mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-04-29 14:59:39 -04:00
Merge b6b4235c14
into c5e44a0435
This commit is contained in:
commit
1651a96ff7
37 changed files with 1081 additions and 325 deletions
|
@ -21,15 +21,38 @@
|
|||
#include <optional>
|
||||
#include <vector>
|
||||
|
||||
static void SizeComputerBlockBench(benchmark::Bench& bench) {
|
||||
CBlock block;
|
||||
DataStream(benchmark::data::block413567) >> TX_WITH_WITNESS(block);
|
||||
|
||||
bench.unit("block").run([&] {
|
||||
SizeComputer size_computer;
|
||||
size_computer << TX_WITH_WITNESS(block);
|
||||
assert(size_computer.size() == benchmark::data::block413567.size());
|
||||
});
|
||||
}
|
||||
|
||||
static void SerializeBlockBench(benchmark::Bench& bench) {
|
||||
CBlock block;
|
||||
DataStream(benchmark::data::block413567) >> TX_WITH_WITNESS(block);
|
||||
|
||||
// Create output stream and verify first serialization matches input
|
||||
bench.unit("block").run([&] {
|
||||
DataStream output_stream(benchmark::data::block413567.size());
|
||||
output_stream << TX_WITH_WITNESS(block);
|
||||
assert(output_stream.size() == benchmark::data::block413567.size());
|
||||
});
|
||||
}
|
||||
|
||||
// These are the two major time-sinks which happen after we have fully received
|
||||
// a block off the wire, but before we can relay the block on to peers using
|
||||
// compact block relay.
|
||||
|
||||
static void DeserializeBlockTest(benchmark::Bench& bench)
|
||||
static void DeserializeBlockBench(benchmark::Bench& bench)
|
||||
{
|
||||
DataStream stream(benchmark::data::block413567);
|
||||
std::byte a{0};
|
||||
stream.write({&a, 1}); // Prevent compaction
|
||||
stream.write(std::span{&a, 1}); // Prevent compaction
|
||||
|
||||
bench.unit("block").run([&] {
|
||||
CBlock block;
|
||||
|
@ -39,11 +62,11 @@ static void DeserializeBlockTest(benchmark::Bench& bench)
|
|||
});
|
||||
}
|
||||
|
||||
static void DeserializeAndCheckBlockTest(benchmark::Bench& bench)
|
||||
static void DeserializeAndCheckBlock(benchmark::Bench& bench)
|
||||
{
|
||||
DataStream stream(benchmark::data::block413567);
|
||||
std::byte a{0};
|
||||
stream.write({&a, 1}); // Prevent compaction
|
||||
stream.write(std::span{&a, 1}); // Prevent compaction
|
||||
|
||||
ArgsManager bench_args;
|
||||
const auto chainParams = CreateChainParams(bench_args, ChainType::MAIN);
|
||||
|
@ -60,5 +83,7 @@ static void DeserializeAndCheckBlockTest(benchmark::Bench& bench)
|
|||
});
|
||||
}
|
||||
|
||||
BENCHMARK(DeserializeBlockTest, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(DeserializeAndCheckBlockTest, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SizeComputerBlockBench, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SerializeBlockBench, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(DeserializeBlockBench, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(DeserializeAndCheckBlock, benchmark::PriorityLevel::HIGH);
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
static const size_t BATCHES = 101;
|
||||
static const size_t BATCH_SIZE = 30;
|
||||
static const int PREVECTOR_SIZE = 28;
|
||||
static const int PREVECTOR_SIZE = 36;
|
||||
static const unsigned int QUEUE_BATCH_SIZE = 128;
|
||||
|
||||
// This Benchmark tests the CheckQueue with a slightly realistic workload,
|
||||
|
|
|
@ -2,7 +2,6 @@
|
|||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
|
||||
#include <bench/bench.h>
|
||||
#include <crypto/muhash.h>
|
||||
#include <crypto/ripemd160.h>
|
||||
|
@ -12,9 +11,11 @@
|
|||
#include <crypto/sha512.h>
|
||||
#include <crypto/siphash.h>
|
||||
#include <random.h>
|
||||
#include <span.h>
|
||||
#include <tinyformat.h>
|
||||
#include <uint256.h>
|
||||
#include <primitives/transaction.h>
|
||||
#include <util/hasher.h>
|
||||
#include <unordered_set>
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
@ -205,6 +206,98 @@ static void SipHash_32b(benchmark::Bench& bench)
|
|||
});
|
||||
}
|
||||
|
||||
static void SaltedOutpointHasherBench_hash(benchmark::Bench& bench)
|
||||
{
|
||||
FastRandomContext rng{/*fDeterministic=*/true};
|
||||
constexpr size_t size{1000};
|
||||
|
||||
std::vector<COutPoint> outpoints(size);
|
||||
for (auto& outpoint : outpoints) {
|
||||
outpoint = {Txid::FromUint256(rng.rand256()), rng.rand32()};
|
||||
}
|
||||
|
||||
const SaltedOutpointHasher hasher;
|
||||
bench.batch(size).run([&] {
|
||||
size_t result{0};
|
||||
for (const auto& outpoint : outpoints) {
|
||||
result ^= hasher(outpoint);
|
||||
}
|
||||
ankerl::nanobench::doNotOptimizeAway(result);
|
||||
});
|
||||
}
|
||||
|
||||
static void SaltedOutpointHasherBench_match(benchmark::Bench& bench)
|
||||
{
|
||||
FastRandomContext rng{/*fDeterministic=*/true};
|
||||
constexpr size_t size{1000};
|
||||
|
||||
std::unordered_set<COutPoint, SaltedOutpointHasher> values;
|
||||
std::vector<COutPoint> value_vector;
|
||||
values.reserve(size);
|
||||
value_vector.reserve(size);
|
||||
|
||||
for (size_t i{0}; i < size; ++i) {
|
||||
COutPoint outpoint{Txid::FromUint256(rng.rand256()), rng.rand32()};
|
||||
values.emplace(outpoint);
|
||||
value_vector.push_back(outpoint);
|
||||
assert(values.contains(outpoint));
|
||||
}
|
||||
|
||||
bench.batch(size).run([&] {
|
||||
bool result{true};
|
||||
for (const auto& outpoint : value_vector) {
|
||||
result ^= values.contains(outpoint);
|
||||
}
|
||||
ankerl::nanobench::doNotOptimizeAway(result);
|
||||
});
|
||||
}
|
||||
|
||||
static void SaltedOutpointHasherBench_mismatch(benchmark::Bench& bench)
|
||||
{
|
||||
FastRandomContext rng{/*fDeterministic=*/true};
|
||||
constexpr size_t size{1000};
|
||||
|
||||
std::unordered_set<COutPoint, SaltedOutpointHasher> values;
|
||||
std::vector<COutPoint> missing_value_vector;
|
||||
values.reserve(size);
|
||||
missing_value_vector.reserve(size);
|
||||
|
||||
for (size_t i{0}; i < size; ++i) {
|
||||
values.emplace(Txid::FromUint256(rng.rand256()), rng.rand32());
|
||||
COutPoint missing_outpoint{Txid::FromUint256(rng.rand256()), rng.rand32()};
|
||||
missing_value_vector.push_back(missing_outpoint);
|
||||
assert(!values.contains(missing_outpoint));
|
||||
}
|
||||
|
||||
bench.batch(size).run([&] {
|
||||
bool result{false};
|
||||
for (const auto& outpoint : missing_value_vector) {
|
||||
result ^= values.contains(outpoint);
|
||||
}
|
||||
ankerl::nanobench::doNotOptimizeAway(result);
|
||||
});
|
||||
}
|
||||
|
||||
static void SaltedOutpointHasherBench_create_set(benchmark::Bench& bench)
|
||||
{
|
||||
FastRandomContext rng{/*fDeterministic=*/true};
|
||||
constexpr size_t size{1000};
|
||||
|
||||
std::vector<COutPoint> outpoints(size);
|
||||
for (auto& outpoint : outpoints) {
|
||||
outpoint = {Txid::FromUint256(rng.rand256()), rng.rand32()};
|
||||
}
|
||||
|
||||
bench.batch(size).run([&] {
|
||||
std::unordered_set<COutPoint, SaltedOutpointHasher> set;
|
||||
set.reserve(size);
|
||||
for (const auto& outpoint : outpoints) {
|
||||
set.emplace(outpoint);
|
||||
}
|
||||
ankerl::nanobench::doNotOptimizeAway(set.size());
|
||||
});
|
||||
}
|
||||
|
||||
static void MuHash(benchmark::Bench& bench)
|
||||
{
|
||||
MuHash3072 acc;
|
||||
|
@ -276,6 +369,10 @@ BENCHMARK(SHA256_32b_SSE4, benchmark::PriorityLevel::HIGH);
|
|||
BENCHMARK(SHA256_32b_AVX2, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SHA256_32b_SHANI, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SipHash_32b, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SaltedOutpointHasherBench_hash, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SaltedOutpointHasherBench_match, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SaltedOutpointHasherBench_mismatch, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SaltedOutpointHasherBench_create_set, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SHA256D64_1024_STANDARD, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SHA256D64_1024_SSE4, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(SHA256D64_1024_AVX2, benchmark::PriorityLevel::HIGH);
|
||||
|
|
|
@ -13,10 +13,19 @@
|
|||
#include <test/util/txmempool.h>
|
||||
#include <txmempool.h>
|
||||
#include <validation.h>
|
||||
#include <bench/data/block413567.raw.h>
|
||||
#include <node/context.h>
|
||||
#include <node/miner.h>
|
||||
#include <primitives/block.h>
|
||||
#include <test/util/script.h>
|
||||
#include <util/check.h>
|
||||
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <streams.h>
|
||||
#include <vector>
|
||||
|
||||
class CCoinsViewCache;
|
||||
|
@ -126,5 +135,53 @@ static void MempoolCheck(benchmark::Bench& bench)
|
|||
});
|
||||
}
|
||||
|
||||
static void ProcessTransactionBench(benchmark::Bench& bench)
|
||||
{
|
||||
const auto testing_setup{MakeNoLogFileContext<const TestingSetup>()};
|
||||
CTxMemPool& pool{*Assert(testing_setup->m_node.mempool)};
|
||||
ChainstateManager& chainman{*testing_setup->m_node.chainman};
|
||||
|
||||
CBlock block;
|
||||
DataStream(benchmark::data::block413567) >> TX_WITH_WITNESS(block);
|
||||
|
||||
std::vector<CTransactionRef> txs(block.vtx.size() - 1);
|
||||
for (size_t i{1}; i < block.vtx.size(); ++i) {
|
||||
CMutableTransaction mtx{*block.vtx[i]};
|
||||
for (auto& txin : mtx.vin) {
|
||||
txin.nSequence = CTxIn::SEQUENCE_FINAL;
|
||||
txin.scriptSig.clear();
|
||||
txin.scriptWitness.stack = {WITNESS_STACK_ELEM_OP_TRUE};
|
||||
}
|
||||
txs[i - 1] = MakeTransactionRef(std::move(mtx));
|
||||
}
|
||||
|
||||
CCoinsViewCache* coins_tip{nullptr};
|
||||
size_t cached_coin_count{0};
|
||||
{
|
||||
LOCK(cs_main);
|
||||
coins_tip = &chainman.ActiveChainstate().CoinsTip();
|
||||
for (const auto& tx : txs) {
|
||||
const Coin coin(CTxOut(2 * tx->GetValueOut(), P2WSH_OP_TRUE), 1, /*fCoinBaseIn=*/false);
|
||||
for (const auto& in : tx->vin) {
|
||||
coins_tip->AddCoin(in.prevout, Coin{coin}, /*possible_overwrite=*/false);
|
||||
cached_coin_count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bench.batch(txs.size()).run([&] {
|
||||
LOCK2(cs_main, pool.cs);
|
||||
assert(coins_tip->GetCacheSize() == cached_coin_count);
|
||||
for (const auto& tx : txs) pool.removeRecursive(*tx, MemPoolRemovalReason::REPLACED);
|
||||
assert(pool.size() == 0);
|
||||
|
||||
for (const auto& tx : txs) {
|
||||
const auto res{chainman.ProcessTransaction(tx, /*test_accept=*/true)};
|
||||
assert(res.m_result_type == MempoolAcceptResult::ResultType::VALID);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
BENCHMARK(ComplexMemPool, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(MempoolCheck, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(ProcessTransactionBench, benchmark::PriorityLevel::HIGH);
|
||||
|
|
|
@ -27,22 +27,22 @@ template <typename T>
|
|||
static void PrevectorDestructor(benchmark::Bench& bench)
|
||||
{
|
||||
bench.batch(2).run([&] {
|
||||
prevector<28, T> t0;
|
||||
prevector<28, T> t1;
|
||||
t0.resize(28);
|
||||
t1.resize(29);
|
||||
prevector<36, T> t0;
|
||||
prevector<36, T> t1;
|
||||
t0.resize(36);
|
||||
t1.resize(37);
|
||||
});
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void PrevectorClear(benchmark::Bench& bench)
|
||||
{
|
||||
prevector<28, T> t0;
|
||||
prevector<28, T> t1;
|
||||
prevector<36, T> t0;
|
||||
prevector<36, T> t1;
|
||||
bench.batch(2).run([&] {
|
||||
t0.resize(28);
|
||||
t0.resize(36);
|
||||
t0.clear();
|
||||
t1.resize(29);
|
||||
t1.resize(37);
|
||||
t1.clear();
|
||||
});
|
||||
}
|
||||
|
@ -50,12 +50,12 @@ static void PrevectorClear(benchmark::Bench& bench)
|
|||
template <typename T>
|
||||
static void PrevectorResize(benchmark::Bench& bench)
|
||||
{
|
||||
prevector<28, T> t0;
|
||||
prevector<28, T> t1;
|
||||
prevector<36, T> t0;
|
||||
prevector<36, T> t1;
|
||||
bench.batch(4).run([&] {
|
||||
t0.resize(28);
|
||||
t0.resize(36);
|
||||
t0.resize(0);
|
||||
t1.resize(29);
|
||||
t1.resize(37);
|
||||
t1.resize(0);
|
||||
});
|
||||
}
|
||||
|
@ -64,8 +64,8 @@ template <typename T>
|
|||
static void PrevectorDeserialize(benchmark::Bench& bench)
|
||||
{
|
||||
DataStream s0{};
|
||||
prevector<28, T> t0;
|
||||
t0.resize(28);
|
||||
prevector<36, T> t0;
|
||||
t0.resize(36);
|
||||
for (auto x = 0; x < 900; ++x) {
|
||||
s0 << t0;
|
||||
}
|
||||
|
@ -74,7 +74,7 @@ static void PrevectorDeserialize(benchmark::Bench& bench)
|
|||
s0 << t0;
|
||||
}
|
||||
bench.batch(1000).run([&] {
|
||||
prevector<28, T> t1;
|
||||
prevector<36, T> t1;
|
||||
for (auto x = 0; x < 1000; ++x) {
|
||||
s0 >> t1;
|
||||
}
|
||||
|
@ -86,7 +86,7 @@ template <typename T>
|
|||
static void PrevectorFillVectorDirect(benchmark::Bench& bench)
|
||||
{
|
||||
bench.run([&] {
|
||||
std::vector<prevector<28, T>> vec;
|
||||
std::vector<prevector<36, T>> vec;
|
||||
vec.reserve(260);
|
||||
for (size_t i = 0; i < 260; ++i) {
|
||||
vec.emplace_back();
|
||||
|
@ -99,11 +99,11 @@ template <typename T>
|
|||
static void PrevectorFillVectorIndirect(benchmark::Bench& bench)
|
||||
{
|
||||
bench.run([&] {
|
||||
std::vector<prevector<28, T>> vec;
|
||||
std::vector<prevector<36, T>> vec;
|
||||
vec.reserve(260);
|
||||
for (size_t i = 0; i < 260; ++i) {
|
||||
// force allocation
|
||||
vec.emplace_back(29, T{});
|
||||
vec.emplace_back(37, T{});
|
||||
}
|
||||
});
|
||||
}
|
||||
|
|
|
@ -33,7 +33,7 @@ struct TestBlockAndIndex {
|
|||
{
|
||||
DataStream stream{benchmark::data::block413567};
|
||||
std::byte a{0};
|
||||
stream.write({&a, 1}); // Prevent compaction
|
||||
stream.write(std::span{&a, 1}); // Prevent compaction
|
||||
|
||||
stream >> TX_WITH_WITNESS(block);
|
||||
|
||||
|
|
|
@ -6,19 +6,27 @@
|
|||
#include <random.h>
|
||||
#include <span.h>
|
||||
#include <streams.h>
|
||||
#include <util/byte_units.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
static void Xor(benchmark::Bench& bench)
|
||||
static void XorObfuscationBench(benchmark::Bench& bench)
|
||||
{
|
||||
FastRandomContext frc{/*fDeterministic=*/true};
|
||||
auto data{frc.randbytes<std::byte>(1024)};
|
||||
auto key{frc.randbytes<std::byte>(31)};
|
||||
FastRandomContext rng{/*fDeterministic=*/true};
|
||||
constexpr size_t bytes{10_MiB};
|
||||
auto test_data{rng.randbytes<std::byte>(bytes)};
|
||||
|
||||
bench.batch(data.size()).unit("byte").run([&] {
|
||||
util::Xor(data, key);
|
||||
const Obfuscation obfuscation{rng.rand64()};
|
||||
assert(obfuscation);
|
||||
|
||||
size_t offset{0};
|
||||
bench.batch(bytes / 1_MiB).unit("MiB").run([&] {
|
||||
obfuscation(test_data, offset++);
|
||||
ankerl::nanobench::doNotOptimizeAway(test_data);
|
||||
});
|
||||
}
|
||||
|
||||
BENCHMARK(Xor, benchmark::PriorityLevel::HIGH);
|
||||
BENCHMARK(XorObfuscationBench, benchmark::PriorityLevel::HIGH);
|
||||
|
|
|
@ -38,22 +38,36 @@ bool CheckTransaction(const CTransaction& tx, TxValidationState& state)
|
|||
// of a tx as spent, it does not check if the tx has duplicate inputs.
