chain. - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b3 (1) -> b4 (2) - tip(2) - block(5, spend=out[2]) - save_spendable_output() - yield rejected() - - block(6, spend=out[3]) - yield accepted() - - # Try to create a fork that double-spends - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b7 (2) -> b8 (4) - # \-> b3 (1) -> b4 (2) - tip(5) - block(7, spend=out[2]) - yield rejected() - - block(8, spend=out[4]) - yield rejected() - - # Try to create a block that has too much fee - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b9 (4) - # \-> b3 (1) -> b4 (2) - tip(6) - block(9, spend=out[4], additional_coinbase_value=1) - yield rejected(RejectResult(16, b'bad-cb-amount')) - - # Create a fork that ends in a block with too much fee (the one that causes the reorg) - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b10 (3) -> b11 (4) - # \-> b3 (1) -> b4 (2) - tip(5) - block(10, spend=out[3]) - yield rejected() - - block(11, spend=out[4], additional_coinbase_value=1) - yield rejected(RejectResult(16, b'bad-cb-amount')) - - # Try again, but with a valid fork first - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b14 (5) - # (b12 added last) - # \-> b3 (1) -> b4 (2) - tip(5) - b12 = block(12, spend=out[3]) - save_spendable_output() - b13 = block(13, spend=out[4]) - # Deliver the block header for b12, and the block b13. - # b13 should be accepted but the tip won't advance until b12 is delivered. - yield TestInstance([[CBlockHeader(b12), None], [b13, False]]) - - save_spendable_output() - # b14 is invalid, but the node won't know that until it tries to connect - # Tip still can't advance because b12 is missing - block(14, spend=out[5], additional_coinbase_value=1) - yield rejected() - - yield TestInstance([[b12, True, b13.sha256]]) # New tip should be b13. - - # Add a block with MAX_BLOCK_SIGOPS and one with one more sigop - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6) - # \-> b3 (1) -> b4 (2) - - # Test that a block with a lot of checksigs is okay - lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1)) - tip(13) - block(15, spend=out[5], script=lots_of_checksigs) - yield accepted() - save_spendable_output() - - # Test that a block with too many checksigs is rejected - too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS)) - block(16, spend=out[6], script=too_many_checksigs) - yield rejected(RejectResult(16, b'bad-blk-sigops')) - - # Attempt to spend a transaction created on a different fork - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1]) - # \-> b3 (1) -> b4 (2) - tip(15) - block(17, spend=txout_b3) - yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) - - # Attempt to spend a transaction created on a different fork (on a fork this time) - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b15 (5) - # \-> b18 (b3.vtx[1]) -> b19 (6) - # \-> b3 (1) -> b4 (2) - tip(13) - block(18, spend=txout_b3) - yield rejected() - - block(19, spend=out[6]) - yield rejected() - - # Attempt to spend a coinbase at depth too low - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7) - # \-> b3 (1) -> b4 (2) - tip(15) - block(20, spend=out[7]) - yield rejected(RejectResult(16, b'bad-txns-premature-spend-of-coinbase')) - - # Attempt to spend a coinbase at depth too low (on a fork this time) - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b15 (5) - # \-> b21 (6) -> b22 (5) - # \-> b3 (1) -> b4 (2) - tip(13) - block(21, spend=out[6]) - yield rejected() - - block(22, spend=out[5]) - yield rejected() - - # Create a block on either side of MAX_BLOCK_BASE_SIZE and make sure its accepted/rejected - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) - # \-> b24 (6) -> b25 (7) - # \-> b3 (1) -> b4 (2) - tip(15) - b23 = block(23, spend=out[6]) - tx = CTransaction() - script_length = MAX_BLOCK_BASE_SIZE - len(b23.serialize()) - 69 - script_output = CScript([b'\x00' * script_length]) - tx.vout.append(CTxOut(0, script_output)) - tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0))) - b23 = update_block(23, [tx]) - # Make sure the math above worked out to produce a max-sized block - assert_equal(len(b23.serialize()), MAX_BLOCK_BASE_SIZE) - yield accepted() - save_spendable_output() - - # Make the next block one byte bigger and check that it fails - tip(15) - b24 = block(24, spend=out[6]) - script_length = MAX_BLOCK_BASE_SIZE - len(b24.serialize()) - 69 - script_output = CScript([b'\x00' * (script_length + 1)]) - tx.vout = [CTxOut(0, script_output)] - b24 = update_block(24, [tx]) - assert_equal(len(b24.serialize()), MAX_BLOCK_BASE_SIZE + 1) - yield rejected(RejectResult(16, b'bad-blk-length')) - - block(25, spend=out[7]) - yield rejected() - - # Create blocks with a coinbase input script size out of range - # genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3) - # \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) - # \-> ... (6) -> ... (7) - # \-> b3 (1) -> b4 (2) - tip(15) - b26 = block(26, spend=out[6]) - b26.vtx[0].vin[0].scriptSig = b'\x00' - b26.vtx[0].rehash() - # update_block causes the merkle root to get updated, even with no new - # transactions, and updates the required state. - b26 = update_block(26, []) - yield rejected(RejectResult(16, b'bad-cb-length')) - - # Extend the b26 chain to make sure bitcoind isn't accepting b26 - block(27, spend=out[7]) - yield rejected(False) - - # Now try a too-large-coinbase script - tip(15) - b28 = block(28, spend=out[6]) - b28.vtx[0].vin[0].scriptSig = b'\x00' * 101 - b28.vtx[0].rehash() - b28 = update_block(28, []) - yield rejected(RejectResult(16, b'bad-cb-length')) - - # Extend the b28 chain to make sure bitcoind isn't accepting b28 - block(29, spend=out[7]) - yield rejected(False) - - # b30 has a max-sized coinbase scriptSig. - tip(23) - b30 = block(30) - b30.vtx[0].vin[0].scriptSig = b'\x00' * 100 - b30.vtx[0].rehash() - b30 = update_block(30, []) - yield accepted() - save_spendable_output() - - # b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY - # - # genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) - # \-> b36 (11) - # \-> b34 (10) - # \-> b32 (9) - # - - # MULTISIG: each op code counts as 20 sigops. To create the edge case, pack another 19 sigops at the end. - lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19) - b31 = block(31, spend=out[8], script=lots_of_multisigs) - assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS) - yield accepted() - save_spendable_output() - - # this goes over the limit because the coinbase has one sigop - too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20)) - b32 = block(32, spend=out[9], script=too_many_multisigs) - assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1) - yield rejected(RejectResult(16, b'bad-blk-sigops')) - - # CHECKMULTISIGVERIFY - tip(31) - lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS - 1) // 20) + [OP_CHECKSIG] * 19) - block(33, spend=out[9], script=lots_of_multisigs) - yield accepted() - save_spendable_output() - - too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20)) - block(34, spend=out[10], script=too_many_multisigs) - yield rejected(RejectResult(16, b'bad-blk-sigops')) - - # CHECKSIGVERIFY - tip(33) - lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1)) - b35 = block(35, spend=out[10], script=lots_of_checksigs) - yield accepted() - save_spendable_output() - - too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS)) - block(36, spend=out[11], script=too_many_checksigs) - yield rejected(RejectResult(16, b'bad-blk-sigops')) - - # Check spending of a transaction in a block which failed to connect - # - # b6 (3) - # b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) - # \-> b37 (11) - # \-> b38 (11/37) - # - - # save 37's spendable output, but then double-spend out11 to invalidate the block - tip(35) - b37 = block(37, spend=out[11]) - txout_b37 = PreviousSpendableOutput(b37.vtx[1], 0) - tx = create_and_sign_tx(out[11].tx, out[11].n, 0) - b37 = update_block(37, [tx]) - yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) - - # attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid - tip(35) - block(38, spend=txout_b37) - yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) - - # Check P2SH SigOp counting - # - # - # 13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12) - # \-> b40 (12) - # - # b39 - create some P2SH outputs that will require 6 sigops to spend: - # - # redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG - # p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL - # - tip(35) - b39 = block(39) - b39_outputs = 0 - b39_sigops_per_output = 6 - - # Build the redeem script, hash it, use hash to create the p2sh script - redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY] * 