|
||||
// Failure to run this check will result in either a crash or an inflation bug, depending on the implementation of
|
||||
// the underlying coins database.
|
||||
std::set<COutPoint> vInOutPoints;
|
||||
for (const auto& txin : tx.vin) {
|
||||
if (!vInOutPoints.insert(txin.prevout).second)
|
||||
if (tx.vin.size() == 1) {
|
||||
if (tx.IsCoinBase()) {
|
||||
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) {
|
||||
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-cb-length");
|
||||
}
|
||||
}
|
||||
} else if (tx.vin.size() == 2) {
|
||||
if (tx.vin[0].prevout == tx.vin[1].prevout) {
|
||||
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-inputs-duplicate");
|
||||
}
|
||||
}
|
||||
if (tx.vin[0].prevout.IsNull() || tx.vin[1].prevout.IsNull()) {
|
||||
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-prevout-null");
|
||||
}
|
||||
} else {
|
||||
std::vector<COutPoint> sortedPrevouts;
|
||||
sortedPrevouts.reserve(tx.vin.size());
|
||||
for (const auto& txin : tx.vin) {
|
||||
sortedPrevouts.push_back(txin.prevout);
|
||||
}
|
||||
std::sort(sortedPrevouts.begin(), sortedPrevouts.end());
|
||||
if (std::ranges::adjacent_find(sortedPrevouts) != sortedPrevouts.end()) {
|
||||
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-inputs-duplicate");
|
||||
}
|
||||
|
||||
if (tx.IsCoinBase())
|
||||
{
|
||||
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
|
||||
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-cb-length");
|
||||
}
|
||||
else
|
||||
{
|
||||
for (const auto& txin : tx.vin)
|
||||
if (txin.prevout.IsNull())
|
||||
for (const auto& in : sortedPrevouts) {
|
||||
if (!in.hash.IsNull()) break; // invalid values can only be at the beginning
|
||||
if (in.IsNull()) {
|
||||
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-prevout-null");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
|
|
|
@ -723,6 +723,21 @@ CSHA256& CSHA256::Write(const unsigned char* data, size_t len)
|
|||
}
|
||||
return *this;
|
||||
}
|
||||
CSHA256& CSHA256::Write(unsigned char data)
|
||||
{
|
||||
size_t bufsize = bytes % 64;
|
||||
|
||||
// Add the single byte to the buffer
|
||||
buf[bufsize] = data;
|
||||
bytes += 1;
|
||||
|
||||
if (bufsize == 63) {
|
||||
// Process the buffer if full
|
||||
Transform(s, buf, 1);
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CSHA256::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
|
|
|
@ -22,6 +22,7 @@ public:
|
|||
|
||||
CSHA256();
|
||||
CSHA256& Write(const unsigned char* data, size_t len);
|
||||
CSHA256& Write(unsigned char data);
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
CSHA256& Reset();
|
||||
};
|
||||
|
|
|
@ -17,10 +17,10 @@
|
|||
|
||||
CSipHasher::CSipHasher(uint64_t k0, uint64_t k1)
|
||||
{
|
||||
v[0] = 0x736f6d6570736575ULL ^ k0;
|
||||
v[1] = 0x646f72616e646f6dULL ^ k1;
|
||||
v[2] = 0x6c7967656e657261ULL ^ k0;
|
||||
v[3] = 0x7465646279746573ULL ^ k1;
|
||||
v[0] = C0 ^ k0;
|
||||
v[1] = C1 ^ k1;
|
||||
v[2] = C2 ^ k0;
|
||||
v[3] = C3 ^ k1;
|
||||
count = 0;
|
||||
tmp = 0;
|
||||
}
|
||||
|
@ -97,10 +97,10 @@ uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val)
|
|||
/* Specialized implementation for efficiency */
|
||||
uint64_t d = val.GetUint64(0);
|
||||
|
||||
uint64_t v0 = 0x736f6d6570736575ULL ^ k0;
|
||||
uint64_t v1 = 0x646f72616e646f6dULL ^ k1;
|
||||
uint64_t v2 = 0x6c7967656e657261ULL ^ k0;
|
||||
uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d;
|
||||
uint64_t v0 = CSipHasher::C0 ^ k0;
|
||||
uint64_t v1 = CSipHasher::C1 ^ k1;
|
||||
uint64_t v2 = CSipHasher::C2 ^ k0;
|
||||
uint64_t v3 = CSipHasher::C3 ^ k1 ^ d;
|
||||
|
||||
SIPROUND;
|
||||
SIPROUND;
|
||||
|
@ -132,16 +132,12 @@ uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val)
|
|||
return v0 ^ v1 ^ v2 ^ v3;
|
||||
}
|
||||
|
||||
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra)
|
||||
/* Specialized implementation for efficiency */
|
||||
uint64_t Uint256ExtraSipHasher::operator()(const uint256& val, uint32_t extra) const noexcept
|
||||
{
|
||||
/* Specialized implementation for efficiency */
|
||||
uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
|
||||
uint64_t d = val.GetUint64(0);
|
||||
|
||||
uint64_t v0 = 0x736f6d6570736575ULL ^ k0;
|
||||
uint64_t v1 = 0x646f72616e646f6dULL ^ k1;
|
||||
uint64_t v2 = 0x6c7967656e657261ULL ^ k0;
|
||||
uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d;
|
||||
|
||||
v3 ^= d;
|
||||
SIPROUND;
|
||||
SIPROUND;
|
||||
v0 ^= d;
|
||||
|
|
|
@ -19,6 +19,11 @@ private:
|
|||
uint8_t count; // Only the low 8 bits of the input size matter.
|
||||
|
||||
public:
|
||||
static constexpr uint64_t C0{0x736f6d6570736575ULL};
|
||||
static constexpr uint64_t C1{0x646f72616e646f6dULL};
|
||||
static constexpr uint64_t C2{0x6c7967656e657261ULL};
|
||||
static constexpr uint64_t C3{0x7465646279746573ULL};
|
||||
|
||||
/** Construct a SipHash calculator initialized with 128-bit key (k0, k1) */
|
||||
CSipHasher(uint64_t k0, uint64_t k1);
|
||||
/** Hash a 64-bit integer worth of data
|
||||
|
@ -43,6 +48,19 @@ public:
|
|||
* .Finalize()
|
||||
*/
|
||||
uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val);
|
||||
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra);
|
||||
|
||||
class Uint256ExtraSipHasher {
|
||||
uint64_t v[4];
|
||||
|
||||
public:
|
||||
Uint256ExtraSipHasher(const uint64_t k0, const uint64_t k1) noexcept {
|
||||
v[0] = CSipHasher::C0 ^ k0;
|
||||
v[1] = CSipHasher::C1 ^ k1;
|
||||
v[2] = CSipHasher::C2 ^ k0;
|
||||
v[3] = CSipHasher::C3 ^ k1;
|
||||
}
|
||||
|
||||
uint64_t operator()(const uint256& val, uint32_t extra) const noexcept;
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SIPHASH_H
|
||||
|
|
|
@ -173,7 +173,7 @@ void CDBBatch::Clear()
|
|||
void CDBBatch::WriteImpl(std::span<const std::byte> key, DataStream& ssValue)
|
||||
{
|
||||
leveldb::Slice slKey(CharCast(key.data()), key.size());
|
||||
ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent));
|
||||
dbwrapper_private::GetObfuscation(parent)(ssValue);
|
||||
leveldb::Slice slValue(CharCast(ssValue.data()), ssValue.size());
|
||||
m_impl_batch->batch.Put(slKey, slValue);
|
||||
}
|
||||
|
@ -213,7 +213,11 @@ struct LevelDBContext {
|
|||
};
|
||||
|
||||
CDBWrapper::CDBWrapper(const DBParams& params)
|
||||
: m_db_context{std::make_unique<LevelDBContext>()}, m_name{fs::PathToString(params.path.stem())}, m_path{params.path}, m_is_memory{params.memory_only}
|
||||
: m_db_context{std::make_unique<LevelDBContext>()},
|
||||
m_name{fs::PathToString(params.path.stem())},
|
||||
m_obfuscation{0},
|
||||
m_path{params.path},
|
||||
m_is_memory{params.memory_only}
|
||||
{
|
||||
DBContext().penv = nullptr;
|
||||
DBContext().readoptions.verify_checksums = true;
|
||||
|
@ -248,24 +252,24 @@ CDBWrapper::CDBWrapper(const DBParams& params)
|
|||
LogPrintf("Finished database compaction of %s\n", fs::PathToString(params.path));
|
||||
}
|
||||
|
||||
// The base-case obfuscation key, which is a noop.
|
||||
obfuscate_key = std::vector<unsigned char>(OBFUSCATE_KEY_NUM_BYTES, '\000');
|
||||
{
|
||||
m_obfuscation = 0; // Needed for unobfuscated Read
|
||||
std::vector<unsigned char> obfuscate_key_vector(Obfuscation::SIZE_BYTES, '\000');
|
||||
const bool key_missing{!Read(OBFUSCATE_KEY_KEY, obfuscate_key_vector)};
|
||||
if (key_missing && params.obfuscate && IsEmpty()) {
|
||||
// Initialize non-degenerate obfuscation if it won't upset existing, non-obfuscated data.
|
||||
std::vector<uint8_t> new_key(Obfuscation::SIZE_BYTES);
|
||||
GetRandBytes(new_key);
|
||||
|
||||
bool key_exists = Read(OBFUSCATE_KEY_KEY, obfuscate_key);
|
||||
// Write `new_key` so we don't obfuscate the key with itself
|
||||
Write(OBFUSCATE_KEY_KEY, new_key);
|
||||
obfuscate_key_vector = new_key;
|
||||
|
||||
if (!key_exists && params.obfuscate && IsEmpty()) {
|
||||
// Initialize non-degenerate obfuscation if it won't upset
|
||||
// existing, non-obfuscated data.
|
||||
std::vector<unsigned char> new_key = CreateObfuscateKey();
|
||||
|
||||
// Write `new_key` so we don't obfuscate the key with itself
|
||||
Write(OBFUSCATE_KEY_KEY, new_key);
|
||||
obfuscate_key = new_key;
|
||||
|
||||
LogPrintf("Wrote new obfuscate key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key));
|
||||
LogPrintf("Wrote new obfuscate key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key_vector));
|
||||
}
|
||||
LogPrintf("Using obfuscation key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key_vector));
|
||||
m_obfuscation = obfuscate_key_vector;
|
||||
}
|
||||
|
||||
LogPrintf("Using obfuscation key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key));
|
||||
}
|
||||
|
||||
CDBWrapper::~CDBWrapper()
|
||||
|
@ -315,20 +319,6 @@ size_t CDBWrapper::DynamicMemoryUsage() const
|
|||
// We must use a string constructor which specifies length so that we copy
|
||||
// past the null-terminator.
|
||||
const std::string CDBWrapper::OBFUSCATE_KEY_KEY("\000obfuscate_key", 14);
|
||||
|
||||
const unsigned int CDBWrapper::OBFUSCATE_KEY_NUM_BYTES = 8;
|
||||
|
||||
/**
|
||||
* Returns a string (consisting of 8 random bytes) suitable for use as an
|
||||
* obfuscating XOR key.
|
||||
*/
|
||||
std::vector<unsigned char> CDBWrapper::CreateObfuscateKey() const
|
||||
{
|
||||
std::vector<uint8_t> ret(OBFUSCATE_KEY_NUM_BYTES);
|
||||
GetRandBytes(ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::optional<std::string> CDBWrapper::ReadImpl(std::span<const std::byte> key) const
|
||||
{
|
||||
leveldb::Slice slKey(CharCast(key.data()), key.size());
|
||||
|
@ -411,10 +401,5 @@ void CDBIterator::SeekToFirst() { m_impl_iter->iter->SeekToFirst(); }
|
|||
void CDBIterator::Next() { m_impl_iter->iter->Next(); }
|
||||
|
||||
namespace dbwrapper_private {
|
||||
|
||||
const std::vector<unsigned char>& GetObfuscateKey(const CDBWrapper &w)
|
||||
{
|
||||
return w.obfuscate_key;
|
||||
}
|
||||
|
||||
Obfuscation GetObfuscation(const CDBWrapper& w) { return w.m_obfuscation; }
|
||||
} // namespace dbwrapper_private
|
||||
|
|
|
@ -63,8 +63,7 @@ namespace dbwrapper_private {
|
|||
* Database obfuscation should be considered an implementation detail of the
|
||||
* specific database.
|
||||
*/
|
||||
const std::vector<unsigned char>& GetObfuscateKey(const CDBWrapper &w);
|
||||
|
||||
Obfuscation GetObfuscation(const CDBWrapper&);
|
||||
}; // namespace dbwrapper_private
|
||||
|
||||
bool DestroyDB(const std::string& path_str);
|
||||
|
@ -166,7 +165,7 @@ public:
|
|||
template<typename V> bool GetValue(V& value) {
|
||||
try {
|
||||
DataStream ssValue{GetValueImpl()};
|
||||
ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent));
|
||||
dbwrapper_private::GetObfuscation(parent)(ssValue);
|
||||
ssValue >> value;
|
||||
} catch (const std::exception&) {
|
||||
return false;
|
||||
|
@ -179,7 +178,7 @@ struct LevelDBContext;
|
|||
|
||||
class CDBWrapper
|
||||
{
|
||||
friend const std::vector<unsigned char>& dbwrapper_private::GetObfuscateKey(const CDBWrapper &w);
|
||||
friend Obfuscation dbwrapper_private::GetObfuscation(const CDBWrapper&);
|
||||
private:
|
||||
//! holds all leveldb-specific fields of this class
|
||||
std::unique_ptr<LevelDBContext> m_db_context;
|
||||
|
@ -188,16 +187,11 @@ private:
|
|||
std::string m_name;
|
||||
|
||||
//! a key used for optional XOR-obfuscation of the database
|
||||
std::vector<unsigned char> obfuscate_key;
|
||||
Obfuscation m_obfuscation;
|
||||
|
||||
//! the key under which the obfuscation key is stored
|
||||
static const std::string OBFUSCATE_KEY_KEY;
|
||||
|
||||
//! the length of the obfuscate key in number of bytes
|
||||
static const unsigned int OBFUSCATE_KEY_NUM_BYTES;
|
||||
|
||||
std::vector<unsigned char> CreateObfuscateKey() const;
|
||||
|
||||
//! path to filesystem storage
|
||||
const fs::path m_path;
|
||||
|
||||
|
@ -228,7 +222,7 @@ public:
|
|||
}
|
||||
try {
|
||||
DataStream ssValue{MakeByteSpan(*strValue)};
|
||||
ssValue.Xor(obfuscate_key);
|
||||
m_obfuscation(ssValue);
|
||||
ssValue >> value;
|
||||
} catch (const std::exception&) {
|
||||
return false;
|
||||
|
|
24
src/hash.h
24
src/hash.h
|
@ -38,6 +38,10 @@ public:
|
|||
sha.Write(input.data(), input.size());
|
||||
return *this;
|
||||
}
|
||||
CHash256& Write(std::span<const unsigned char, 1> input) {
|
||||
sha.Write(input[0]);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash256& Reset() {
|
||||
sha.Reset();
|
||||
|
@ -63,6 +67,10 @@ public:
|
|||
sha.Write(input.data(), input.size());
|
||||
return *this;
|
||||
}
|
||||
CHash160& Write(std::span<const unsigned char, 1> input) {
|
||||
sha.Write(input[0]);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash160& Reset() {
|
||||
sha.Reset();
|
||||
|
@ -107,6 +115,10 @@ public:
|
|||
{
|
||||
ctx.Write(UCharCast(src.data()), src.size());
|
||||
}
|
||||
void write(std::span<const std::byte, 1> src)
|
||||
{
|
||||
ctx.Write(*UCharCast(&src[0]));
|
||||
}
|
||||
|
||||
/** Compute the double-SHA256 hash of all data written to this object.
|
||||
*
|
||||
|
@ -160,13 +172,18 @@ public:
|
|||
m_source.read(dst);
|
||||
this->write(dst);
|
||||
}
|
||||
void read(std::span<std::byte, 1> dst)
|
||||
{
|
||||
m_source.read(dst);
|
||||
this->write(std::span<const std::byte, 1>{dst});
|
||||
}
|
||||
|
||||
void ignore(size_t num_bytes)
|
||||
{
|
||||
std::byte data[1024];
|
||||
while (num_bytes > 0) {
|
||||
size_t now = std::min<size_t>(num_bytes, 1024);
|
||||
read({data, now});
|
||||
read(std::span{data, now});
|
||||
num_bytes -= now;
|
||||
}
|
||||
}
|
||||
|
@ -194,6 +211,11 @@ public:
|
|||
m_source.write(src);
|
||||
HashWriter::write(src);
|
||||
}
|
||||
void write(std::span<const std::byte, 1> src)
|
||||
{
|
||||
m_source.write(src);
|
||||
HashWriter::write(src);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
HashedSourceWriter& operator<<(const T& obj)
|
||||
|
|
|
@ -777,13 +777,13 @@ void BlockManager::UnlinkPrunedFiles(const std::set<int>& setFilesToPrune) const
|
|||
|
||||
AutoFile BlockManager::OpenBlockFile(const FlatFilePos& pos, bool fReadOnly) const
|
||||
{
|
||||
return AutoFile{m_block_file_seq.Open(pos, fReadOnly), m_xor_key};
|
||||
return AutoFile{m_block_file_seq.Open(pos, fReadOnly), m_obfuscation};
|
||||
}
|
||||
|
||||
/** Open an undo file (rev?????.dat) */
|
||||
AutoFile BlockManager::OpenUndoFile(const FlatFilePos& pos, bool fReadOnly) const
|
||||
{
|
||||
return AutoFile{m_undo_file_seq.Open(pos, fReadOnly), m_xor_key};
|
||||
return AutoFile{m_undo_file_seq.Open(pos, fReadOnly), m_obfuscation};
|
||||
}
|
||||
|
||||
fs::path BlockManager::GetBlockPosFilename(const FlatFilePos& pos) const
|
||||
|
@ -1103,7 +1103,7 @@ FlatFilePos BlockManager::WriteBlock(const CBlock& block, int nHeight)
|
|||
return pos;
|
||||
}
|
||||
|
||||
static auto InitBlocksdirXorKey(const BlockManager::Options& opts)
|
||||
static Obfuscation InitBlocksdirXorKey(const BlockManager::Options& opts)
|
||||
{
|
||||
// Bytes are serialized without length indicator, so this is also the exact
|
||||
// size of the XOR-key file.
|
||||
|
@ -1152,12 +1152,12 @@ static auto InitBlocksdirXorKey(const BlockManager::Options& opts)
|
|||
};
|
||||
}
|
||||
LogInfo("Using obfuscation key for blocksdir *.dat files (%s): '%s'\n", fs::PathToString(opts.blocks_dir), HexStr(xor_key));
|
||||
return std::vector<std::byte>{xor_key.begin(), xor_key.end()};
|
||||
return Obfuscation{xor_key};
|
||||
}
|
||||
|
||||
BlockManager::BlockManager(const util::SignalInterrupt& interrupt, Options opts)
|
||||
: m_prune_mode{opts.prune_target > 0},
|
||||
m_xor_key{InitBlocksdirXorKey(opts)},
|
||||
m_obfuscation{InitBlocksdirXorKey(opts)},
|
||||
m_opts{std::move(opts)},
|
||||
m_block_file_seq{FlatFileSeq{m_opts.blocks_dir, "blk", m_opts.fast_prune ? 0x4000 /* 16kB */ : BLOCKFILE_CHUNK_SIZE}},
|
||||
m_undo_file_seq{FlatFileSeq{m_opts.blocks_dir, "rev", UNDOFILE_CHUNK_SIZE}},
|
||||
|
|
|
@ -235,7 +235,7 @@ private:
|
|||
|
||||
const bool m_prune_mode;
|
||||
|
||||
const std::vector<std::byte> m_xor_key;
|
||||
const Obfuscation m_obfuscation;
|
||||
|
||||
/** Dirty block index entries. */
|
||||
std::set<CBlockIndex*> m_dirty_blockindex;
|
||||
|
|
|
@ -58,15 +58,17 @@ bool LoadMempool(CTxMemPool& pool, const fs::path& load_path, Chainstate& active
|
|||
try {
|
||||
uint64_t version;
|
||||
file >> version;
|
||||
std::vector<std::byte> xor_key;
|
||||
|
||||
if (version == MEMPOOL_DUMP_VERSION_NO_XOR_KEY) {
|
||||
// Leave XOR-key empty
|
||||
file.SetObfuscation(0);
|
||||
} else if (version == MEMPOOL_DUMP_VERSION) {
|
||||
file >> xor_key;
|
||||
Obfuscation obfuscation{0};
|
||||
file >> obfuscation;
|
||||
file.SetObfuscation(obfuscation);
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
file.SetXor(xor_key);
|
||||
|
||||
uint64_t total_txns_to_load;
|
||||
file >> total_txns_to_load;
|
||||
uint64_t txns_tried = 0;
|
||||
|
@ -177,12 +179,13 @@ bool DumpMempool(const CTxMemPool& pool, const fs::path& dump_path, FopenFn mock
|
|||
const uint64_t version{pool.m_opts.persist_v1_dat ? MEMPOOL_DUMP_VERSION_NO_XOR_KEY : MEMPOOL_DUMP_VERSION};
|
||||
file << version;
|
||||
|
||||
std::vector<std::byte> xor_key(8);
|
||||
if (!pool.m_opts.persist_v1_dat) {
|
||||
FastRandomContext{}.fillrand(xor_key);
|
||||
file << xor_key;
|
||||
const Obfuscation obfuscation{FastRandomContext{}.rand64()};
|
||||
file << obfuscation;
|
||||
file.SetObfuscation(obfuscation);
|
||||
} else {
|
||||
file.SetObfuscation(0);
|
||||
}
|
||||
file.SetXor(xor_key);
|
||||
|
||||
uint64_t mempool_transactions_to_write(vinfo.size());
|
||||
file << mempool_transactions_to_write;
|
||||
|
|
85
src/obfuscation.h
Normal file
85
src/obfuscation.h
Normal file
|
@ -0,0 +1,85 @@
|
|||
// Copyright (c) 2009-present The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_OBFUSCATION_H
|
||||
#define BITCOIN_OBFUSCATION_H
|
||||
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <random>
|
||||
#include <span.h>
|
||||
#include <util/check.h>
|
||||
#include <cstring>
|
||||
#include <climits>
|
||||
#include <serialize.h>
|
||||
|
||||
class Obfuscation
|
||||
{
|
||||
public:
|
||||
static constexpr size_t SIZE_BYTES{sizeof(uint64_t)};
|
||||
|
||||
private:
|
||||
std::array<uint64_t, SIZE_BYTES> rotations; // Cached key rotations
|
||||
void SetRotations(const uint64_t key)
|
||||
{
|
||||
for (size_t i{0}; i < SIZE_BYTES; ++i) {
|
||||
size_t key_rotation_bits{CHAR_BIT * i};
|
||||
if constexpr (std::endian::native == std::endian::big) key_rotation_bits *= -1;
|
||||
rotations[i] = std::rotr(key, key_rotation_bits);
|
||||
}
|
||||
}
|
||||
|
||||
static uint64_t ToUint64(const std::span<const std::byte, SIZE_BYTES> key_span)
|
||||
{
|
||||
uint64_t key{};
|
||||
std::memcpy(&key, key_span.data(), SIZE_BYTES);
|
||||
return key;
|
||||
}
|
||||
|
||||
static void Xor(std::span<std::byte> write, const uint64_t key, const size_t size)
|
||||
{
|
||||
assert(size <= write.size());
|
||||
uint64_t raw{};
|
||||
std::memcpy(&raw, write.data(), size);
|
||||
raw ^= key;
|
||||
std::memcpy(write.data(), &raw, size);
|
||||
}
|
||||
|
||||
public:
|
||||
Obfuscation(const uint64_t key) { SetRotations(key); }
|
||||
Obfuscation(const std::span<const std::byte, SIZE_BYTES> key_span) : Obfuscation(ToUint64(key_span)) {}
|
||||
Obfuscation(const std::vector<uint8_t>& key_vec) : Obfuscation(MakeByteSpan(key_vec).first<SIZE_BYTES>()) {}
|
||||
Obfuscation(const std::vector<std::byte>& key_vec) : Obfuscation(std::span(key_vec).first<SIZE_BYTES>()) {}
|
||||
|
||||
uint64_t Key() const { return rotations[0]; }
|
||||
operator bool() const { return Key() != 0; }
|
||||
void operator()(std::span<std::byte> write, const size_t key_offset_bytes = 0) const
|
||||
{
|
||||
if (!*this) return;
|
||||
const uint64_t rot_key{rotations[key_offset_bytes % SIZE_BYTES]}; // Continue obfuscation from where we left off
|
||||
for (; write.size() >= SIZE_BYTES; write = write.subspan(SIZE_BYTES)) { // Process multiple bytes at a time
|
||||
Xor(write, rot_key, SIZE_BYTES);
|
||||
}
|
||||
Xor(write, rot_key, write.size());
|
||||
}
|
||||
|
||||
template <typename Stream>
|
||||
void Serialize(Stream& s) const
|
||||
{
|
||||
std::vector<std::byte> bytes(SIZE_BYTES);
|
||||
std::memcpy(bytes.data(), &rotations[0], SIZE_BYTES);
|
||||
s << bytes;
|
||||
}
|
||||
|
||||
template <typename Stream>
|
||||
void Unserialize(Stream& s)
|
||||
{
|
||||
std::vector<std::byte> bytes(SIZE_BYTES);
|
||||
s >> bytes;
|
||||
SetRotations(ToUint64(MakeByteSpan(bytes).first<SIZE_BYTES>()));
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_OBFUSCATION_H
|
|
@ -406,7 +406,7 @@ private:
|
|||
* Tests in October 2015 showed use of this reduced dbcache memory usage by 23%
|
||||
* and made an initial sync 13% faster.