5 + [OP_CHECKSIG]) - redeem_script_hash = hash160(redeem_script) - p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL]) - - # Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE - # This must be signed because it is spending a coinbase - spend = out[11] - tx = create_tx(spend.tx, spend.n, 1, p2sh_script) - tx.vout.append(CTxOut(spend.tx.vout[spend.n].nValue - 1, CScript([OP_TRUE]))) - self.sign_tx(tx, spend.tx, spend.n) - tx.rehash() - b39 = update_block(39, [tx]) - b39_outputs += 1 - - # Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE - tx_new = None - tx_last = tx - total_size = len(b39.serialize()) - while(total_size < MAX_BLOCK_BASE_SIZE): - tx_new = create_tx(tx_last, 1, 1, p2sh_script) - tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE]))) - tx_new.rehash() - total_size += len(tx_new.serialize()) - if total_size >= MAX_BLOCK_BASE_SIZE: - break - b39.vtx.append(tx_new) # add tx to block - tx_last = tx_new - b39_outputs += 1 - - b39 = update_block(39, []) - yield accepted() - save_spendable_output() - - # Test sigops in P2SH redeem scripts - # - # b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops. - # The first tx has one sigop and then at the end we add 2 more to put us just over the max. - # - # b41 does the same, less one, so it has the maximum sigops permitted. - # - tip(39) - b40 = block(40, spend=out[12]) - sigops = get_legacy_sigopcount_block(b40) - numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output - assert_equal(numTxes <= b39_outputs, True) - - lastOutpoint = COutPoint(b40.vtx[1].sha256, 0) - new_txs = [] - for i in range(1, numTxes + 1): - tx = CTransaction() - tx.vout.append(CTxOut(1, CScript([OP_TRUE]))) - tx.vin.append(CTxIn(lastOutpoint, b'')) - # second input is corresponding P2SH output from b39 - tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b'')) - # Note: must pass the redeem_script (not p2sh_script) to the signature hash function - (sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL) - sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL])) - scriptSig = CScript([sig, redeem_script]) - - tx.vin[1].scriptSig = scriptSig - tx.rehash() - new_txs.append(tx) - lastOutpoint = COutPoint(tx.sha256, 0) - - b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1 - tx = CTransaction() - tx.vin.append(CTxIn(lastOutpoint, b'')) - tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill))) - tx.rehash() - new_txs.append(tx) - update_block(40, new_txs) - yield rejected(RejectResult(16, b'bad-blk-sigops')) - - # same as b40, but one less sigop - tip(39) - block(41, spend=None) - update_block(41, b40.vtx[1:-1]) - b41_sigops_to_fill = b40_sigops_to_fill - 1 - tx = CTransaction() - tx.vin.append(CTxIn(lastOutpoint, b'')) - tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill))) - tx.rehash() - update_block(41, [tx]) - yield accepted() - - # Fork off of b39 to create a constant base again - # - # b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) - # \-> b41 (12) - # - tip(39) - block(42, spend=out[12]) - yield rejected() - save_spendable_output() - - block(43, spend=out[13]) - yield accepted() - save_spendable_output() - - # Test a number of really invalid scenarios - # - # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14) - # \-> ??? (15) - - # The next few blocks are going to be created "by hand" since they'll do funky things, such as having - # the first transaction be non-coinbase, etc. The purpose of b44 is to make sure this works. - height = self.block_heights[self.tip.sha256] + 1 - coinbase = create_coinbase(height, self.coinbase_pubkey) - b44 = CBlock() - b44.nTime = self.tip.nTime + 1 - b44.hashPrevBlock = self.tip.sha256 - b44.nBits = 0x207fffff - b44.vtx.append(coinbase) - b44.hashMerkleRoot = b44.calc_merkle_root() - b44.solve() - self.tip = b44 - self.block_heights[b44.sha256] = height - self.blocks[44] = b44 - yield accepted() - - # A block with a non-coinbase as the first tx - non_coinbase = create_tx(out[15].tx, out[15].n, 1) - b45 = CBlock() - b45.nTime = self.tip.nTime + 1 - b45.hashPrevBlock = self.tip.sha256 - b45.nBits = 0x207fffff - b45.vtx.append(non_coinbase) - b45.hashMerkleRoot = b45.calc_merkle_root() - b45.calc_sha256() - b45.solve() - self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256] + 1 - self.tip = b45 - self.blocks[45] = b45 - yield rejected(RejectResult(16, b'bad-cb-missing')) - - # A block with no txns - tip(44) - b46 = CBlock() - b46.nTime = b44.nTime + 1 - b46.hashPrevBlock = b44.sha256 - b46.nBits = 0x207fffff - b46.vtx = [] - b46.hashMerkleRoot = 0 - b46.solve() - self.block_heights[b46.sha256] = self.block_heights[b44.sha256] + 1 - self.tip = b46 - assert 46 not in self.blocks - self.blocks[46] = b46 - yield rejected(RejectResult(16, b'bad-blk-length')) - - # A block with invalid work - tip(44) - b47 = block(47, solve=False) - target = uint256_from_compact(b47.nBits) - while b47.sha256 < target: # changed > to < - b47.nNonce += 1 - b47.rehash() - yield rejected(RejectResult(16, b'high-hash')) - - # A block with timestamp > 2 hrs in the future - tip(44) - b48 = block(48, solve=False) - b48.nTime = int(time.time()) + 60 * 60 * 3 - b48.solve() - yield rejected(RejectResult(16, b'time-too-new')) - - # A block with an invalid merkle hash - tip(44) - b49 = block(49) - b49.hashMerkleRoot += 1 - b49.solve() - yield rejected(RejectResult(16, b'bad-txnmrklroot')) - - # A block with an incorrect POW limit - tip(44) - b50 = block(50) - b50.nBits = b50.nBits - 1 - b50.solve() - yield rejected(RejectResult(16, b'bad-diffbits')) - - # A block with two coinbase txns - tip(44) - block(51) - cb2 = create_coinbase(51, self.coinbase_pubkey) - update_block(51, [cb2]) - yield rejected(RejectResult(16, b'bad-cb-multiple')) - - # A block w/ duplicate txns - # Note: txns have to be in the right position in the merkle tree to trigger this error - tip(44) - b52 = block(52, spend=out[15]) - tx = create_tx(b52.vtx[1], 0, 1) - b52 = update_block(52, [tx, tx]) - yield rejected(RejectResult(16, b'bad-txns-duplicate')) - - # Test block timestamps - # -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) - # \-> b54 (15) - # - tip(43) - block(53, spend=out[14]) - yield rejected() # rejected since b44 is at same height - save_spendable_output() - - # invalid timestamp (b35 is 5 blocks back, so its time is MedianTimePast) - b54 = block(54, spend=out[15]) - b54.nTime = b35.nTime - 1 - b54.solve() - yield rejected(RejectResult(16, b'time-too-old')) - - # valid timestamp - tip(53) - b55 = block(55, spend=out[15]) - b55.nTime = b35.nTime - update_block(55, []) - yield accepted() - save_spendable_output() - - # Test CVE-2012-2459 - # - # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16) - # \-> b57 (16) - # \-> b56p2 (16) - # \-> b56 (16) - # - # Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without - # affecting the merkle root of a block, while still invalidating it. - # See: src/consensus/merkle.h - # - # b57 has three txns: coinbase, tx, tx1. The merkle root computation will duplicate tx. - # Result: OK - # - # b56 copies b57 but duplicates tx1 and does not recalculate the block hash. So it has a valid merkle - # root but duplicate transactions. - # Result: Fails - # - # b57p2 has six transactions in its merkle tree: - # - coinbase, tx, tx1, tx2, tx3, tx4 - # Merkle root calculation will duplicate as necessary. - # Result: OK. - # - # b56p2 copies b57p2 but adds both tx3 and tx4. The purpose of the test is to make sure the code catches - # duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates - # that the error was caught early, avoiding a DOS vulnerability.) - - # b57 - a good block with 2 txs, don't submit until end - tip(55) - b57 = block(57) - tx = create_and_sign_tx(out[16].tx, out[16].n, 1) - tx1 = create_tx(tx, 0, 1) - b57 = update_block(57, [tx, tx1]) - - # b56 - copy b57, add a duplicate tx - tip(55) - b56 = copy.deepcopy(b57) - self.blocks[56] = b56 - assert_equal(len(b56.vtx), 3) - b56 = update_block(56, [tx1]) - assert_equal(b56.hash, b57.hash) - yield rejected(RejectResult(16, b'bad-txns-duplicate')) - - # b57p2 - a good block with 6 tx'es, don't submit until end - tip(55) - b57p2 = block("57p2") - tx = create_and_sign_tx(out[16].tx, out[16].n, 1) - tx1 = create_tx(tx, 0, 1) - tx2 = create_tx(tx1, 0, 1) - tx3 = create_tx(tx2, 0, 1) - tx4 = create_tx(tx3, 0, 1) - b57p2 = update_block("57p2", [tx, tx1, tx2, tx3, tx4]) - - # b56p2 - copy b57p2, duplicate two non-consecutive tx's - tip(55) - b56p2 = copy.deepcopy(b57p2) - self.blocks["b56p2"] = b56p2 - assert_equal(b56p2.hash, b57p2.hash) - assert_equal(len(b56p2.vtx), 6) - b56p2 = update_block("b56p2", [tx3, tx4]) - yield