|
||||
*/
|
||||
typedef prevector<28, unsigned char> CScriptBase;
|
||||
typedef prevector<36, unsigned char> CScriptBase;
|
||||
|
||||
bool GetScriptOp(CScriptBase::const_iterator& pc, CScriptBase::const_iterator end, opcodetype& opcodeRet, std::vector<unsigned char>* pvchRet);
|
||||
|
||||
|
|
212
src/serialize.h
212
src/serialize.h
|
@ -48,78 +48,75 @@ static const unsigned int MAX_VECTOR_ALLOCATE = 5000000;
|
|||
struct deserialize_type {};
|
||||
constexpr deserialize_type deserialize {};
|
||||
|
||||
class SizeComputer;
|
||||
|
||||
//! Check if type contains a stream by seeing if it has a GetStream() method.
|
||||
template<typename T>
|
||||
concept ContainsStream = requires(T t) { t.GetStream(); };
|
||||
|
||||
template<typename T>
|
||||
concept ContainsSizeComputer = ContainsStream<T> &&
|
||||
std::is_same_v<std::remove_reference_t<decltype(std::declval<T>().GetStream())>, SizeComputer>;
|
||||
|
||||
/*
|
||||
* Lowest-level serialization and conversion.
|
||||
*/
|
||||
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
|
||||
{
|
||||
s.write(std::as_bytes(std::span{&obj, 1}));
|
||||
s.write(std::as_bytes(std::span<uint8_t, 1>{&obj, 1}));
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
|
||||
{
|
||||
obj = htole16_internal(obj);
|
||||
s.write(std::as_bytes(std::span{&obj, 1}));
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
|
||||
{
|
||||
obj = htobe16_internal(obj);
|
||||
s.write(std::as_bytes(std::span{&obj, 1}));
|
||||
s.write(std::as_bytes(std::span<uint16_t, 1>{&obj, 1}));
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
|
||||
{
|
||||
obj = htole32_internal(obj);
|
||||
s.write(std::as_bytes(std::span{&obj, 1}));
|
||||
s.write(std::as_bytes(std::span<uint32_t, 1>{&obj, 1}));
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj)
|
||||
{
|
||||
obj = htobe32_internal(obj);
|
||||
s.write(std::as_bytes(std::span{&obj, 1}));
|
||||
s.write(std::as_bytes(std::span<uint32_t, 1>{&obj, 1}));
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
|
||||
{
|
||||
obj = htole64_internal(obj);
|
||||
s.write(std::as_bytes(std::span{&obj, 1}));
|
||||
s.write(std::as_bytes(std::span<uint64_t, 1>{&obj, 1}));
|
||||
}
|
||||
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
|
||||
{
|
||||
uint8_t obj;
|
||||
s.read(std::as_writable_bytes(std::span{&obj, 1}));
|
||||
s.read(std::as_writable_bytes(std::span<uint8_t, 1>{&obj, 1}));
|
||||
return obj;
|
||||
}
|
||||
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
|
||||
{
|
||||
uint16_t obj;
|
||||
s.read(std::as_writable_bytes(std::span{&obj, 1}));
|
||||
s.read(std::as_writable_bytes(std::span<uint16_t, 1>{&obj, 1}));
|
||||
return le16toh_internal(obj);
|
||||
}
|
||||
template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
|
||||
{
|
||||
uint16_t obj;
|
||||
s.read(std::as_writable_bytes(std::span{&obj, 1}));
|
||||
return be16toh_internal(obj);
|
||||
}
|
||||
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
|
||||
{
|
||||
uint32_t obj;
|
||||
s.read(std::as_writable_bytes(std::span{&obj, 1}));
|
||||
s.read(std::as_writable_bytes(std::span<uint32_t, 1>{&obj, 1}));
|
||||
return le32toh_internal(obj);
|
||||
}
|
||||
template<typename Stream> inline uint32_t ser_readdata32be(Stream &s)
|
||||
{
|
||||
uint32_t obj;
|
||||
s.read(std::as_writable_bytes(std::span{&obj, 1}));
|
||||
s.read(std::as_writable_bytes(std::span<uint32_t, 1>{&obj, 1}));
|
||||
return be32toh_internal(obj);
|
||||
}
|
||||
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
|
||||
{
|
||||
uint64_t obj;
|
||||
s.read(std::as_writable_bytes(std::span{&obj, 1}));
|
||||
s.read(std::as_writable_bytes(std::span<uint64_t, 1>{&obj, 1}));
|
||||
return le64toh_internal(obj);
|
||||
}
|
||||
|
||||
|
||||
class SizeComputer;
|
||||
|
||||
/**
|
||||
* Convert any argument to a reference to X, maintaining constness.
|
||||
*
|
||||
|
@ -252,38 +249,76 @@ const Out& AsBase(const In& x)
|
|||
template<class T>
|
||||
concept CharNotInt8 = std::same_as<T, char> && !std::same_as<T, int8_t>;
|
||||
|
||||
template <typename T>
|
||||
concept ByteOrIntegral = std::is_same_v<T, std::byte> ||
|
||||
(std::is_integral_v<T> && !std::is_same_v<T, char>);
|
||||
|
||||
template <typename Stream, CharNotInt8 V> void Serialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
|
||||
template <typename Stream> void Serialize(Stream& s, std::byte a) { ser_writedata8(s, uint8_t(a)); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
|
||||
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N]) { s.write(MakeByteSpan(a)); }
|
||||
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a) { s.write(MakeByteSpan(a)); }
|
||||
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, std::span<B, N> span) { s.write(std::as_bytes(span)); }
|
||||
template <typename Stream, BasicByte B> void Serialize(Stream& s, std::span<B> span) { s.write(std::as_bytes(span)); }
|
||||
template <typename Stream, ByteOrIntegral T> void Serialize(Stream& s, T a)
|
||||
{
|
||||
if constexpr (ContainsSizeComputer<Stream>) {
|
||||
s.GetStream().seek(sizeof(T));
|
||||
} else if constexpr (sizeof(T) == 1) {
|
||||
ser_writedata8(s, static_cast<uint8_t>(a)); // (u)int8_t or std::byte or bool
|
||||
} else if constexpr (sizeof(T) == 2) {
|
||||
ser_writedata16(s, static_cast<uint16_t>(a)); // (u)int16_t
|
||||
} else if constexpr (sizeof(T) == 4) {
|
||||
ser_writedata32(s, static_cast<uint32_t>(a)); // (u)int32_t
|
||||
} else {
|
||||
static_assert(sizeof(T) == 8);
|
||||
ser_writedata64(s, static_cast<uint64_t>(a)); // (u)int64_t
|
||||
}
|
||||
}
|
||||
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N])
|
||||
{
|
||||
if constexpr (ContainsSizeComputer<Stream>) {
|
||||
s.GetStream().seek(N);
|
||||
} else {
|
||||
s.write(MakeByteSpan(a));
|
||||
}
|
||||
}
|
||||
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a)
|
||||
{
|
||||
if constexpr (ContainsSizeComputer<Stream>) {
|
||||
s.GetStream().seek(N);
|
||||
} else {
|
||||
s.write(MakeByteSpan(a));
|
||||
}
|
||||
}
|
||||
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, std::span<B, N> span)
|
||||
{
|
||||
if constexpr (ContainsSizeComputer<Stream>) {
|
||||
s.GetStream().seek(N);
|
||||
} else {
|
||||
s.write(std::as_bytes(span));
|
||||
}
|
||||
}
|
||||
template <typename Stream, BasicByte B> void Serialize(Stream& s, std::span<B> span)
|
||||
{
|
||||
if constexpr (ContainsSizeComputer<Stream>) {
|
||||
s.GetStream().seek(span.size());
|
||||
} else {
|
||||
s.write(std::as_bytes(span));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Stream, CharNotInt8 V> void Unserialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
|
||||
template <typename Stream> void Unserialize(Stream& s, std::byte& a) { a = std::byte{ser_readdata8(s)}; }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
|
||||
template <typename Stream, ByteOrIntegral T> void Unserialize(Stream& s, T& a)
|
||||
{
|
||||
if constexpr (sizeof(T) == 1) {
|
||||
a = static_cast<T>(ser_readdata8(s)); // (u)int8_t or std::byte or bool
|
||||
} else if constexpr (sizeof(T) == 2) {
|
||||
a = static_cast<T>(ser_readdata16(s)); // (u)int16_t
|
||||
} else if constexpr (sizeof(T) == 4) {
|
||||
a = static_cast<T>(ser_readdata32(s)); // (u)int32_t
|
||||
} else {
|
||||
static_assert(sizeof(T) == 8);
|
||||
a = static_cast<T>(ser_readdata64(s)); // (u)int64_t
|
||||
}
|
||||
}
|
||||
template <typename Stream, BasicByte B, int N> void Unserialize(Stream& s, B (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
|
||||
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::array<B, N>& a) { s.read(MakeWritableByteSpan(a)); }
|
||||
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::span<B, N> span) { s.read(std::as_writable_bytes(span)); }
|
||||
template <typename Stream, BasicByte B> void Unserialize(Stream& s, std::span<B> span) { s.read(std::as_writable_bytes(span)); }
|
||||
|
||||
template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
|
||||
template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
|
||||
// clang-format on
|
||||
|
||||
|
||||
|
@ -302,12 +337,14 @@ constexpr inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
|
|||
else return sizeof(unsigned char) + sizeof(uint64_t);
|
||||
}
|
||||
|
||||
inline void WriteCompactSize(SizeComputer& os, uint64_t nSize);
|
||||
|
||||
template<typename Stream>
|
||||
void WriteCompactSize(Stream& os, uint64_t nSize)
|
||||
{
|
||||
if (nSize < 253)
|
||||
if constexpr (ContainsSizeComputer<Stream>)
|
||||
{
|
||||
os.GetStream().seek(GetSizeOfCompactSize(nSize));
|
||||
}
|
||||
else if (nSize < 253)
|
||||
{
|
||||
ser_writedata8(os, nSize);
|
||||
}
|
||||
|
@ -414,7 +451,7 @@ struct CheckVarIntMode {
|
|||
};
|
||||
|
||||
template<VarIntMode Mode, typename I>
|
||||
inline unsigned int GetSizeOfVarInt(I n)
|
||||
constexpr unsigned int GetSizeOfVarInt(I n)
|
||||
{
|
||||
CheckVarIntMode<Mode, I>();
|
||||
int nRet = 0;
|
||||
|
@ -427,25 +464,26 @@ inline unsigned int GetSizeOfVarInt(I n)
|
|||
return nRet;
|
||||
}
|
||||
|
||||
template<typename I>
|
||||
inline void WriteVarInt(SizeComputer& os, I n);
|
||||
|
||||
template<typename Stream, VarIntMode Mode, typename I>
|
||||
void WriteVarInt(Stream& os, I n)
|
||||
{
|
||||
CheckVarIntMode<Mode, I>();
|
||||
unsigned char tmp[(sizeof(n)*8+6)/7];
|
||||
int len=0;
|
||||
while(true) {
|
||||
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
len++;
|
||||
if constexpr (ContainsSizeComputer<Stream>) {
|
||||
os.GetStream().seek(GetSizeOfVarInt<Mode, I>(n));
|
||||
} else {
|
||||
CheckVarIntMode<Mode, I>();
|
||||
unsigned char tmp[(sizeof(n)*8+6)/7];
|
||||
int len=0;
|
||||
while(true) {
|
||||
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
len++;
|
||||
}
|
||||
do {
|
||||
ser_writedata8(os, tmp[len]);
|
||||
} while(len--);
|
||||
}
|
||||
do {
|
||||
ser_writedata8(os, tmp[len]);
|
||||
} while(len--);
|
||||
}
|
||||
|
||||
template<typename Stream, VarIntMode Mode, typename I>
|
||||
|
@ -489,7 +527,7 @@ public:
|
|||
* serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
|
||||
* READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
|
||||
*
|
||||
* This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
|
||||
* This works by constructing a Wrapper<Formatter, T&>-wrapped version of object, where T is
|
||||
* const during serialization, and non-const during deserialization, which maintains const
|
||||
* correctness.
|
||||
*/
|
||||
|
@ -534,12 +572,14 @@ struct CustomUintFormatter
|
|||
template <typename Stream, typename I> void Ser(Stream& s, I v)
|
||||
{
|
||||
if (v < 0 || v > MAX) throw std::ios_base::failure("CustomUintFormatter value out of range");
|
||||
if (BigEndian) {
|
||||
if constexpr (ContainsSizeComputer<Stream>) {
|
||||
s.GetStream().seek(Bytes);
|
||||
} else if (BigEndian) {
|
||||
uint64_t raw = htobe64_internal(v);
|
||||
s.write(std::as_bytes(std::span{&raw, 1}).last(Bytes));
|
||||
s.write(std::as_bytes(std::span{&raw, 1}).template last<Bytes>());
|
||||
} else {
|
||||
uint64_t raw = htole64_internal(v);
|
||||
s.write(std::as_bytes(std::span{&raw, 1}).first(Bytes));
|
||||
s.write(std::as_bytes(std::span{&raw, 1}).template first<Bytes>());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -549,10 +589,10 @@ struct CustomUintFormatter
|
|||
static_assert(std::numeric_limits<U>::max() >= MAX && std::numeric_limits<U>::min() <= 0, "Assigned type too small");
|
||||
uint64_t raw = 0;
|
||||
if (BigEndian) {
|
||||
s.read(std::as_writable_bytes(std::span{&raw, 1}).last(Bytes));
|
||||
s.read(std::as_writable_bytes(std::span{&raw, 1}).last<Bytes>());
|
||||
v = static_cast<I>(be64toh_internal(raw));
|
||||
} else {
|
||||
s.read(std::as_writable_bytes(std::span{&raw, 1}).first(Bytes));
|
||||
s.read(std::as_writable_bytes(std::span{&raw, 1}).first<Bytes>());
|
||||
v = static_cast<I>(le64toh_internal(raw));
|
||||
}
|
||||
}
|
||||
|
@ -1065,10 +1105,17 @@ protected:
|
|||
public:
|
||||
SizeComputer() = default;
|
||||
|
||||
SizeComputer& GetStream() { return *this; }
|
||||
const SizeComputer& GetStream() const { return *this; };
|
||||
|
||||
void write(std::span<const std::byte> src)
|
||||
{
|
||||
this->nSize += src.size();
|
||||
}
|
||||
void write(std::span<const std::byte, 1>)
|
||||
{
|
||||
this->nSize += 1;
|
||||
}
|
||||
|
||||
/** Pretend _nSize bytes are written, without specifying them. */
|
||||
void seek(size_t _nSize)
|
||||
|
@ -1088,27 +1135,12 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
template<typename I>
|
||||
inline void WriteVarInt(SizeComputer &s, I n)
|
||||
{
|
||||
s.seek(GetSizeOfVarInt<I>(n));
|
||||
}
|
||||
|
||||
inline void WriteCompactSize(SizeComputer &s, uint64_t nSize)
|
||||
{
|
||||
s.seek(GetSizeOfCompactSize(nSize));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t GetSerializeSize(const T& t)
|
||||
{
|
||||
return (SizeComputer() << t).size();
|
||||
}
|
||||
|
||||
//! Check if type contains a stream by seeing if has a GetStream() method.
|
||||
template<typename T>
|
||||
concept ContainsStream = requires(T t) { t.GetStream(); };
|
||||
|
||||
/** Wrapper that overrides the GetParams() function of a stream. */
|
||||
template <typename SubStream, typename Params>
|
||||
class ParamsStream
|
||||
|
@ -1133,7 +1165,9 @@ public:
|
|||
template <typename U> ParamsStream& operator<<(const U& obj) { ::Serialize(*this, obj); return *this; }
|
||||
template <typename U> ParamsStream& operator>>(U&& obj) { ::Unserialize(*this, obj); return *this; }
|
||||
void write(std::span<const std::byte> src) { GetStream().write(src); }
|
||||
void write(std::span<const std::byte, 1> src) { GetStream().write(src); }
|
||||
void read(std::span<std::byte> dst) { GetStream().read(dst); }
|
||||
void read(std::span<std::byte, 1> dst) { GetStream().read(dst); }
|
||||
void ignore(size_t num) { GetStream().ignore(num); }
|
||||
bool eof() const { return GetStream().eof(); }
|
||||
size_t size() const { return GetStream().size(); }
|
||||
|
|
|
@ -9,8 +9,7 @@
|
|||
|
||||
#include <array>
|
||||
|
||||
AutoFile::AutoFile(std::FILE* file, std::vector<std::byte> data_xor)
|
||||
: m_file{file}, m_xor{std::move(data_xor)}
|
||||
AutoFile::AutoFile(std::FILE* file, const Obfuscation& obfuscation) : m_file{file}, m_obfuscation{obfuscation}
|
||||
{
|
||||
if (!IsNull()) {
|
||||
auto pos{std::ftell(m_file)};
|
||||
|
@ -21,12 +20,12 @@ AutoFile::AutoFile(std::FILE* file, std::vector<std::byte> data_xor)
|
|||
std::size_t AutoFile::detail_fread(std::span<std::byte> dst)
|
||||
{
|
||||
if (!m_file) throw std::ios_base::failure("AutoFile::read: file handle is nullptr");
|
||||
size_t ret = std::fread(dst.data(), 1, dst.size(), m_file);
|
||||
if (!m_xor.empty()) {
|
||||
if (!m_position.has_value()) throw std::ios_base::failure("AutoFile::read: position unknown");
|
||||
util::Xor(dst.subspan(0, ret), m_xor, *m_position);
|
||||
const size_t ret = std::fread(dst.data(), 1, dst.size(), m_file);
|
||||
if (m_obfuscation) {
|
||||
if (!m_position) throw std::ios_base::failure("AutoFile::read: position unknown");
|
||||
m_obfuscation(dst, *m_position);
|
||||
}
|
||||
if (m_position.has_value()) *m_position += ret;
|
||||
if (m_position) *m_position += ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -63,6 +62,12 @@ void AutoFile::read(std::span<std::byte> dst)
|
|||
throw std::ios_base::failure(feof() ? "AutoFile::read: end of file" : "AutoFile::read: fread failed");
|
||||
}
|
||||
}
|
||||
void AutoFile::read(std::span<std::byte, 1> dst)
|
||||
{
|
||||
if (detail_fread(dst) != 1) {
|
||||
throw std::ios_base::failure(feof() ? "AutoFile::read: end of file" : "AutoFile::read: fread failed");
|
||||
}
|
||||
}
|
||||
|
||||
void AutoFile::ignore(size_t nSize)
|
||||
{
|
||||
|
@ -81,7 +86,7 @@ void AutoFile::ignore(size_t nSize)
|
|||
void AutoFile::write(std::span<const std::byte> src)
|
||||
{
|
||||
if (!m_file) throw std::ios_base::failure("AutoFile::write: file handle is nullptr");
|
||||
if (m_xor.empty()) {
|
||||
if (!m_obfuscation) {
|
||||
if (std::fwrite(src.data(), 1, src.size(), m_file) != src.size()) {
|
||||
throw std::ios_base::failure("AutoFile::write: write failed");
|
||||
}
|
||||
|
@ -96,13 +101,32 @@ void AutoFile::write(std::span<const std::byte> src)
|
|||
}
|
||||
}
|
||||
}
|
||||
void AutoFile::write(std::span<const std::byte, 1> src)
|
||||
{
|
||||
if (!m_file) throw std::ios_base::failure("AutoFile::write: file handle is nullptr");
|
||||
if (!m_obfuscation) {
|
||||
if (std::fwrite(src.data(), 1, 1, m_file) != 1) {
|
||||
throw std::ios_base::failure("AutoFile::write: write failed");
|
||||
}
|
||||
if (m_position.has_value()) *m_position += 1;
|
||||
} else {
|
||||
if (!m_position.has_value()) throw std::ios_base::failure("AutoFile::write: position unknown");
|
||||
std::byte temp_byte = src[0];
|
||||
std::span val(&temp_byte, 1);
|
||||
m_obfuscation(val, *m_position);
|
||||
if (fwrite(val.data(), 1, 1, m_file) != 1) {
|
||||
throw std::ios_base::failure{"XorFile::write: failed"};
|
||||
}
|
||||
*m_position += 1;
|
||||
}
|
||||
}
|
||||
|
||||
void AutoFile::write_buffer(std::span<std::byte> src)
|
||||
{
|
||||
if (!m_file) throw std::ios_base::failure("AutoFile::write_buffer: file handle is nullptr");
|
||||
if (m_xor.size()) {
|
||||
if (m_obfuscation) {
|
||||
if (!m_position) throw std::ios_base::failure("AutoFile::write_buffer: obfuscation position unknown");
|
||||
util::Xor(src, m_xor, *m_position); // obfuscate in-place
|
||||
m_obfuscation(src, *m_position); // obfuscate in-place
|
||||
}
|
||||
if (std::fwrite(src.data(), 1, src.size(), m_file) != src.size()) {
|
||||
throw std::ios_base::failure("AutoFile::write_buffer: write failed");
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
#ifndef BITCOIN_STREAMS_H
|
||||
#define BITCOIN_STREAMS_H
|
||||
|
||||
#include <obfuscation.h>
|
||||
#include <serialize.h>
|
||||
#include <span.h>
|
||||
#include <support/allocators/zeroafterfree.h>
|
||||
|
@ -21,30 +22,8 @@
|
|||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace util {
|
||||
inline void Xor(std::span<std::byte> write, std::span<const std::byte> key, size_t key_offset = 0)
|
||||
{
|
||||
if (key.size() == 0) {
|
||||
return;
|
||||
}
|
||||
key_offset %= key.size();
|
||||
|
||||
for (size_t i = 0, j = key_offset; i != write.size(); i++) {
|
||||
write[i] ^= key[j++];
|
||||
|
||||
// This potentially acts on very many bytes of data, so it's
|
||||
// important that we calculate `j`, i.e. the `key` index in this
|
||||
// way instead of doing a %, which would effectively be a division
|
||||
// for each byte Xor'd -- much slower than need be.
|
||||
if (j == key.size())
|
||||
j = 0;
|
||||
}
|
||||
}
|
||||
} // namespace util
|
||||
|
||||
/* Minimal stream for overwriting and/or appending to an existing byte vector
|
||||
*
|
||||
* The referenced vector will grow as necessary
|
||||
|
@ -83,6 +62,17 @@ public:
|
|||
}
|
||||
nPos += src.size();
|
||||
}
|
||||
void write(std::span<const std::byte, 1> src)
|
||||
{
|
||||
assert(nPos <= vchData.size());
|
||||
const auto byte{*UCharCast(&src[0])};
|
||||
if (nPos < vchData.size()) {
|
||||
vchData[nPos] = byte;
|
||||
} else {
|
||||
vchData.push_back(byte);
|
||||
}
|
||||
nPos += 1;
|
||||
}
|
||||
template <typename T>
|
||||
VectorWriter& operator<<(const T& obj)
|
||||
{
|
||||
|
@ -162,6 +152,7 @@ public:
|
|||
typedef vector_type::reverse_iterator reverse_iterator;
|
||||
|
||||
explicit DataStream() = default;
|
||||
explicit DataStream(size_type n) { reserve(n); }
|
||||
explicit DataStream(std::span<const uint8_t> sp) : DataStream{std::as_bytes(sp)} {}
|
||||
explicit DataStream(std::span<const value_type> sp) : vch(sp.data(), sp.data() + sp.size()) {}
|
||||
|
||||
|
@ -253,6 +244,10 @@ public:
|
|||
// Write to the end of the buffer
|
||||
vch.insert(vch.end(), src.begin(), src.end());
|
||||
}
|
||||
void write(std::span<const value_type, 1> src)
|
||||
{
|
||||
vch.push_back(src[0]);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
DataStream& operator<<(const T& obj)
|
||||
|
@ -261,21 +256,16 @@ public:
|
|||
return (*this);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template <typename T>
|
||||
DataStream& operator>>(T&& obj)
|
||||
{
|
||||
::Unserialize(*this, obj);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
/**
|
||||
* XOR the contents of this stream with a certain key.
|
||||
*
|
||||
* @param[in] key The key used to XOR the data in this stream.