rejected(RejectResult(16, b'bad-txns-duplicate')) - - tip("57p2") - yield accepted() - - tip(57) - yield rejected() # rejected because 57p2 seen first - save_spendable_output() - - # Test a few invalid tx types - # - # -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) - # \-> ??? (17) - # - - # tx with prevout.n out of range - tip(57) - block(58, spend=out[17]) - tx = CTransaction() - assert(len(out[17].tx.vout) < 42) - tx.vin.append(CTxIn(COutPoint(out[17].tx.sha256, 42), CScript([OP_TRUE]), 0xffffffff)) - tx.vout.append(CTxOut(0, b"")) - tx.calc_sha256() - update_block(58, [tx]) - yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) - - # tx with output value > input value out of range - tip(57) - block(59) - tx = create_and_sign_tx(out[17].tx, out[17].n, 51 * COIN) - update_block(59, [tx]) - yield rejected(RejectResult(16, b'bad-txns-in-belowout')) - - # reset to good chain - tip(57) - b60 = block(60, spend=out[17]) - yield accepted() - save_spendable_output() - - # Test BIP30 - # - # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) - # \-> b61 (18) - # - # Blocks are not allowed to contain a transaction whose id matches that of an earlier, - # not-fully-spent transaction in the same chain. To test, make identical coinbases; - # the second one should be rejected. - # - tip(60) - b61 = block(61, spend=out[18]) - b61.vtx[0].vin[0].scriptSig = b60.vtx[0].vin[0].scriptSig # equalize the coinbases - b61.vtx[0].rehash() - b61 = update_block(61, []) - assert_equal(b60.vtx[0].serialize(), b61.vtx[0].serialize()) - yield rejected(RejectResult(16, b'bad-txns-BIP30')) - - # Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests) - # - # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) - # \-> b62 (18) - # - tip(60) - block(62) - tx = CTransaction() - tx.nLockTime = 0xffffffff # this locktime is non-final - assert(out[18].n < len(out[18].tx.vout)) - tx.vin.append(CTxIn(COutPoint(out[18].tx.sha256, out[18].n))) # don't set nSequence - tx.vout.append(CTxOut(0, CScript([OP_TRUE]))) - assert(tx.vin[0].nSequence < 0xffffffff) - tx.calc_sha256() - update_block(62, [tx]) - yield rejected(RejectResult(16, b'bad-txns-nonfinal')) - - # Test a non-final coinbase is also rejected - # - # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) - # \-> b63 (-) - # - tip(60) - b63 = block(63) - b63.vtx[0].nLockTime = 0xffffffff - b63.vtx[0].vin[0].nSequence = 0xDEADBEEF - b63.vtx[0].rehash() - b63 = update_block(63, []) - yield rejected(RejectResult(16, b'bad-txns-nonfinal')) - - # This checks that a block with a bloated VARINT between the block_header and the array of tx such that - # the block is > MAX_BLOCK_BASE_SIZE with the bloated varint, but <= MAX_BLOCK_BASE_SIZE without the bloated varint, - # does not cause a subsequent, identical block with canonical encoding to be rejected. The test does not - # care whether the bloated block is accepted or rejected; it only cares that the second block is accepted. - # - # What matters is that the receiving node should not reject the bloated block, and then reject the canonical - # block on the basis that it's the same as an already-rejected block (which would be a consensus failure.) - # - # -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) - # \ - # b64a (18) - # b64a is a bloated block (non-canonical varint) - # b64 is a good block (same as b64 but w/ canonical varint) - # - tip(60) - regular_block = block("64a", spend=out[18]) - - # make it a "broken_block," with non-canonical serialization - b64a = CBrokenBlock(regular_block) - b64a.initialize(regular_block) - self.blocks["64a"] = b64a - self.tip = b64a - tx = CTransaction() - - # use canonical serialization to calculate size - script_length = MAX_BLOCK_BASE_SIZE - len(b64a.normal_serialize()) - 69 - script_output = CScript([b'\x00' * script_length]) - tx.vout.append(CTxOut(0, script_output)) - tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0))) - b64a = update_block("64a", [tx]) - assert_equal(len(b64a.serialize()), MAX_BLOCK_BASE_SIZE + 8) - yield TestInstance([[self.tip, None]]) - - # comptool workaround: to make sure b64 is delivered, manually erase b64a from blockstore - self.test.block_store.erase(b64a.sha256) - - tip(60) - b64 = CBlock(b64a) - b64.vtx = copy.deepcopy(b64a.vtx) - assert_equal(b64.hash, b64a.hash) - assert_equal(len(b64.serialize()), MAX_BLOCK_BASE_SIZE) - self.blocks[64] = b64 - update_block(64, []) - yield accepted() - save_spendable_output() - - # Spend an output created in the block itself - # - # -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) - # - tip(64) - block(65) - tx1 = create_and_sign_tx(out[19].tx, out[19].n, out[19].tx.vout[0].nValue) - tx2 = create_and_sign_tx(tx1, 0, 0) - update_block(65, [tx1, tx2]) - yield accepted() - save_spendable_output() - - # Attempt to spend an output created later in the same block - # - # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) - # \-> b66 (20) - tip(65) - block(66) - tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue) - tx2 = create_and_sign_tx(tx1, 0, 1) - update_block(66, [tx2, tx1]) - yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) - - # Attempt to double-spend a transaction created in a block - # - # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) - # \-> b67 (20) - # - # - tip(65) - block(67) - tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue) - tx2 = create_and_sign_tx(tx1, 0, 1) - tx3 = create_and_sign_tx(tx1, 0, 2) - update_block(67, [tx1, tx2, tx3]) - yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) - - # More tests of block subsidy - # - # -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) - # \-> b68 (20) - # - # b68 - coinbase with an extra 10 satoshis, - # creates a tx that has 9 satoshis from out[20] go to fees - # this fails because the coinbase is trying to claim 1 satoshi too much in fees - # - # b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee - # this succeeds - # - tip(65) - block(68, additional_coinbase_value=10) - tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue - 9) - update_block(68, [tx]) - yield rejected(RejectResult(16, b'bad-cb-amount')) - - tip(65) - b69 = block(69, additional_coinbase_value=10) - tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue - 10) - update_block(69, [tx]) - yield accepted() - save_spendable_output() - - # Test spending the outpoint of a non-existent transaction - # - # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) - # \-> b70 (21) - # - tip(69) - block(70, spend=out[21]) - bogus_tx = CTransaction() - bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c") - tx = CTransaction() - tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", 0xffffffff)) - tx.vout.append(CTxOut(1, b"")) - update_block(70, [tx]) - yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent')) - - # Test accepting an invalid block which has the same hash as a valid one (via merkle tree tricks) - # - # -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) - # \-> b71 (21) - # - # b72 is a good block. - # b71 is a copy of 72, but re-adds one of its transactions. However, it has the same hash as b71. - # - tip(69) - b72 = block(72) - tx1 = create_and_sign_tx(out[21].tx, out[21].n, 2) - tx2 = create_and_sign_tx(tx1, 0, 1) - b72 = update_block(72, [tx1, tx2]) # now tip is 72 - b71 = copy.deepcopy(b72) - b71.vtx.append(tx2) # add duplicate tx2 - self.block_heights[b71.sha256] = self.block_heights[b69.sha256] + 1 # b71 builds off b69 - self.blocks[71] = b71 - - assert_equal(len(b71.vtx), 4) - assert_equal(len(b72.vtx), 3) - assert_equal(b72.sha256, b71.sha256) - - tip(71) - yield rejected(RejectResult(16, b'bad-txns-duplicate')) - tip(72) - yield accepted() - save_spendable_output() - - # Test some invalid scripts and MAX_BLOCK_SIGOPS - # - # -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21) - # \-> b** (22) - # - - # b73 - tx with excessive sigops that are placed after an excessively large script element. - # The purpose of the test is to make sure those sigops are counted. - # - # script is a bytearray of size 20,526 - # - # bytearray[0-19,998] : OP_CHECKSIG - # bytearray[19,999] : OP_PUSHDATA4 - # bytearray[20,000-20,003]: 521 (max_script_element_size+1, in little-endian format) - # bytearray[20,004-20,525]: unread data (script_element) - # bytearray[20,526] : OP_CHECKSIG (this puts us over the limit) - # - tip(72) - b73 = block(73) - size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1 - a = bytearray([OP_CHECKSIG] * size) - a[MAX_BLOCK_SIGOPS - 1] = int("4e", 16) # OP_PUSHDATA4 - - element_size = MAX_SCRIPT_ELEMENT_SIZE + 1 - a[MAX_BLOCK_SIGOPS] = element_size % 256 - a[MAX_BLOCK_SIGOPS + 1] = element_size // 256 - a[MAX_BLOCK_SIGOPS + 2] = 0 - a[MAX_BLOCK_SIGOPS + 3] = 0 - - tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a)) - b73 = update_block(73, [tx]) - assert_equal(get_legacy_sigopcount_block(b73), MAX_BLOCK_SIGOPS + 1) - yield rejected(RejectResult(16, b'bad-blk-sigops')) - - # b74/75 - if we push an invalid script element, all prevous sigops are counted, - # but sigops after the element are not counted. - # - # The invalid script element is that the push_data indicates that - # there will be a large amount of data (0xffffff bytes), but we only - # provide a much smaller number. These bytes are CHECKSIGS so they would - # cause b75 to fail for excessive sigops, if those bytes were counted. - # - # b74 fails because we put MAX_BLOCK_SIGOPS+1 before the element - # b75 succeeds because we put MAX_BLOCK_SIGOPS before the element - # - # - tip(72) - block(74) - size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 # total = 20,561 - a = bytearray([OP_CHECKSIG] * size) - a[MAX_BLOCK_SIGOPS] = 0x4e - a[MAX_BLOCK_SIGOPS + 1] = 0xfe - a[MAX_BLOCK_SIGOPS + 2] = 0xff - a[MAX_BLOCK_SIGOPS + 3] = 0xff - a[MAX_BLOCK_SIGOPS + 4] = 0xff - tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a)) - update_block(74, [tx]) - yield rejected(RejectResult(16, b'bad-blk-sigops')) - - tip(72) - block(75) - size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 - a = bytearray([OP_CHECKSIG] * size) - a[MAX_BLOCK_SIGOPS - 1] = 0x4e - a[MAX_BLOCK_SIGOPS] = 0xff - a[MAX_BLOCK_SIGOPS + 1] = 0xff - a[MAX_BLOCK_SIGOPS + 2] = 0xff - a[MAX_BLOCK_SIGOPS + 3] = 0xff - tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a)) - update_block(75, [tx]) - yield accepted() - save_spendable_output() - - # Check that if we push an element filled with CHECKSIGs, they are not counted - tip(75) - block(76) - size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 - a = bytearray([OP_CHECKSIG] * size) - a[MAX_BLOCK_SIGOPS - 1] = 0x4e # PUSHDATA4, but leave the following bytes as just checksigs - tx = create_and_sign_tx(out[23].tx, 0, 1, CScript(a)) - update_block(76, [tx]) - yield accepted() - save_spendable_output() - - # Test transaction resurrection - # - # -> b77 (24) -> b78 (25) -> b79 (26) - # \-> b80 (25) -> b81 (26) -> b82 (27) - # - # b78 creates a tx, which is spent in b79. After b82, both should be in mempool - # - # The tx'es must be unsigned and pass the node's mempool policy. It is unsigned for the - # rather obscure reason that the Python signature code does not distinguish between - # Low-S and High-S values (whereas the bitcoin code has custom code which does so); - # as a result of which, the odds are 50% that the python code will use the right - # value and the transaction will be accepted into the mempool. Until we modify the - # test framework to support low-S signing, we are out of luck. - # - # To get around this issue, we construct transactions which are not signed and which - # spend to OP_TRUE. If the standard-ness rules change, this test would need to be - # updated. (Perhaps to spend to a P2SH OP_TRUE script) - # - tip(76) - block(77) - tx77 = create_and_sign_tx(out[24].tx, out[24].n, 10 * COIN) - update_block(77, [tx77]) - yield accepted() - save_spendable_output() - - block(78) - tx78 = create_tx(tx77, 0, 9 * COIN) - update_block(78, [tx78]) - yield accepted() - - block(79) - tx79 = create_tx(tx78, 0, 8 * COIN) - update_block(79, [tx79]) - yield accepted() - - # mempool should be empty - assert_equal(len(self.nodes[0].getrawmempool()), 0) - - tip(77) - block(80, spend=out[25]) - yield rejected() - save_spendable_output() - - block(81, spend=out[26]) - yield rejected() # other chain is same length - save_spendable_output() - - block(82, spend=out[27]) - yield accepted() # now this chain is longer, triggers re-org - save_spendable_output() - - # now check that tx78 and tx79 have been put back into the peer's mempool - mempool = self.nodes[0].getrawmempool() - assert_equal(len(mempool), 2) - assert(tx78.hash in mempool) - assert(tx79.hash in mempool) - - # Test invalid opcodes in dead execution paths. - # - # -> b81 (26) -> b82 (27) -> b83 (28) - # - block(83) - op_codes = [OP_IF, OP_INVALIDOPCODE, OP_ELSE, OP_TRUE, OP_ENDIF] - script = CScript(op_codes) - tx1 = create_and_sign_tx(out[28].tx, out[28].n, out[28].tx.vout[0].nValue, script) - - tx2 = create_and_sign_tx(tx1, 0, 0, CScript([OP_TRUE])) - tx2.vin[0].scriptSig = CScript([OP_FALSE]) - tx2.rehash() - - update_block(83, [tx1, tx2]) - yield accepted() - save_spendable_output() - - # Reorg on/off blocks that have OP_RETURN in them (and try to spend them) - # - # -> b81 (26) -> b82 (27) -> b83 (28) -> b84 (29) -> b87 (30) -> b88 (31) - # \-> b85 (29) -> b86 (30) \-> b89a (32) - # - # - block(84) - tx1 = create_tx(out[29].tx, out[29].n, 0, CScript([OP_RETURN])) - tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) - tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) - tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) - tx1.vout.append(CTxOut(0, CScript([OP_TRUE]))) - tx1.calc_sha256() - self.sign_tx(tx1, out[29].tx, out[29].n) - tx1.rehash() - tx2 = create_tx(tx1, 1, 0, CScript([OP_RETURN])) - tx2.vout.append(CTxOut(0, CScript([OP_RETURN]))) - tx3 = create_tx(tx1, 2, 0, CScript([OP_RETURN])) - tx3.vout.append(CTxOut(0, CScript([OP_TRUE]))) - tx4 = create_tx(tx1, 3, 0, CScript([OP_TRUE])) - tx4.vout.append(CTxOut(0, CScript([OP_RETURN]))) - tx5 = create_tx(tx1, 4, 0, CScript([OP_RETURN])) - - update_block(84, [tx1, tx2, tx3, tx4, tx5]) - yield accepted() - save_spendable_output() - - tip(83) - block(85, spend=out[29]) - yield rejected() - - block(86, spend=out[30]) - yield accepted() - - tip(84) - block(87, spend=out[30]) - yield rejected() - save_spendable_output() - - block(88, spend=out[31]) - yield accepted() - save_spendable_output() - - # trying to spend the OP_RETURN output is rejected - block("89a", spend=out[32]) - tx = create_tx(tx1, 0, 0, CScript([OP_TRUE])) - update_block("89a", [tx]) - yield rejected() - - # Test re-org of a week's worth of blocks (1088 blocks) - # This test takes a minute or two and can be accomplished in memory - # - if self.options.runbarelyexpensive: - tip(88) - LARGE_REORG_SIZE = 1088 - test1 = TestInstance(sync_every_block=False) - spend = out[32] - for i in range(89, LARGE_REORG_SIZE + 89): - b = block(i, spend) - tx = CTransaction() - script_length = MAX_BLOCK_BASE_SIZE - len(b.serialize()) - 69 - script_output = CScript([b'\x00' * script_length]) - tx.vout.append(CTxOut(0, script_output)) - tx.vin.append(CTxIn(COutPoint(b.vtx[1].sha256, 0))) - b = update_block(i, [tx]) - assert_equal(len(b.serialize()), MAX_BLOCK_BASE_SIZE) - test1.blocks_and_transactions.append([self.tip, True]) - save_spendable_output() - spend = get_spendable_output() - - yield test1 - chain1_tip = i - - # now create alt chain of same length - tip(88) - test2 = TestInstance(sync_every_block=False) - for i in range(89, LARGE_REORG_SIZE + 89): - block("alt" + str(i)) - test2.blocks_and_transactions.append([self.tip, False]) - yield test2 - - # extend alt chain to trigger re-org - block("alt" + str(chain1_tip + 1)) - yield accepted() - - # ... and re-org back to the first chain - tip(chain1_tip) - block(chain1_tip + 1) - yield rejected() - block(chain1_tip + 2) - yield accepted() - - chain1_tip += 2 + # save the current tip so it can be spent by a later block + def save_spendable_output(self): + self.spendable_outputs.append(self.tip) + + # get an output that we previously marked as spendable + def get_spendable_output(self): + return PreviousSpendableOutput(self.spendable_outputs.pop(0).vtx[0], 0) + + # returns a test case that asserts that the current tip was accepted + def accepted(self): + return TestInstance([[self.tip, True]]) + + # returns a test case that asserts that the current tip was rejected + def rejected(self, reject=None): + if reject is None: + return TestInstance([[self.tip, False]]) + else: + return TestInstance([[self.tip, reject]]) + + # move the tip back to a previous block + def move_tip(self, number): + self.tip = self.blocks[number] + + # adds transactions to the block and updates state + def update_block(self, block_number, new_transactions): + block = self.blocks[block_number] + self.add_transactions_to_block(block, new_transactions) + old_sha256 = block.sha256 + block.hashMerkleRoot = block.calc_merkle_root() + block.solve() + # Update the internal state just like in next_block + self.tip = block + if block.sha256 != old_sha256: + self.block_heights[block.sha256] = self.block_heights[old_sha256] + del self.block_heights[old_sha256] + self.blocks[block_number] = block + return block if __name__ == '__main__':