|
||||
*/
|
||||
void Xor(const std::vector<unsigned char>& key)
|
||||
void Obfuscate(const Obfuscation& obfuscation)
|
||||
{
|
||||
util::Xor(MakeWritableByteSpan(*this), MakeByteSpan(key));
|
||||
if (obfuscation) obfuscation(MakeWritableByteSpan(*this));
|
||||
}
|
||||
|
||||
/** Compute total memory usage of this object (own memory + any dynamic memory). */
|
||||
|
@ -392,11 +382,11 @@ class AutoFile
|
|||
{
|
||||
protected:
|
||||
std::FILE* m_file;
|
||||
std::vector<std::byte> m_xor;
|
||||
Obfuscation m_obfuscation;
|
||||
std::optional<int64_t> m_position;
|
||||
|
||||
public:
|
||||
explicit AutoFile(std::FILE* file, std::vector<std::byte> data_xor={});
|
||||
explicit AutoFile(std::FILE* file, const Obfuscation& obfuscation = 0);
|
||||
|
||||
~AutoFile() { fclose(); }
|
||||
|
||||
|
@ -428,7 +418,7 @@ public:
|
|||
bool IsNull() const { return m_file == nullptr; }
|
||||
|
||||
/** Continue with a different XOR key */
|
||||
void SetXor(std::vector<std::byte> data_xor) { m_xor = data_xor; }
|
||||
void SetObfuscation(const Obfuscation& obfuscation) { m_obfuscation = obfuscation; }
|
||||
|
||||
/** Implementation detail, only used internally. */
|
||||
std::size_t detail_fread(std::span<std::byte> dst);
|
||||
|
@ -452,8 +442,10 @@ public:
|
|||
// Stream subset
|
||||
//
|
||||
void read(std::span<std::byte> dst);
|
||||
void read(std::span<std::byte, 1> dst);
|
||||
void ignore(size_t nSize);
|
||||
void write(std::span<const std::byte> src);
|
||||
void write(std::span<const std::byte, 1> src);
|
||||
|
||||
template <typename T>
|
||||
AutoFile& operator<<(const T& obj)
|
||||
|
|
|
@ -1079,7 +1079,7 @@ BOOST_AUTO_TEST_CASE(sha256d64)
|
|||
in[j] = m_rng.randbits(8);
|
||||
}
|
||||
for (int j = 0; j < i; ++j) {
|
||||
CHash256().Write({in + 64 * j, 64}).Finalize({out1 + 32 * j, 32});
|
||||
CHash256().Write(std::span{in + 64 * j, 64}).Finalize({out1 + 32 * j, 32});
|
||||
}
|
||||
SHA256D64(out2, in, i);
|
||||
BOOST_CHECK(memcmp(out1, out2, 32 * i) == 0);
|
||||
|
|
|
@ -14,16 +14,6 @@
|
|||
|
||||
using util::ToString;
|
||||
|
||||
// Test if a string consists entirely of null characters
|
||||
static bool is_null_key(const std::vector<unsigned char>& key) {
|
||||
bool isnull = true;
|
||||
|
||||
for (unsigned int i = 0; i < key.size(); i++)
|
||||
isnull &= (key[i] == '\x00');
|
||||
|
||||
return isnull;
|
||||
}
|
||||
|
||||
BOOST_FIXTURE_TEST_SUITE(dbwrapper_tests, BasicTestingSetup)
|
||||
|
||||
BOOST_AUTO_TEST_CASE(dbwrapper)
|
||||
|
@ -37,7 +27,7 @@ BOOST_AUTO_TEST_CASE(dbwrapper)
|
|||
uint256 res;
|
||||
|
||||
// Ensure that we're doing real obfuscation when obfuscate=true
|
||||
BOOST_CHECK(obfuscate != is_null_key(dbwrapper_private::GetObfuscateKey(dbw)));
|
||||
BOOST_CHECK(obfuscate == dbwrapper_private::GetObfuscation(dbw));
|
||||
|
||||
BOOST_CHECK(dbw.Write(key, in));
|
||||
BOOST_CHECK(dbw.Read(key, res));
|
||||
|
@ -57,7 +47,7 @@ BOOST_AUTO_TEST_CASE(dbwrapper_basic_data)
|
|||
bool res_bool;
|
||||
|
||||
// Ensure that we're doing real obfuscation when obfuscate=true
|
||||
BOOST_CHECK(obfuscate != is_null_key(dbwrapper_private::GetObfuscateKey(dbw)));
|
||||
BOOST_CHECK(obfuscate == dbwrapper_private::GetObfuscation(dbw));
|
||||
|
||||
//Simulate block raw data - "b + block hash"
|
||||
std::string key_block = "b" + m_rng.rand256().ToString();
|
||||
|
@ -232,7 +222,7 @@ BOOST_AUTO_TEST_CASE(existing_data_no_obfuscate)
|
|||
BOOST_CHECK_EQUAL(res2.ToString(), in.ToString());
|
||||
|
||||
BOOST_CHECK(!odbw.IsEmpty()); // There should be existing data
|
||||
BOOST_CHECK(is_null_key(dbwrapper_private::GetObfuscateKey(odbw))); // The key should be an empty string
|
||||
BOOST_CHECK(!dbwrapper_private::GetObfuscation(odbw));
|
||||
|
||||
uint256 in2 = m_rng.rand256();
|
||||
uint256 res3;
|
||||
|
@ -269,7 +259,7 @@ BOOST_AUTO_TEST_CASE(existing_data_reindex)
|
|||
// Check that the key/val we wrote with unobfuscated wrapper doesn't exist
|
||||
uint256 res2;
|
||||
BOOST_CHECK(!odbw.Read(key, res2));
|
||||
BOOST_CHECK(!is_null_key(dbwrapper_private::GetObfuscateKey(odbw)));
|
||||
BOOST_CHECK(dbwrapper_private::GetObfuscation(odbw));
|
||||
|
||||
uint256 in2 = m_rng.rand256();
|
||||
uint256 res3;
|
||||
|
|
|
@ -20,7 +20,7 @@ FUZZ_TARGET(autofile)
|
|||
FuzzedFileProvider fuzzed_file_provider{fuzzed_data_provider};
|
||||
AutoFile auto_file{
|
||||
fuzzed_file_provider.open(),
|
||||
ConsumeRandomLengthByteVector<std::byte>(fuzzed_data_provider),
|
||||
fuzzed_data_provider.ConsumeIntegral<uint64_t>()
|
||||
};
|
||||
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 100)
|
||||
{
|
||||
|
@ -29,14 +29,14 @@ FUZZ_TARGET(autofile)
|
|||
[&] {
|
||||
std::array<std::byte, 4096> arr{};
|
||||
try {
|
||||
auto_file.read({arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
|
||||
auto_file.read(std::span{arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
|
||||
} catch (const std::ios_base::failure&) {
|
||||
}
|
||||
},
|
||||
[&] {
|
||||
const std::array<std::byte, 4096> arr{};
|
||||
try {
|
||||
auto_file.write({arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
|
||||
auto_file.write(std::span{arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
|
||||
} catch (const std::ios_base::failure&) {
|
||||
}
|
||||
},
|
||||
|
|
|
@ -22,7 +22,7 @@ FUZZ_TARGET(buffered_file)
|
|||
std::optional<BufferedFile> opt_buffered_file;
|
||||
AutoFile fuzzed_file{
|
||||
fuzzed_file_provider.open(),
|
||||
ConsumeRandomLengthByteVector<std::byte>(fuzzed_data_provider),
|
||||
fuzzed_data_provider.ConsumeIntegral<uint64_t>()
|
||||
};
|
||||
try {
|
||||
auto n_buf_size = fuzzed_data_provider.ConsumeIntegralInRange<uint64_t>(0, 4096);
|
||||
|
|
|
@ -119,7 +119,7 @@ FUZZ_TARGET(integer, .init = initialize_integer)
|
|||
(void)MillisToTimeval(i64);
|
||||
(void)SighashToStr(uch);
|
||||
(void)SipHashUint256(u64, u64, u256);
|
||||
(void)SipHashUint256Extra(u64, u64, u256, u32);
|
||||
(void)Uint256ExtraSipHasher(u64, u64)(u256, u32);
|
||||
(void)ToLower(ch);
|
||||
(void)ToUpper(ch);
|
||||
{
|
||||
|
@ -236,10 +236,6 @@ FUZZ_TARGET(integer, .init = initialize_integer)
|
|||
const uint16_t deserialized_u16 = ser_readdata16(stream);
|
||||
assert(u16 == deserialized_u16 && stream.empty());
|
||||
|
||||
ser_writedata16be(stream, u16);
|
||||
const uint16_t deserialized_u16be = ser_readdata16be(stream);
|
||||
assert(u16 == deserialized_u16be && stream.empty());
|
||||
|
||||
ser_writedata8(stream, u8);
|
||||
const uint8_t deserialized_u8 = ser_readdata8(stream);
|
||||
assert(u8 == deserialized_u8 && stream.empty());
|
||||
|
|
|
@ -130,21 +130,21 @@ BOOST_AUTO_TEST_CASE(siphash)
|
|||
ss << TX_WITH_WITNESS(tx);
|
||||
BOOST_CHECK_EQUAL(SipHashUint256(1, 2, ss.GetHash()), 0x79751e980c2a0a35ULL);
|
||||
|
||||
// Check consistency between CSipHasher and SipHashUint256[Extra].
|
||||
// Check consistency between CSipHasher and SipHashUint256 and Uint256ExtraSipHasher.
|
||||
FastRandomContext ctx;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
uint64_t k0 = ctx.rand64();
|
||||
uint64_t k1 = ctx.rand64();
|
||||
uint64_t k2 = ctx.rand64();
|
||||
uint256 x = m_rng.rand256();
|
||||
uint32_t n = ctx.rand32();
|
||||
uint8_t nb[4];
|
||||
WriteLE32(nb, n);
|
||||
CSipHasher sip256(k1, k2);
|
||||
CSipHasher sip256(k0, k1);
|
||||
sip256.Write(x);
|
||||
CSipHasher sip288 = sip256;
|
||||
sip288.Write(nb);
|
||||
BOOST_CHECK_EQUAL(SipHashUint256(k1, k2, x), sip256.Finalize());
|
||||
BOOST_CHECK_EQUAL(SipHashUint256Extra(k1, k2, x, n), sip288.Finalize());
|
||||
BOOST_CHECK_EQUAL(SipHashUint256(k0, k1, x), sip256.Finalize());
|
||||
BOOST_CHECK_EQUAL(Uint256ExtraSipHasher(k0, k1)(x, n), sip288.Finalize());
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1158,6 +1158,91 @@ BOOST_AUTO_TEST_CASE(script_CHECKMULTISIG23)
|
|||
BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_INVALID_STACK_OPERATION, ScriptErrorString(err));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(script_size_and_capacity_test)
|
||||
{
|
||||
BOOST_CHECK_EQUAL(sizeof(prevector<34, uint8_t>), sizeof(prevector<36, uint8_t>));
|
||||
BOOST_CHECK_EQUAL(sizeof(CScriptBase), 40);
|
||||
BOOST_CHECK_EQUAL(sizeof(CScript), 40);
|
||||
BOOST_CHECK_EQUAL(sizeof(CTxOut), 48);
|
||||
|
||||
CKey dummyKey;
|
||||
dummyKey.MakeNewKey(true);
|
||||
|
||||
std::vector<std::vector<uint8_t>> dummyVSolutions;
|
||||
|
||||
// Small OP_RETURN is stack allocated
|
||||
{
|
||||
const auto scriptSmallOpReturn{CScript() << OP_RETURN << std::vector<uint8_t>(10, 0xaa)};
|
||||
BOOST_CHECK_EQUAL(Solver(scriptSmallOpReturn, dummyVSolutions), TxoutType::NULL_DATA);
|
||||
BOOST_CHECK_EQUAL(scriptSmallOpReturn.size(), 12);
|
||||
BOOST_CHECK_EQUAL(scriptSmallOpReturn.capacity(), 36);
|
||||
BOOST_CHECK_EQUAL(scriptSmallOpReturn.allocated_memory(), 0);
|
||||
}
|
||||
|
||||
// P2WPKH is stack allocated
|
||||
{
|
||||
const auto scriptP2WPKH{GetScriptForDestination(WitnessV0KeyHash{PKHash{CKeyID{CPubKey{dummyKey.GetPubKey()}.GetID()}}})};
|
||||
BOOST_CHECK_EQUAL(Solver(scriptP2WPKH, dummyVSolutions), TxoutType::WITNESS_V0_KEYHASH);
|
||||
BOOST_CHECK_EQUAL(scriptP2WPKH.size(), 22);
|
||||
BOOST_CHECK_EQUAL(scriptP2WPKH.capacity(), 36);
|
||||
BOOST_CHECK_EQUAL(scriptP2WPKH.allocated_memory(), 0);
|
||||
}
|
||||
|
||||
// P2SH is stack allocated
|
||||
{
|
||||
const auto scriptP2SH{GetScriptForDestination(ScriptHash{CScript{} << OP_TRUE})};
|
||||
BOOST_CHECK(scriptP2SH.IsPayToScriptHash());
|
||||
BOOST_CHECK_EQUAL(scriptP2SH.size(), 23);
|
||||
BOOST_CHECK_EQUAL(scriptP2SH.capacity(), 36);
|
||||
BOOST_CHECK_EQUAL(scriptP2SH.allocated_memory(), 0);
|
||||
}
|
||||
|
||||
// P2PKH is stack allocated
|
||||
{
|
||||
const auto scriptP2PKH{GetScriptForDestination(PKHash{CKeyID{CPubKey{dummyKey.GetPubKey()}.GetID()}})};
|
||||
BOOST_CHECK_EQUAL(Solver(scriptP2PKH, dummyVSolutions), TxoutType::PUBKEYHASH);
|
||||
BOOST_CHECK_EQUAL(scriptP2PKH.size(), 25);
|
||||
BOOST_CHECK_EQUAL(scriptP2PKH.capacity(), 36);
|
||||
BOOST_CHECK_EQUAL(scriptP2PKH.allocated_memory(), 0);
|
||||
}
|
||||
|
||||
// P2WSH is stack allocated
|
||||
{
|
||||
const auto scriptP2WSH{GetScriptForDestination(WitnessV0ScriptHash{CScript{} << OP_TRUE})};
|
||||
BOOST_CHECK(scriptP2WSH.IsPayToWitnessScriptHash());
|
||||
BOOST_CHECK_EQUAL(scriptP2WSH.size(), 34);
|
||||
BOOST_CHECK_EQUAL(scriptP2WSH.capacity(), 36);
|
||||
BOOST_CHECK_EQUAL(scriptP2WSH.allocated_memory(), 0);
|
||||
}
|
||||
|
||||
// P2TR is stack allocated
|
||||
{
|
||||
const auto scriptTaproot{GetScriptForDestination(WitnessV1Taproot{XOnlyPubKey{CPubKey{dummyKey.GetPubKey()}}})};
|
||||
BOOST_CHECK_EQUAL(Solver(scriptTaproot, dummyVSolutions), TxoutType::WITNESS_V1_TAPROOT);
|
||||
BOOST_CHECK_EQUAL(scriptTaproot.size(), 34);
|
||||
BOOST_CHECK_EQUAL(scriptTaproot.capacity(), 36);
|
||||
BOOST_CHECK_EQUAL(scriptTaproot.allocated_memory(), 0);
|
||||
}
|
||||
|
||||
// P2PK is stack allocated
|
||||
{
|
||||
const auto scriptPubKey{GetScriptForRawPubKey(CPubKey{dummyKey.GetPubKey()})};
|
||||
BOOST_CHECK_EQUAL(Solver(scriptPubKey, dummyVSolutions), TxoutType::PUBKEY);
|
||||
BOOST_CHECK_EQUAL(scriptPubKey.size(), 35);
|
||||
BOOST_CHECK_EQUAL(scriptPubKey.capacity(), 36);
|
||||
BOOST_CHECK_EQUAL(scriptPubKey.allocated_memory(), 0);
|
||||
}
|
||||
|
||||
// MULTISIG is always heap allocated
|
||||
{
|
||||
const auto scriptMultisig{GetScriptForMultisig(1, std::vector{2, CPubKey{dummyKey.GetPubKey()}})};
|
||||
BOOST_CHECK_EQUAL(Solver(scriptMultisig, dummyVSolutions), TxoutType::MULTISIG);
|
||||
BOOST_CHECK_EQUAL(scriptMultisig.size(), 71);
|
||||
BOOST_CHECK_EQUAL(scriptMultisig.capacity(), 103);
|
||||
BOOST_CHECK_EQUAL(scriptMultisig.allocated_memory(), 103);
|
||||
}
|
||||
}
|
||||
|
||||
/* Wrapper around ProduceSignature to combine two scriptsigs */
|
||||
SignatureData CombineSignatures(const CTxOut& txout, const CMutableTransaction& tx, const SignatureData& scriptSig1, const SignatureData& scriptSig2)
|
||||
{
|
||||
|
|
|
@ -13,19 +13,129 @@
|
|||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
using namespace std::string_literals;
|
||||
using namespace util::hex_literals;
|
||||
|
||||
BOOST_FIXTURE_TEST_SUITE(streams_tests, BasicTestingSetup)
|
||||
|
||||
// Test that obfuscation can be properly reversed even with random chunk sizes.
|
||||
BOOST_AUTO_TEST_CASE(xor_roundtrip_random_chunks)
|
||||
{
|
||||
auto apply_random_xor_chunks{[&](std::span<std::byte> write, const Obfuscation& obfuscation) {
|
||||
for (size_t offset{0}; offset < write.size();) {
|
||||
const size_t chunk_size{1 + m_rng.randrange(write.size() - offset)};
|
||||
obfuscation(write.subspan(offset, chunk_size), offset);
|
||||
offset += chunk_size;
|
||||
}
|
||||
}};
|
||||
|
||||
for (size_t test{0}; test < 100; ++test) {
|
||||
const size_t write_size{1 + m_rng.randrange(100U)};
|
||||
const std::vector original{m_rng.randbytes<std::byte>(write_size)};
|
||||
std::vector roundtrip{original};
|
||||
|
||||
const auto key_bytes{m_rng.randbytes<std::byte>(Obfuscation::SIZE_BYTES)};
|
||||
const Obfuscation obfuscation{key_bytes};
|
||||
apply_random_xor_chunks(roundtrip, obfuscation);
|
||||
|
||||
// Verify intermediate state is different from original (unless key is zero)
|
||||
const bool all_zero = !obfuscation || (HexStr(key_bytes).find_first_not_of('0') >= write_size * 2);
|
||||
BOOST_CHECK_EQUAL(original != roundtrip, !all_zero);
|
||||
|
||||
apply_random_xor_chunks(roundtrip, obfuscation);
|
||||
BOOST_CHECK(original == roundtrip);
|
||||
}
|
||||
}
|
||||
|
||||
// Compares optimized obfuscation against a trivial byte-by-byte reference implementation
|
||||
// with random offsets to ensure proper handling of key wrapping.
|
||||
BOOST_AUTO_TEST_CASE(xor_bytes_reference)
|
||||
{
|
||||
auto expected_xor{[](std::span<std::byte> write, const std::span<const std::byte> key, size_t key_offset) {
|
||||
for (auto& b : write) {
|
||||
b ^= key[key_offset++ % key.size()];
|
||||
}
|
||||
}};
|
||||
|
||||
for (size_t test{0}; test < 100; ++test) {
|
||||
const size_t write_size{1 + m_rng.randrange(100U)};
|
||||
const size_t key_offset{m_rng.randrange(3 * 8U)}; // Should wrap around
|
||||
|
||||
const auto key_bytes{m_rng.randbytes<std::byte>(Obfuscation::SIZE_BYTES)};
|
||||
const Obfuscation obfuscation{key_bytes};
|
||||
std::vector expected{m_rng.randbytes<std::byte>(write_size)};
|
||||
std::vector actual{expected};
|
||||
|
||||
expected_xor(expected, key_bytes, key_offset);
|
||||
obfuscation(actual, key_offset);
|
||||
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(expected.begin(), expected.end(), actual.begin(), actual.end());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(obfuscation_constructors)
|
||||
{
|
||||
constexpr uint64_t test_key = 0x0123456789ABCDEF;
|
||||
|
||||
// Direct uint64_t constructor
|
||||
const Obfuscation obf1{test_key};
|
||||
BOOST_CHECK_EQUAL(obf1.Key(), test_key);
|
||||
|
||||
// std::span constructor
|
||||
std::array<std::byte, Obfuscation::SIZE_BYTES> key_bytes{};
|
||||
std::memcpy(key_bytes.data(), &test_key, Obfuscation::SIZE_BYTES);
|
||||
const Obfuscation obf2{std::span{key_bytes}};
|
||||
BOOST_CHECK_EQUAL(obf2.Key(), test_key);
|
||||
|
||||
// std::vector<uint8_t> constructor
|
||||
std::vector<uint8_t> uint8_key(Obfuscation::SIZE_BYTES);
|
||||
std::memcpy(uint8_key.data(), &test_key, uint8_key.size());
|
||||
const Obfuscation obf4{uint8_key};
|
||||
BOOST_CHECK_EQUAL(obf4.Key(), test_key);
|
||||
|
||||
// std::vector<std::byte> constructor
|
||||
std::vector<std::byte> byte_vector_key(Obfuscation::SIZE_BYTES);
|
||||
std::memcpy(byte_vector_key.data(), &test_key, byte_vector_key.size());
|
||||
const Obfuscation obf5{byte_vector_key};
|
||||
BOOST_CHECK_EQUAL(obf5.Key(), test_key);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(obfuscation_serialize)
|
||||
{
|
||||
const Obfuscation original{0xDEADBEEF};
|
||||
|
||||
// Serialize
|
||||
DataStream ds;
|
||||
ds << original;
|
||||
|
||||
BOOST_CHECK_EQUAL(ds.size(), 1 + Obfuscation::SIZE_BYTES); // serialized as a vector
|
||||
|
||||
// Deserialize
|
||||
Obfuscation recovered{0};
|
||||
ds >> recovered;
|
||||
|
||||
BOOST_CHECK_EQUAL(recovered.Key(), original.Key());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(obfuscation_empty)
|
||||
{
|
||||
const Obfuscation null_obf{0};
|
||||
BOOST_CHECK(!null_obf);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(xor_file)
|
||||
{
|
||||
fs::path xor_path{m_args.GetDataDirBase() / "test_xor.bin"};
|
||||
auto raw_file{[&](const auto& mode) { return fsbridge::fopen(xor_path, mode); }};
|
||||
const std::vector<uint8_t> test1{1, 2, 3};
|
||||
const std::vector<uint8_t> test2{4, 5};
|
||||
const std::vector<std::byte> xor_pat{std::byte{0xff}, std::byte{0x00}};
|
||||
auto key_bytes{"ff00ff00ff00ff00"_hex_v};
|
||||
uint64_t xor_key;
|
||||
std::memcpy(&xor_key, key_bytes.data(), sizeof(xor_key));
|
||||
|
||||
{
|
||||
// Check errors for missing file
|
||||
AutoFile xor_file{raw_file("rb"), xor_pat};
|
||||
AutoFile xor_file{raw_file("rb"), key_bytes};
|
||||
BOOST_CHECK_EXCEPTION(xor_file << std::byte{}, std::ios_base::failure, HasReason{"AutoFile::write: file handle is nullpt"});
|
||||
BOOST_CHECK_EXCEPTION(xor_file >> std::byte{}, std::ios_base::failure, HasReason{"AutoFile::read: file handle is nullpt"});
|
||||
BOOST_CHECK_EXCEPTION(xor_file.ignore(1), std::ios_base::failure, HasReason{"AutoFile::ignore: file handle is nullpt"});
|
||||
|
@ -37,7 +147,7 @@ BOOST_AUTO_TEST_CASE(xor_file)
|
|||
#else
|
||||
const char* mode = "wbx";
|
||||
#endif
|
||||
AutoFile xor_file{raw_file(mode), xor_pat};
|
||||
AutoFile xor_file{raw_file(mode), xor_key};
|
||||
xor_file << test1 << test2;
|
||||
}
|
||||
{
|
||||
|
@ -50,7 +160,7 @@ BOOST_AUTO_TEST_CASE(xor_file)
|
|||
BOOST_CHECK_EXCEPTION(non_xor_file.ignore(1), std::ios_base::failure, HasReason{"AutoFile::ignore: end of file"});
|
||||
}
|
||||
{
|
||||
AutoFile xor_file{raw_file("rb"), xor_pat};
|
||||
AutoFile xor_file{raw_file("rb"), xor_key};
|
||||
std::vector<std::byte> read1, read2;
|
||||
xor_file >> read1 >> read2;
|
||||
BOOST_CHECK_EQUAL(HexStr(read1), HexStr(test1));
|
||||
|
@ -59,7 +169,7 @@ BOOST_AUTO_TEST_CASE(xor_file)
|
|||
BOOST_CHECK_EXCEPTION(xor_file >> std::byte{}, std::ios_base::failure, HasReason{"AutoFile::read: end of file"});
|
||||
}
|
||||
{
|
||||
AutoFile xor_file{raw_file("rb"), xor_pat};
|
||||
AutoFile xor_file{raw_file("rb"), xor_key};
|
||||
std::vector<std::byte> read2;
|
||||
// Check that ignore works
|
||||
xor_file.ignore(4);
|
||||
|
@ -75,7 +185,7 @@ BOOST_AUTO_TEST_CASE(streams_vector_writer)
|
|||
{
|
||||
unsigned char a(1);
|
||||
unsigned char b(2);
|
||||
unsigned char bytes[] = { 3, 4, 5, 6 };
|
||||
unsigned char bytes[] = {3, 4, 5, 6};
|
||||
std::vector<unsigned char> vch;
|
||||
|
||||
// Each test runs twice. Serializing a second time at the same starting
|
||||
|
@ -227,29 +337,30 @@ BOOST_AUTO_TEST_CASE(streams_serializedata_xor)
|
|||
// Degenerate case
|
||||
{
|
||||
DataStream ds{in};
|
||||
ds.Xor({0x00, 0x00});
|
||||
Obfuscation{0}(ds);
|
||||
BOOST_CHECK_EQUAL(""s, ds.str());
|
||||
}
|
||||
|
||||
in.push_back(std::byte{0x0f});
|
||||
in.push_back(std::byte{0xf0});
|
||||
|
||||
// Single character key
|
||||
{
|
||||
const Obfuscation obfuscation{"ffffffffffffffff"_hex_v};
|
||||
|
||||
DataStream ds{in};
|
||||
ds.Xor({0xff});
|
||||
obfuscation(ds);
|
||||
BOOST_CHECK_EQUAL("\xf0\x0f"s, ds.str());
|
||||
}
|
||||
|
||||
// Multi character key
|
||||
|
||||
in.clear();
|
||||
in.push_back(std::byte{0xf0});
|
||||
in.push_back(std::byte{0x0f});
|
||||
|
||||
{
|
||||
const Obfuscation obfuscation{"ff0fff0fff0fff0f"_hex_v};
|
||||
|
||||
DataStream ds{in};
|
||||
ds.Xor({0xff, 0x0f});
|
||||
obfuscation(ds);
|
||||
BOOST_CHECK_EQUAL("\x0f\x00"s, ds.str());
|
||||
}
|
||||
}
|
||||
|
@ -272,7 +383,7 @@ BOOST_AUTO_TEST_CASE(streams_buffered_file)
|
|||
BOOST_CHECK(false);
|
||||
} catch (const std::exception& e) {
|
||||
BOOST_CHECK(strstr(e.what(),
|
||||
"Rewind limit must be less than buffer size") != nullptr);
|
||||
"Rewind limit must be less than buffer size") != nullptr);
|
||||
}
|
||||
|
||||
// The buffer is 25 bytes, allow rewinding 10 bytes.
|
||||
|
@ -361,7 +472,7 @@ BOOST_AUTO_TEST_CASE(streams_buffered_file)
|
|||
BOOST_CHECK(false);
|
||||
} catch (const std::exception& e) {
|
||||
BOOST_CHECK(strstr(e.what(),
|
||||
"BufferedFile::Fill: end of file") != nullptr);
|
||||
"BufferedFile::Fill: end of file") != nullptr);
|
||||
}
|
||||
// Attempting to read beyond the end sets the EOF indicator.
|
||||
BOOST_CHECK(bf.eof());
|
||||
|
|
|
@ -406,20 +406,110 @@ BOOST_AUTO_TEST_CASE(tx_oversized)
|
|||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(basic_transaction_tests)
|
||||
static CMutableTransaction CreateTransaction()
|
||||
{
|
||||
// Random real transaction (e2769b09e784f32f62ef849763d4f45b98e07ba658647343b915ff832b110436)
|
||||
unsigned char ch[] = {0x01, 0x00, 0x00, 0x00, 0x01, 0x6b, 0xff, 0x7f, 0xcd, 0x4f, 0x85, 0x65, 0xef, 0x40, 0x6d, 0xd5, 0xd6, 0x3d, 0x4f, 0xf9, 0x4f, 0x31, 0x8f, 0xe8, 0x20, 0x27, 0xfd, 0x4d, 0xc4, 0x51, 0xb0, 0x44, 0x74, 0x01, 0x9f, 0x74, 0xb4, 0x00, 0x00, 0x00, 0x00, 0x8c, 0x49, 0x30, 0x46, 0x02, 0x21, 0x00, 0xda, 0x0d, 0xc6, 0xae, 0xce, 0xfe, 0x1e, 0x06, 0xef, 0xdf, 0x05, 0x77, 0x37, 0x57, 0xde, 0xb1, 0x68, 0x82, 0x09, 0x30, 0xe3, 0xb0, 0xd0, 0x3f, 0x46, 0xf5, 0xfc, 0xf1, 0x50, 0xbf, 0x99, 0x0c, 0x02, 0x21, 0x00, 0xd2, 0x5b, 0x5c, 0x87, 0x04, 0x00, 0x76, 0xe4, 0xf2, 0x53, 0xf8, 0x26, 0x2e, 0x76, 0x3e, 0x2d, 0xd5, 0x1e, 0x7f, 0xf0, 0xbe, 0x15, 0x77, 0x27, 0xc4, 0xbc, 0x42, 0x80, 0x7f, 0x17, 0xbd, 0x39, 0x01, 0x41, 0x04, 0xe6, 0xc2, 0x6e, 0xf6, 0x7d, 0xc6, 0x10, 0xd2, 0xcd, 0x19, 0x24, 0x84, 0x78, 0x9a, 0x6c, 0xf9, 0xae, 0xa9, 0x93, 0x0b, 0x94, 0x4b, 0x7e, 0x2d, 0xb5, 0x34, 0x2b, 0x9d, 0x9e, 0x5b, 0x9f, 0xf7, 0x9a, 0xff, 0x9a, 0x2e, 0xe1, 0x97, 0x8d, 0xd7, 0xfd, 0x01, 0xdf, 0xc5, 0x22, 0xee, 0x02, 0x28, 0x3d, 0x3b, 0x06, 0xa9, 0xd0, 0x3a, 0xcf, 0x80, 0x96, 0x96, 0x8d, 0x7d, 0xbb, 0x0f, 0x91, 0x78, 0xff, 0xff, 0xff, 0xff, 0x02, 0x8b, 0xa7, 0x94, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xba, 0xde, 0xec, 0xfd, 0xef, 0x05, 0x07, 0x24, 0x7f, 0xc8, 0xf7, 0x42, 0x41, 0xd7, 0x3b, 0xc0, 0x39, 0x97, 0x2d, 0x7b, 0x88, 0xac, 0x40, 0x94, 0xa8, 0x02, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xc1, 0x09, 0x32, 0x48, 0x3f, 0xec, 0x93, 0xed, 0x51, 0xf5, 0xfe, 0x95, 0xe7, 0x25, 0x59, 0xf2, 0xcc, 0x70, 0x43, 0xf9, 0x88, 0xac, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||||
std::vector<unsigned char> vch(ch, ch + sizeof(ch) -1);
|
||||
DataStream stream(vch);
|
||||
// Serialized random real transaction (e2769b09e784f32f62ef849763d4f45b98e07ba658647343b915ff832b110436)
|
||||
static constexpr auto ser_tx{"01000000016bff7fcd4f8565ef406dd5d63d4ff94f318fe82027fd4dc451b04474019f74b4000000008c493046022100da0dc6aecefe1e06efdf05773757deb168820930e3b0d03f46f5fcf150bf990c022100d25b5c87040076e4f253f8262e763e2dd51e7ff0be157727c4bc42807f17bd39014104e6c26ef67dc610d2cd192484789a6cf9aea9930b944b7e2db5342b9d9e5b9ff79aff9a2ee1978dd7fd01dfc522ee02283d3b06a9d03acf8096968d7dbb0f9178ffffffff028ba7940e000000001976a914badeecfdef0507247fc8f74241d73bc039972d7b88ac4094a802000000001976a914c10932483fec93ed51f5fe95e72559f2cc7043f988ac0000000000"_hex};
|
||||
CMutableTransaction tx;
|
||||
stream >> TX_WITH_WITNESS(tx);
|
||||
DataStream(ser_tx) >> TX_WITH_WITNESS(tx);
|
||||
return tx;
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(transaction_duplicate_input_test)
|
||||
{
|
||||
auto tx{CreateTransaction()};
|
||||
|
||||
TxValidationState state;
|
||||
BOOST_CHECK_MESSAGE(CheckTransaction(CTransaction(tx), state) && state.IsValid(), "Simple deserialized transaction should be valid.");
|
||||
|
||||
// Check that duplicate txins fail
|
||||
tx.vin.push_back(tx.vin[0]);
|
||||
BOOST_CHECK_MESSAGE(!CheckTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with duplicate txins should be invalid.");
|
||||
// Add duplicate input
|
||||
tx.vin.emplace_back(tx.vin[0]);
|
||||
std::ranges::shuffle(tx.vin, m_rng);
|
||||
BOOST_CHECK_MESSAGE(!CheckTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with 2 duplicate txins should be invalid.");
|
||||
|
||||
// ... add a valid input for more complex check
|
||||
tx.vin.emplace_back(COutPoint(Txid::FromUint256(uint256{1}), 1));
|
||||
std::ranges::shuffle(tx.vin, m_rng);
|
||||
BOOST_CHECK_MESSAGE(!CheckTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with 3 inputs (2 valid, 1 duplicate) should be invalid.");
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(transaction_duplicate_detection_test)
|
||||
{
|
||||
// Randomized testing against hash- and tree-based duplicate check
|
||||
auto reference_duplicate_check_hash{[](const std::vector<CTxIn>& vin) {
|
||||
std::unordered_set<COutPoint, SaltedOutpointHasher> vInOutPoints;
|
||||
for (const auto& txin : vin) {
|
||||
if (!vInOutPoints.insert(txin.prevout).second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}};
|
||||
auto reference_duplicate_check_tree{[](const std::vector<CTxIn>& vin) {
|
||||
std::set<COutPoint> vInOutPoints;
|
||||
for (const auto& txin : vin) {
|
||||
if (!vInOutPoints.insert(txin.prevout).second) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}};
|
||||
|
||||
std::vector<Txid> hashes;
|
||||
std::vector<uint32_t> ns;
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
hashes.emplace_back(Txid::FromUint256(m_rng.rand256()));
|
||||
ns.emplace_back(m_rng.rand32());
|
||||
}
|
||||
auto tx{CreateTransaction()};
|
||||
TxValidationState state;
|
||||
for (int i{0}; i < 100; ++i) {
|
||||
if (m_rng.randbool()) {
|
||||
tx.vin.clear();
|
||||
}
|
||||
for (int j{0}, num_inputs{1 + m_rng.randrange(5)}; j < num_inputs; ++j) {
|
||||
if (COutPoint outpoint(hashes[m_rng.randrange(hashes.size())], ns[m_rng.randrange(ns.size())]); !outpoint.IsNull()) {
|
||||
tx.vin.emplace_back(outpoint);
|
||||
}
|
||||
}
|
||||
std::ranges::shuffle(tx.vin, m_rng);
|
||||
|
||||
bool actual{CheckTransaction(CTransaction(tx), state)};
|
||||
BOOST_CHECK_EQUAL(actual, reference_duplicate_check_hash(tx.vin));
|
||||
BOOST_CHECK_EQUAL(actual, reference_duplicate_check_tree(tx.vin));
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(transaction_null_prevout_detection_test)
|
||||
{
|
||||
// Randomized testing against linear null prevout check
|
||||
auto reference_null_prevout_check_hash{[](const std::vector<CTxIn>& vin) {
|
||||
for (const auto& txin : vin) {
|
||||
if (txin.prevout.IsNull()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}};
|
||||
|
||||
auto tx{CreateTransaction()};
|
||||
TxValidationState state;
|
||||
for (int i{0}; i < 100; ++i) {
|
||||
if (m_rng.randbool()) {
|
||||
tx.vin.clear();
|
||||
}
|
||||
for (int j{0}, num_inputs{1 + m_rng.randrange(5)}; j < num_inputs; ++j) {
|
||||
switch (m_rng.randrange(5)) {
|
||||
case 0: tx.vin.emplace_back(COutPoint()); break; // Null prevout
|
||||
case 1: tx.vin.emplace_back(Txid::FromUint256(uint256::ZERO), m_rng.rand32()); break; // Null hash, random index
|
||||
case 2: tx.vin.emplace_back(Txid::FromUint256(m_rng.rand256()), COutPoint::NULL_INDEX); break; // Random hash, Null index
|
||||
default: tx.vin.emplace_back(Txid::FromUint256(m_rng.rand256()), m_rng.rand32()); // Random prevout
|
||||
}
|
||||
}
|
||||
std::ranges::shuffle(tx.vin, m_rng);
|
||||
|
||||
BOOST_CHECK_EQUAL(CheckTransaction(CTransaction(tx), state), reference_null_prevout_check_hash(tx.vin));
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(test_Get)
|
||||
|
@ -1048,4 +1138,116 @@ BOOST_AUTO_TEST_CASE(test_IsStandard)
|
|||
CheckIsNotStandard(t, "dust");
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(test_uint256_sorting)
|
||||
{
|
||||
// Sorting
|
||||
std::vector original{
|
||||
uint256{1},
|
||||
uint256{2},
|
||||
uint256{3}
|
||||
};
|
||||
|
||||
std::vector shuffled{original};
|
||||
std::ranges::shuffle(shuffled, m_rng);
|
||||
std::sort(shuffled.begin(), shuffled.end());
|
||||
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(original.begin(), original.end(), shuffled.begin(), shuffled.end());
|
||||
|
||||
// Operators
|
||||
constexpr auto a{uint256{1}},
|
||||
b{uint256{2}},
|
||||
c{uint256{3}};
|
||||
|
||||
BOOST_CHECK(a == a);
|
||||
BOOST_CHECK(a == uint256{1});
|
||||
BOOST_CHECK(b == b);
|
||||
BOOST_CHECK(c == c);
|
||||
BOOST_CHECK(a != b);
|
||||
BOOST_CHECK(a != uint256{10});
|
||||
BOOST_CHECK(a != c);
|
||||
BOOST_CHECK(b != c);
|
||||
|
||||
BOOST_CHECK(a < b);
|
||||
BOOST_CHECK(a < uint256{10});
|
||||
BOOST_CHECK(b < c);
|
||||
BOOST_CHECK(a < c);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(test_transaction_identifier_sorting)
|
||||
{
|
||||
std::vector original{
|
||||
Txid::FromUint256(uint256{1}),
|
||||
Txid::FromUint256(uint256{2}),
|
||||
Txid::FromUint256(uint256{3})
|
||||
};
|
||||
|
||||
std::vector shuffled{original};
|
||||
std::ranges::shuffle(shuffled, m_rng);
|
||||
std::sort(shuffled.begin(), shuffled.end());
|
||||
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(original.begin(), original.end(), shuffled.begin(), shuffled.end());
|
||||
|
||||
// Operators
|
||||
const auto a(Txid::FromUint256(uint256{1})),
|
||||
b(Txid::FromUint256(uint256{2})),
|
||||
c(Txid::FromUint256(uint256{3}));
|
||||
|
||||
BOOST_CHECK(a == uint256{1});
|
||||
|
||||
BOOST_CHECK(a == a);
|
||||
BOOST_CHECK(a == Txid::FromUint256(uint256{1}));
|
||||
BOOST_CHECK(b == b);
|
||||
BOOST_CHECK(c == c);
|
||||
BOOST_CHECK(a != b);
|
||||
BOOST_CHECK(a != Txid::FromUint256(uint256{10}));
|
||||
BOOST_CHECK(a != c);
|
||||
BOOST_CHECK(b != c);
|
||||
|
||||
BOOST_CHECK(a < b);
|
||||
BOOST_CHECK(a < Txid::FromUint256(uint256{10}));
|
||||
BOOST_CHECK(b < c);
|
||||
BOOST_CHECK(a < c);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(test_coutpoint_sorting)
|
||||
{
|
||||
// Sorting
|
||||
std::vector original{
|
||||
COutPoint(Txid::FromUint256(uint256{1}), 1),
|
||||
COutPoint(Txid::FromUint256(uint256{1}), 2),
|
||||
COutPoint(Txid::FromUint256(uint256{1}), 3),
|
||||
COutPoint(Txid::FromUint256(uint256{2}), 1),
|
||||
COutPoint(Txid::FromUint256(uint256{2}), 2),
|
||||
COutPoint(Txid::FromUint256(uint256{2}), 3),
|
||||
COutPoint(Txid::FromUint256(uint256{3}), 1),
|
||||
COutPoint(Txid::FromUint256(uint256{3}), 2),
|
||||
COutPoint(Txid::FromUint256(uint256{3}), 3)
|
||||
};
|
||||
|
||||
std::vector shuffled{original};
|
||||
std::ranges::shuffle(shuffled, m_rng);
|
||||
std::sort(shuffled.begin(), shuffled.end());
|
||||
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(original.begin(), original.end(), shuffled.begin(), shuffled.end());
|
||||
|
||||
// Operators
|
||||
const auto a{COutPoint(Txid::FromUint256(uint256{1}), 1)},
|
||||
b{COutPoint(Txid::FromUint256(uint256{1}), 2)},
|
||||
c{COutPoint(Txid::FromUint256(uint256{2}), 1)};
|
||||
|
||||
BOOST_CHECK(a == a);
|
||||
BOOST_CHECK(a == COutPoint(Txid::FromUint256(uint256{1}), 1));
|
||||
BOOST_CHECK(b == b);
|
||||
BOOST_CHECK(c == c);
|
||||
BOOST_CHECK(a != b);
|
||||
BOOST_CHECK(a != COutPoint(Txid::FromUint256(uint256{1}), 10));
|
||||
BOOST_CHECK(a != c);
|
||||
BOOST_CHECK(b != c);
|
||||
|
||||
BOOST_CHECK(a < b);
|
||||
BOOST_CHECK(a < COutPoint(Txid::FromUint256(uint256{1}), 10));
|
||||
BOOST_CHECK(b < c);
|
||||
BOOST_CHECK(a < c);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
|
|
@ -629,3 +629,8 @@ std::ostream& operator<<(std::ostream& os, const uint256& num)
|
|||
{
|
||||
return os << num.ToString();
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const COutPoint& outpoint)
|
||||
{
|
||||
return os << outpoint.hash << ", " << outpoint.n;
|
||||
}
|
||||
|
|
|
@ -291,6 +291,7 @@ inline std::ostream& operator<<(std::ostream& os, const std::optional<T>& v)
|
|||
std::ostream& operator<<(std::ostream& os, const arith_uint256& num);
|
||||
std::ostream& operator<<(std::ostream& os, const uint160& num);
|
||||
std::ostream& operator<<(std::ostream& os, const uint256& num);
|
||||
std::ostream& operator<<(std::ostream& os, const COutPoint& outpoint);
|
||||
// @}
|
||||
|
||||
/**
|
||||
|
|
|
@ -26,10 +26,8 @@ BOOST_AUTO_TEST_CASE(getcoinscachesizestate)
|
|||
LOCK(::cs_main);
|
||||
auto& view = chainstate.CoinsTip();
|
||||
|
||||
// The number of bytes consumed by coin's heap data, i.e. CScript
|
||||
// (prevector<28, unsigned char>) when assigned 56 bytes of data per above.
|
||||
//
|
||||
// See also: Coin::DynamicMemoryUsage().
|
||||
// The number of bytes consumed by coin's heap data, i.e. CScript (prevector<36, unsigned char>)
|
||||
// when assigned 56 bytes of data per above. See also: Coin::DynamicMemoryUsage().
|
||||
constexpr unsigned int COIN_SIZE = is_64_bit ? 80 : 64;
|
||||
|
||||
auto print_view_mem_usage = [](CCoinsViewCache& view) {
|
||||
|
|
|
@ -11,9 +11,9 @@ SaltedTxidHasher::SaltedTxidHasher() :
|
|||
k0{FastRandomContext().rand64()},
|
||||
k1{FastRandomContext().rand64()} {}
|
||||
|
||||
SaltedOutpointHasher::SaltedOutpointHasher(bool deterministic) :
|
||||
k0{deterministic ? 0x8e819f2607a18de6 : FastRandomContext().rand64()},
|
||||
k1{deterministic ? 0xf4020d2e3983b0eb : FastRandomContext().rand64()}
|
||||
SaltedOutpointHasher::SaltedOutpointHasher(bool deterministic) : hasher{
|
||||
deterministic ? 0x8e819f2607a18de6 : FastRandomContext().rand64(),
|
||||
deterministic ? 0xf4020d2e3983b0eb : FastRandomContext().rand64()}
|
||||
{}
|
||||
|
||||
SaltedSipHasher::SaltedSipHasher() :
|
||||
|
|
|
@ -30,12 +30,10 @@ public:
|
|||
|
||||
class SaltedOutpointHasher
|
||||
{
|
||||
private:
|
||||
/** Salt */
|
||||
const uint64_t k0, k1;
|
||||
const Uint256ExtraSipHasher hasher;
|
||||
|
||||
public:
|
||||
SaltedOutpointHasher(bool deterministic = false);
|
||||
explicit SaltedOutpointHasher(bool deterministic = false);
|
||||
|
||||
/**
|
||||
* Having the hash noexcept allows libstdc++'s unordered_map to recalculate
|
||||
|
@ -47,7 +45,7 @@ public:
|
|||
* @see https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++/manual/manual/unordered_associative.html
|
||||
*/
|
||||
size_t operator()(const COutPoint& id) const noexcept {
|
||||
return SipHashUint256Extra(k0, k1, id.hash, id.n);
|
||||
return hasher(id.hash, id.n);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue