This commit is contained in:
l0rinc 2025-04-29 11:54:28 +02:00 committed by GitHub
commit 1651a96ff7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
37 changed files with 1081 additions and 325 deletions

View file

@ -21,15 +21,38 @@
#include <optional>
#include <vector>
static void SizeComputerBlockBench(benchmark::Bench& bench) {
CBlock block;
DataStream(benchmark::data::block413567) >> TX_WITH_WITNESS(block);
bench.unit("block").run([&] {
SizeComputer size_computer;
size_computer << TX_WITH_WITNESS(block);
assert(size_computer.size() == benchmark::data::block413567.size());
});
}
static void SerializeBlockBench(benchmark::Bench& bench) {
CBlock block;
DataStream(benchmark::data::block413567) >> TX_WITH_WITNESS(block);
// Create output stream and verify first serialization matches input
bench.unit("block").run([&] {
DataStream output_stream(benchmark::data::block413567.size());
output_stream << TX_WITH_WITNESS(block);
assert(output_stream.size() == benchmark::data::block413567.size());
});
}
// These are the two major time-sinks which happen after we have fully received
// a block off the wire, but before we can relay the block on to peers using
// compact block relay.
static void DeserializeBlockTest(benchmark::Bench& bench)
static void DeserializeBlockBench(benchmark::Bench& bench)
{
DataStream stream(benchmark::data::block413567);
std::byte a{0};
stream.write({&a, 1}); // Prevent compaction
stream.write(std::span{&a, 1}); // Prevent compaction
bench.unit("block").run([&] {
CBlock block;
@ -39,11 +62,11 @@ static void DeserializeBlockTest(benchmark::Bench& bench)
});
}
static void DeserializeAndCheckBlockTest(benchmark::Bench& bench)
static void DeserializeAndCheckBlock(benchmark::Bench& bench)
{
DataStream stream(benchmark::data::block413567);
std::byte a{0};
stream.write({&a, 1}); // Prevent compaction
stream.write(std::span{&a, 1}); // Prevent compaction
ArgsManager bench_args;
const auto chainParams = CreateChainParams(bench_args, ChainType::MAIN);
@ -60,5 +83,7 @@ static void DeserializeAndCheckBlockTest(benchmark::Bench& bench)
});
}
BENCHMARK(DeserializeBlockTest, benchmark::PriorityLevel::HIGH);
BENCHMARK(DeserializeAndCheckBlockTest, benchmark::PriorityLevel::HIGH);
BENCHMARK(SizeComputerBlockBench, benchmark::PriorityLevel::HIGH);
BENCHMARK(SerializeBlockBench, benchmark::PriorityLevel::HIGH);
BENCHMARK(DeserializeBlockBench, benchmark::PriorityLevel::HIGH);
BENCHMARK(DeserializeAndCheckBlock, benchmark::PriorityLevel::HIGH);

View file

@ -16,7 +16,7 @@
static const size_t BATCHES = 101;
static const size_t BATCH_SIZE = 30;
static const int PREVECTOR_SIZE = 28;
static const int PREVECTOR_SIZE = 36;
static const unsigned int QUEUE_BATCH_SIZE = 128;
// This Benchmark tests the CheckQueue with a slightly realistic workload,

View file

@ -2,7 +2,6 @@
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bench/bench.h>
#include <crypto/muhash.h>
#include <crypto/ripemd160.h>
@ -12,9 +11,11 @@
#include <crypto/sha512.h>
#include <crypto/siphash.h>
#include <random.h>
#include <span.h>
#include <tinyformat.h>
#include <uint256.h>
#include <primitives/transaction.h>
#include <util/hasher.h>
#include <unordered_set>
#include <cstdint>
#include <vector>
@ -205,6 +206,98 @@ static void SipHash_32b(benchmark::Bench& bench)
});
}
static void SaltedOutpointHasherBench_hash(benchmark::Bench& bench)
{
FastRandomContext rng{/*fDeterministic=*/true};
constexpr size_t size{1000};
std::vector<COutPoint> outpoints(size);
for (auto& outpoint : outpoints) {
outpoint = {Txid::FromUint256(rng.rand256()), rng.rand32()};
}
const SaltedOutpointHasher hasher;
bench.batch(size).run([&] {
size_t result{0};
for (const auto& outpoint : outpoints) {
result ^= hasher(outpoint);
}
ankerl::nanobench::doNotOptimizeAway(result);
});
}
static void SaltedOutpointHasherBench_match(benchmark::Bench& bench)
{
FastRandomContext rng{/*fDeterministic=*/true};
constexpr size_t size{1000};
std::unordered_set<COutPoint, SaltedOutpointHasher> values;
std::vector<COutPoint> value_vector;
values.reserve(size);
value_vector.reserve(size);
for (size_t i{0}; i < size; ++i) {
COutPoint outpoint{Txid::FromUint256(rng.rand256()), rng.rand32()};
values.emplace(outpoint);
value_vector.push_back(outpoint);
assert(values.contains(outpoint));
}
bench.batch(size).run([&] {
bool result{true};
for (const auto& outpoint : value_vector) {
result ^= values.contains(outpoint);
}
ankerl::nanobench::doNotOptimizeAway(result);
});
}
static void SaltedOutpointHasherBench_mismatch(benchmark::Bench& bench)
{
FastRandomContext rng{/*fDeterministic=*/true};
constexpr size_t size{1000};
std::unordered_set<COutPoint, SaltedOutpointHasher> values;
std::vector<COutPoint> missing_value_vector;
values.reserve(size);
missing_value_vector.reserve(size);
for (size_t i{0}; i < size; ++i) {
values.emplace(Txid::FromUint256(rng.rand256()), rng.rand32());
COutPoint missing_outpoint{Txid::FromUint256(rng.rand256()), rng.rand32()};
missing_value_vector.push_back(missing_outpoint);
assert(!values.contains(missing_outpoint));
}
bench.batch(size).run([&] {
bool result{false};
for (const auto& outpoint : missing_value_vector) {
result ^= values.contains(outpoint);
}
ankerl::nanobench::doNotOptimizeAway(result);
});
}
static void SaltedOutpointHasherBench_create_set(benchmark::Bench& bench)
{
FastRandomContext rng{/*fDeterministic=*/true};
constexpr size_t size{1000};
std::vector<COutPoint> outpoints(size);
for (auto& outpoint : outpoints) {
outpoint = {Txid::FromUint256(rng.rand256()), rng.rand32()};
}
bench.batch(size).run([&] {
std::unordered_set<COutPoint, SaltedOutpointHasher> set;
set.reserve(size);
for (const auto& outpoint : outpoints) {
set.emplace(outpoint);
}
ankerl::nanobench::doNotOptimizeAway(set.size());
});
}
static void MuHash(benchmark::Bench& bench)
{
MuHash3072 acc;
@ -276,6 +369,10 @@ BENCHMARK(SHA256_32b_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_AVX2, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(SipHash_32b, benchmark::PriorityLevel::HIGH);
BENCHMARK(SaltedOutpointHasherBench_hash, benchmark::PriorityLevel::HIGH);
BENCHMARK(SaltedOutpointHasherBench_match, benchmark::PriorityLevel::HIGH);
BENCHMARK(SaltedOutpointHasherBench_mismatch, benchmark::PriorityLevel::HIGH);
BENCHMARK(SaltedOutpointHasherBench_create_set, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_STANDARD, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_AVX2, benchmark::PriorityLevel::HIGH);

View file

@ -13,10 +13,19 @@
#include <test/util/txmempool.h>
#include <txmempool.h>
#include <validation.h>
#include <bench/data/block413567.raw.h>
#include <node/context.h>
#include <node/miner.h>
#include <primitives/block.h>
#include <test/util/script.h>
#include <util/check.h>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <streams.h>
#include <vector>
class CCoinsViewCache;
@ -126,5 +135,53 @@ static void MempoolCheck(benchmark::Bench& bench)
});
}
static void ProcessTransactionBench(benchmark::Bench& bench)
{
const auto testing_setup{MakeNoLogFileContext<const TestingSetup>()};
CTxMemPool& pool{*Assert(testing_setup->m_node.mempool)};
ChainstateManager& chainman{*testing_setup->m_node.chainman};
CBlock block;
DataStream(benchmark::data::block413567) >> TX_WITH_WITNESS(block);
std::vector<CTransactionRef> txs(block.vtx.size() - 1);
for (size_t i{1}; i < block.vtx.size(); ++i) {
CMutableTransaction mtx{*block.vtx[i]};
for (auto& txin : mtx.vin) {
txin.nSequence = CTxIn::SEQUENCE_FINAL;
txin.scriptSig.clear();
txin.scriptWitness.stack = {WITNESS_STACK_ELEM_OP_TRUE};
}
txs[i - 1] = MakeTransactionRef(std::move(mtx));
}
CCoinsViewCache* coins_tip{nullptr};
size_t cached_coin_count{0};
{
LOCK(cs_main);
coins_tip = &chainman.ActiveChainstate().CoinsTip();
for (const auto& tx : txs) {
const Coin coin(CTxOut(2 * tx->GetValueOut(), P2WSH_OP_TRUE), 1, /*fCoinBaseIn=*/false);
for (const auto& in : tx->vin) {
coins_tip->AddCoin(in.prevout, Coin{coin}, /*possible_overwrite=*/false);
cached_coin_count++;
}
}
}
bench.batch(txs.size()).run([&] {
LOCK2(cs_main, pool.cs);
assert(coins_tip->GetCacheSize() == cached_coin_count);
for (const auto& tx : txs) pool.removeRecursive(*tx, MemPoolRemovalReason::REPLACED);
assert(pool.size() == 0);
for (const auto& tx : txs) {
const auto res{chainman.ProcessTransaction(tx, /*test_accept=*/true)};
assert(res.m_result_type == MempoolAcceptResult::ResultType::VALID);
}
});
}
BENCHMARK(ComplexMemPool, benchmark::PriorityLevel::HIGH);
BENCHMARK(MempoolCheck, benchmark::PriorityLevel::HIGH);
BENCHMARK(ProcessTransactionBench, benchmark::PriorityLevel::HIGH);

View file

@ -27,22 +27,22 @@ template <typename T>
static void PrevectorDestructor(benchmark::Bench& bench)
{
bench.batch(2).run([&] {
prevector<28, T> t0;
prevector<28, T> t1;
t0.resize(28);
t1.resize(29);
prevector<36, T> t0;
prevector<36, T> t1;
t0.resize(36);
t1.resize(37);
});
}
template <typename T>
static void PrevectorClear(benchmark::Bench& bench)
{
prevector<28, T> t0;
prevector<28, T> t1;
prevector<36, T> t0;
prevector<36, T> t1;
bench.batch(2).run([&] {
t0.resize(28);
t0.resize(36);
t0.clear();
t1.resize(29);
t1.resize(37);
t1.clear();
});
}
@ -50,12 +50,12 @@ static void PrevectorClear(benchmark::Bench& bench)
template <typename T>
static void PrevectorResize(benchmark::Bench& bench)
{
prevector<28, T> t0;
prevector<28, T> t1;
prevector<36, T> t0;
prevector<36, T> t1;
bench.batch(4).run([&] {
t0.resize(28);
t0.resize(36);
t0.resize(0);
t1.resize(29);
t1.resize(37);
t1.resize(0);
});
}
@ -64,8 +64,8 @@ template <typename T>
static void PrevectorDeserialize(benchmark::Bench& bench)
{
DataStream s0{};
prevector<28, T> t0;
t0.resize(28);
prevector<36, T> t0;
t0.resize(36);
for (auto x = 0; x < 900; ++x) {
s0 << t0;
}
@ -74,7 +74,7 @@ static void PrevectorDeserialize(benchmark::Bench& bench)
s0 << t0;
}
bench.batch(1000).run([&] {
prevector<28, T> t1;
prevector<36, T> t1;
for (auto x = 0; x < 1000; ++x) {
s0 >> t1;
}
@ -86,7 +86,7 @@ template <typename T>
static void PrevectorFillVectorDirect(benchmark::Bench& bench)
{
bench.run([&] {
std::vector<prevector<28, T>> vec;
std::vector<prevector<36, T>> vec;
vec.reserve(260);
for (size_t i = 0; i < 260; ++i) {
vec.emplace_back();
@ -99,11 +99,11 @@ template <typename T>
static void PrevectorFillVectorIndirect(benchmark::Bench& bench)
{
bench.run([&] {
std::vector<prevector<28, T>> vec;
std::vector<prevector<36, T>> vec;
vec.reserve(260);
for (size_t i = 0; i < 260; ++i) {
// force allocation
vec.emplace_back(29, T{});
vec.emplace_back(37, T{});
}
});
}

View file

@ -33,7 +33,7 @@ struct TestBlockAndIndex {
{
DataStream stream{benchmark::data::block413567};
std::byte a{0};
stream.write({&a, 1}); // Prevent compaction
stream.write(std::span{&a, 1}); // Prevent compaction
stream >> TX_WITH_WITNESS(block);

View file

@ -6,19 +6,27 @@
#include <random.h>
#include <span.h>
#include <streams.h>
#include <util/byte_units.h>
#include <cmath>
#include <cstddef>
#include <map>
#include <vector>
static void Xor(benchmark::Bench& bench)
static void XorObfuscationBench(benchmark::Bench& bench)
{
FastRandomContext frc{/*fDeterministic=*/true};
auto data{frc.randbytes<std::byte>(1024)};
auto key{frc.randbytes<std::byte>(31)};
FastRandomContext rng{/*fDeterministic=*/true};
constexpr size_t bytes{10_MiB};
auto test_data{rng.randbytes<std::byte>(bytes)};
bench.batch(data.size()).unit("byte").run([&] {
util::Xor(data, key);
const Obfuscation obfuscation{rng.rand64()};
assert(obfuscation);
size_t offset{0};
bench.batch(bytes / 1_MiB).unit("MiB").run([&] {
obfuscation(test_data, offset++);
ankerl::nanobench::doNotOptimizeAway(test_data);
});
}
BENCHMARK(Xor, benchmark::PriorityLevel::HIGH);
BENCHMARK(XorObfuscationBench, benchmark::PriorityLevel::HIGH);

View file

@ -38,23 +38,37 @@ bool CheckTransaction(const CTransaction& tx, TxValidationState& state)
// of a tx as spent, it does not check if the tx has duplicate inputs.
// Failure to run this check will result in either a crash or an inflation bug, depending on the implementation of
// the underlying coins database.
std::set<COutPoint> vInOutPoints;
if (tx.vin.size() == 1) {
if (tx.IsCoinBase()) {
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) {
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-cb-length");
}
}
} else if (tx.vin.size() == 2) {
if (tx.vin[0].prevout == tx.vin[1].prevout) {
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-inputs-duplicate");
}
if (tx.vin[0].prevout.IsNull() || tx.vin[1].prevout.IsNull()) {
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-prevout-null");
}
} else {
std::vector<COutPoint> sortedPrevouts;
sortedPrevouts.reserve(tx.vin.size());
for (const auto& txin : tx.vin) {
if (!vInOutPoints.insert(txin.prevout).second)
sortedPrevouts.push_back(txin.prevout);
}
std::sort(sortedPrevouts.begin(), sortedPrevouts.end());
if (std::ranges::adjacent_find(sortedPrevouts) != sortedPrevouts.end()) {
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-inputs-duplicate");
}
if (tx.IsCoinBase())
{
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-cb-length");
}
else
{
for (const auto& txin : tx.vin)
if (txin.prevout.IsNull())
for (const auto& in : sortedPrevouts) {
if (!in.hash.IsNull()) break; // invalid values can only be at the beginning
if (in.IsNull()) {
return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-prevout-null");
}
}
}
return true;
}

View file

@ -723,6 +723,21 @@ CSHA256& CSHA256::Write(const unsigned char* data, size_t len)
}
return *this;
}
CSHA256& CSHA256::Write(unsigned char data)
{
size_t bufsize = bytes % 64;
// Add the single byte to the buffer
buf[bufsize] = data;
bytes += 1;
if (bufsize == 63) {
// Process the buffer if full
Transform(s, buf, 1);
}
return *this;
}
void CSHA256::Finalize(unsigned char hash[OUTPUT_SIZE])
{

View file

@ -22,6 +22,7 @@ public:
CSHA256();
CSHA256& Write(const unsigned char* data, size_t len);
CSHA256& Write(unsigned char data);
void Finalize(unsigned char hash[OUTPUT_SIZE]);
CSHA256& Reset();
};

View file

@ -17,10 +17,10 @@
CSipHasher::CSipHasher(uint64_t k0, uint64_t k1)
{
v[0] = 0x736f6d6570736575ULL ^ k0;
v[1] = 0x646f72616e646f6dULL ^ k1;
v[2] = 0x6c7967656e657261ULL ^ k0;
v[3] = 0x7465646279746573ULL ^ k1;
v[0] = C0 ^ k0;
v[1] = C1 ^ k1;
v[2] = C2 ^ k0;
v[3] = C3 ^ k1;
count = 0;
tmp = 0;
}
@ -97,10 +97,10 @@ uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val)
/* Specialized implementation for efficiency */
uint64_t d = val.GetUint64(0);
uint64_t v0 = 0x736f6d6570736575ULL ^ k0;
uint64_t v1 = 0x646f72616e646f6dULL ^ k1;
uint64_t v2 = 0x6c7967656e657261ULL ^ k0;
uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d;
uint64_t v0 = CSipHasher::C0 ^ k0;
uint64_t v1 = CSipHasher::C1 ^ k1;
uint64_t v2 = CSipHasher::C2 ^ k0;
uint64_t v3 = CSipHasher::C3 ^ k1 ^ d;
SIPROUND;
SIPROUND;
@ -132,16 +132,12 @@ uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val)
return v0 ^ v1 ^ v2 ^ v3;
}
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra)
{
/* Specialized implementation for efficiency */
uint64_t Uint256ExtraSipHasher::operator()(const uint256& val, uint32_t extra) const noexcept
{
uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
uint64_t d = val.GetUint64(0);
uint64_t v0 = 0x736f6d6570736575ULL ^ k0;
uint64_t v1 = 0x646f72616e646f6dULL ^ k1;
uint64_t v2 = 0x6c7967656e657261ULL ^ k0;
uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d;
v3 ^= d;
SIPROUND;
SIPROUND;
v0 ^= d;

View file

@ -19,6 +19,11 @@ private:
uint8_t count; // Only the low 8 bits of the input size matter.
public:
static constexpr uint64_t C0{0x736f6d6570736575ULL};
static constexpr uint64_t C1{0x646f72616e646f6dULL};
static constexpr uint64_t C2{0x6c7967656e657261ULL};
static constexpr uint64_t C3{0x7465646279746573ULL};
/** Construct a SipHash calculator initialized with 128-bit key (k0, k1) */
CSipHasher(uint64_t k0, uint64_t k1);
/** Hash a 64-bit integer worth of data
@ -43,6 +48,19 @@ public:
* .Finalize()
*/
uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val);
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra);
class Uint256ExtraSipHasher {
uint64_t v[4];
public:
Uint256ExtraSipHasher(const uint64_t k0, const uint64_t k1) noexcept {
v[0] = CSipHasher::C0 ^ k0;
v[1] = CSipHasher::C1 ^ k1;
v[2] = CSipHasher::C2 ^ k0;
v[3] = CSipHasher::C3 ^ k1;
}
uint64_t operator()(const uint256& val, uint32_t extra) const noexcept;
};
#endif // BITCOIN_CRYPTO_SIPHASH_H

View file

@ -173,7 +173,7 @@ void CDBBatch::Clear()
void CDBBatch::WriteImpl(std::span<const std::byte> key, DataStream& ssValue)
{
leveldb::Slice slKey(CharCast(key.data()), key.size());
ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent));
dbwrapper_private::GetObfuscation(parent)(ssValue);
leveldb::Slice slValue(CharCast(ssValue.data()), ssValue.size());
m_impl_batch->batch.Put(slKey, slValue);
}
@ -213,7 +213,11 @@ struct LevelDBContext {
};
CDBWrapper::CDBWrapper(const DBParams& params)
: m_db_context{std::make_unique<LevelDBContext>()}, m_name{fs::PathToString(params.path.stem())}, m_path{params.path}, m_is_memory{params.memory_only}
: m_db_context{std::make_unique<LevelDBContext>()},
m_name{fs::PathToString(params.path.stem())},
m_obfuscation{0},
m_path{params.path},
m_is_memory{params.memory_only}
{
DBContext().penv = nullptr;
DBContext().readoptions.verify_checksums = true;
@ -248,24 +252,24 @@ CDBWrapper::CDBWrapper(const DBParams& params)
LogPrintf("Finished database compaction of %s\n", fs::PathToString(params.path));
}
// The base-case obfuscation key, which is a noop.
obfuscate_key = std::vector<unsigned char>(OBFUSCATE_KEY_NUM_BYTES, '\000');
bool key_exists = Read(OBFUSCATE_KEY_KEY, obfuscate_key);
if (!key_exists && params.obfuscate && IsEmpty()) {
// Initialize non-degenerate obfuscation if it won't upset
// existing, non-obfuscated data.
std::vector<unsigned char> new_key = CreateObfuscateKey();
{
m_obfuscation = 0; // Needed for unobfuscated Read
std::vector<unsigned char> obfuscate_key_vector(Obfuscation::SIZE_BYTES, '\000');
const bool key_missing{!Read(OBFUSCATE_KEY_KEY, obfuscate_key_vector)};
if (key_missing && params.obfuscate && IsEmpty()) {
// Initialize non-degenerate obfuscation if it won't upset existing, non-obfuscated data.
std::vector<uint8_t> new_key(Obfuscation::SIZE_BYTES);
GetRandBytes(new_key);
// Write `new_key` so we don't obfuscate the key with itself
Write(OBFUSCATE_KEY_KEY, new_key);
obfuscate_key = new_key;
obfuscate_key_vector = new_key;
LogPrintf("Wrote new obfuscate key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key));
LogPrintf("Wrote new obfuscate key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key_vector));
}
LogPrintf("Using obfuscation key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key_vector));
m_obfuscation = obfuscate_key_vector;
}
LogPrintf("Using obfuscation key for %s: %s\n", fs::PathToString(params.path), HexStr(obfuscate_key));
}
CDBWrapper::~CDBWrapper()
@ -315,20 +319,6 @@ size_t CDBWrapper::DynamicMemoryUsage() const
// We must use a string constructor which specifies length so that we copy
// past the null-terminator.
const std::string CDBWrapper::OBFUSCATE_KEY_KEY("\000obfuscate_key", 14);
const unsigned int CDBWrapper::OBFUSCATE_KEY_NUM_BYTES = 8;
/**
* Returns a string (consisting of 8 random bytes) suitable for use as an
* obfuscating XOR key.
*/
std::vector<unsigned char> CDBWrapper::CreateObfuscateKey() const
{
std::vector<uint8_t> ret(OBFUSCATE_KEY_NUM_BYTES);
GetRandBytes(ret);
return ret;
}
std::optional<std::string> CDBWrapper::ReadImpl(std::span<const std::byte> key) const
{
leveldb::Slice slKey(CharCast(key.data()), key.size());
@ -411,10 +401,5 @@ void CDBIterator::SeekToFirst() { m_impl_iter->iter->SeekToFirst(); }
void CDBIterator::Next() { m_impl_iter->iter->Next(); }
namespace dbwrapper_private {
const std::vector<unsigned char>& GetObfuscateKey(const CDBWrapper &w)
{
return w.obfuscate_key;
}
Obfuscation GetObfuscation(const CDBWrapper& w) { return w.m_obfuscation; }
} // namespace dbwrapper_private

View file

@ -63,8 +63,7 @@ namespace dbwrapper_private {
* Database obfuscation should be considered an implementation detail of the
* specific database.
*/
const std::vector<unsigned char>& GetObfuscateKey(const CDBWrapper &w);
Obfuscation GetObfuscation(const CDBWrapper&);
}; // namespace dbwrapper_private
bool DestroyDB(const std::string& path_str);
@ -166,7 +165,7 @@ public:
template<typename V> bool GetValue(V& value) {
try {
DataStream ssValue{GetValueImpl()};
ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent));
dbwrapper_private::GetObfuscation(parent)(ssValue);
ssValue >> value;
} catch (const std::exception&) {
return false;
@ -179,7 +178,7 @@ struct LevelDBContext;
class CDBWrapper
{
friend const std::vector<unsigned char>& dbwrapper_private::GetObfuscateKey(const CDBWrapper &w);
friend Obfuscation dbwrapper_private::GetObfuscation(const CDBWrapper&);
private:
//! holds all leveldb-specific fields of this class
std::unique_ptr<LevelDBContext> m_db_context;
@ -188,16 +187,11 @@ private:
std::string m_name;
//! a key used for optional XOR-obfuscation of the database
std::vector<unsigned char> obfuscate_key;
Obfuscation m_obfuscation;
//! the key under which the obfuscation key is stored
static const std::string OBFUSCATE_KEY_KEY;
//! the length of the obfuscate key in number of bytes
static const unsigned int OBFUSCATE_KEY_NUM_BYTES;
std::vector<unsigned char> CreateObfuscateKey() const;
//! path to filesystem storage
const fs::path m_path;
@ -228,7 +222,7 @@ public:
}
try {
DataStream ssValue{MakeByteSpan(*strValue)};
ssValue.Xor(obfuscate_key);
m_obfuscation(ssValue);
ssValue >> value;
} catch (const std::exception&) {
return false;

View file

@ -38,6 +38,10 @@ public:
sha.Write(input.data(), input.size());
return *this;
}
CHash256& Write(std::span<const unsigned char, 1> input) {
sha.Write(input[0]);
return *this;
}
CHash256& Reset() {
sha.Reset();
@ -63,6 +67,10 @@ public:
sha.Write(input.data(), input.size());
return *this;
}
CHash160& Write(std::span<const unsigned char, 1> input) {
sha.Write(input[0]);
return *this;
}
CHash160& Reset() {
sha.Reset();
@ -107,6 +115,10 @@ public:
{
ctx.Write(UCharCast(src.data()), src.size());
}
void write(std::span<const std::byte, 1> src)
{
ctx.Write(*UCharCast(&src[0]));
}
/** Compute the double-SHA256 hash of all data written to this object.
*
@ -160,13 +172,18 @@ public:
m_source.read(dst);
this->write(dst);
}
void read(std::span<std::byte, 1> dst)
{
m_source.read(dst);
this->write(std::span<const std::byte, 1>{dst});
}
void ignore(size_t num_bytes)
{
std::byte data[1024];
while (num_bytes > 0) {
size_t now = std::min<size_t>(num_bytes, 1024);
read({data, now});
read(std::span{data, now});
num_bytes -= now;
}
}
@ -194,6 +211,11 @@ public:
m_source.write(src);
HashWriter::write(src);
}
void write(std::span<const std::byte, 1> src)
{
m_source.write(src);
HashWriter::write(src);
}
template <typename T>
HashedSourceWriter& operator<<(const T& obj)

View file

@ -777,13 +777,13 @@ void BlockManager::UnlinkPrunedFiles(const std::set<int>& setFilesToPrune) const
AutoFile BlockManager::OpenBlockFile(const FlatFilePos& pos, bool fReadOnly) const
{
return AutoFile{m_block_file_seq.Open(pos, fReadOnly), m_xor_key};
return AutoFile{m_block_file_seq.Open(pos, fReadOnly), m_obfuscation};
}
/** Open an undo file (rev?????.dat) */
AutoFile BlockManager::OpenUndoFile(const FlatFilePos& pos, bool fReadOnly) const
{
return AutoFile{m_undo_file_seq.Open(pos, fReadOnly), m_xor_key};
return AutoFile{m_undo_file_seq.Open(pos, fReadOnly), m_obfuscation};
}
fs::path BlockManager::GetBlockPosFilename(const FlatFilePos& pos) const
@ -1103,7 +1103,7 @@ FlatFilePos BlockManager::WriteBlock(const CBlock& block, int nHeight)
return pos;
}
static auto InitBlocksdirXorKey(const BlockManager::Options& opts)
static Obfuscation InitBlocksdirXorKey(const BlockManager::Options& opts)
{
// Bytes are serialized without length indicator, so this is also the exact
// size of the XOR-key file.
@ -1152,12 +1152,12 @@ static auto InitBlocksdirXorKey(const BlockManager::Options& opts)
};
}
LogInfo("Using obfuscation key for blocksdir *.dat files (%s): '%s'\n", fs::PathToString(opts.blocks_dir), HexStr(xor_key));
return std::vector<std::byte>{xor_key.begin(), xor_key.end()};
return Obfuscation{xor_key};
}
BlockManager::BlockManager(const util::SignalInterrupt& interrupt, Options opts)
: m_prune_mode{opts.prune_target > 0},
m_xor_key{InitBlocksdirXorKey(opts)},
m_obfuscation{InitBlocksdirXorKey(opts)},
m_opts{std::move(opts)},
m_block_file_seq{FlatFileSeq{m_opts.blocks_dir, "blk", m_opts.fast_prune ? 0x4000 /* 16kB */ : BLOCKFILE_CHUNK_SIZE}},
m_undo_file_seq{FlatFileSeq{m_opts.blocks_dir, "rev", UNDOFILE_CHUNK_SIZE}},

View file

@ -235,7 +235,7 @@ private:
const bool m_prune_mode;
const std::vector<std::byte> m_xor_key;
const Obfuscation m_obfuscation;
/** Dirty block index entries. */
std::set<CBlockIndex*> m_dirty_blockindex;

View file

@ -58,15 +58,17 @@ bool LoadMempool(CTxMemPool& pool, const fs::path& load_path, Chainstate& active
try {
uint64_t version;
file >> version;
std::vector<std::byte> xor_key;
if (version == MEMPOOL_DUMP_VERSION_NO_XOR_KEY) {
// Leave XOR-key empty
file.SetObfuscation(0);
} else if (version == MEMPOOL_DUMP_VERSION) {
file >> xor_key;
Obfuscation obfuscation{0};
file >> obfuscation;
file.SetObfuscation(obfuscation);
} else {
return false;
}
file.SetXor(xor_key);
uint64_t total_txns_to_load;
file >> total_txns_to_load;
uint64_t txns_tried = 0;
@ -177,12 +179,13 @@ bool DumpMempool(const CTxMemPool& pool, const fs::path& dump_path, FopenFn mock
const uint64_t version{pool.m_opts.persist_v1_dat ? MEMPOOL_DUMP_VERSION_NO_XOR_KEY : MEMPOOL_DUMP_VERSION};
file << version;
std::vector<std::byte> xor_key(8);
if (!pool.m_opts.persist_v1_dat) {
FastRandomContext{}.fillrand(xor_key);
file << xor_key;
const Obfuscation obfuscation{FastRandomContext{}.rand64()};
file << obfuscation;
file.SetObfuscation(obfuscation);
} else {
file.SetObfuscation(0);
}
file.SetXor(xor_key);
uint64_t mempool_transactions_to_write(vinfo.size());
file << mempool_transactions_to_write;

85
src/obfuscation.h Normal file
View file

@ -0,0 +1,85 @@
// Copyright (c) 2009-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_OBFUSCATION_H
#define BITCOIN_OBFUSCATION_H
#include <array>
#include <cassert>
#include <cstdint>
#include <random>
#include <span.h>
#include <util/check.h>
#include <cstring>
#include <climits>
#include <serialize.h>
class Obfuscation
{
public:
static constexpr size_t SIZE_BYTES{sizeof(uint64_t)};
private:
std::array<uint64_t, SIZE_BYTES> rotations; // Cached key rotations
void SetRotations(const uint64_t key)
{
for (size_t i{0}; i < SIZE_BYTES; ++i) {
size_t key_rotation_bits{CHAR_BIT * i};
if constexpr (std::endian::native == std::endian::big) key_rotation_bits *= -1;
rotations[i] = std::rotr(key, key_rotation_bits);
}
}
static uint64_t ToUint64(const std::span<const std::byte, SIZE_BYTES> key_span)
{
uint64_t key{};
std::memcpy(&key, key_span.data(), SIZE_BYTES);
return key;
}
static void Xor(std::span<std::byte> write, const uint64_t key, const size_t size)
{
assert(size <= write.size());
uint64_t raw{};
std::memcpy(&raw, write.data(), size);
raw ^= key;
std::memcpy(write.data(), &raw, size);
}
public:
Obfuscation(const uint64_t key) { SetRotations(key); }
Obfuscation(const std::span<const std::byte, SIZE_BYTES> key_span) : Obfuscation(ToUint64(key_span)) {}
Obfuscation(const std::vector<uint8_t>& key_vec) : Obfuscation(MakeByteSpan(key_vec).first<SIZE_BYTES>()) {}
Obfuscation(const std::vector<std::byte>& key_vec) : Obfuscation(std::span(key_vec).first<SIZE_BYTES>()) {}
uint64_t Key() const { return rotations[0]; }
operator bool() const { return Key() != 0; }
void operator()(std::span<std::byte> write, const size_t key_offset_bytes = 0) const
{
if (!*this) return;
const uint64_t rot_key{rotations[key_offset_bytes % SIZE_BYTES]}; // Continue obfuscation from where we left off
for (; write.size() >= SIZE_BYTES; write = write.subspan(SIZE_BYTES)) { // Process multiple bytes at a time
Xor(write, rot_key, SIZE_BYTES);
}
Xor(write, rot_key, write.size());
}
template <typename Stream>
void Serialize(Stream& s) const
{
std::vector<std::byte> bytes(SIZE_BYTES);
std::memcpy(bytes.data(), &rotations[0], SIZE_BYTES);
s << bytes;
}
template <typename Stream>
void Unserialize(Stream& s)
{
std::vector<std::byte> bytes(SIZE_BYTES);
s >> bytes;
SetRotations(ToUint64(MakeByteSpan(bytes).first<SIZE_BYTES>()));
}
};
#endif // BITCOIN_OBFUSCATION_H

View file

@ -406,7 +406,7 @@ private:
* Tests in October 2015 showed use of this reduced dbcache memory usage by 23%
* and made an initial sync 13% faster.
*/
typedef prevector<28, unsigned char> CScriptBase;
typedef prevector<36, unsigned char> CScriptBase;
bool GetScriptOp(CScriptBase::const_iterator& pc, CScriptBase::const_iterator end, opcodetype& opcodeRet, std::vector<unsigned char>* pvchRet);

View file

@ -48,78 +48,75 @@ static const unsigned int MAX_VECTOR_ALLOCATE = 5000000;
struct deserialize_type {};
constexpr deserialize_type deserialize {};
class SizeComputer;
//! Check if type contains a stream by seeing if it has a GetStream() method.
template<typename T>
concept ContainsStream = requires(T t) { t.GetStream(); };
template<typename T>
concept ContainsSizeComputer = ContainsStream<T> &&
std::is_same_v<std::remove_reference_t<decltype(std::declval<T>().GetStream())>, SizeComputer>;
/*
* Lowest-level serialization and conversion.
*/
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
{
s.write(std::as_bytes(std::span{&obj, 1}));
s.write(std::as_bytes(std::span<uint8_t, 1>{&obj, 1}));
}
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
{
obj = htole16_internal(obj);
s.write(std::as_bytes(std::span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
{
obj = htobe16_internal(obj);
s.write(std::as_bytes(std::span{&obj, 1}));
s.write(std::as_bytes(std::span<uint16_t, 1>{&obj, 1}));
}
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
{
obj = htole32_internal(obj);
s.write(std::as_bytes(std::span{&obj, 1}));
s.write(std::as_bytes(std::span<uint32_t, 1>{&obj, 1}));
}
template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj)
{
obj = htobe32_internal(obj);
s.write(std::as_bytes(std::span{&obj, 1}));
s.write(std::as_bytes(std::span<uint32_t, 1>{&obj, 1}));
}
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
{
obj = htole64_internal(obj);
s.write(std::as_bytes(std::span{&obj, 1}));
s.write(std::as_bytes(std::span<uint64_t, 1>{&obj, 1}));
}
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
{
uint8_t obj;
s.read(std::as_writable_bytes(std::span{&obj, 1}));
s.read(std::as_writable_bytes(std::span<uint8_t, 1>{&obj, 1}));
return obj;
}
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
{
uint16_t obj;
s.read(std::as_writable_bytes(std::span{&obj, 1}));
s.read(std::as_writable_bytes(std::span<uint16_t, 1>{&obj, 1}));
return le16toh_internal(obj);
}
template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
{
uint16_t obj;
s.read(std::as_writable_bytes(std::span{&obj, 1}));
return be16toh_internal(obj);
}
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
{
uint32_t obj;
s.read(std::as_writable_bytes(std::span{&obj, 1}));
s.read(std::as_writable_bytes(std::span<uint32_t, 1>{&obj, 1}));
return le32toh_internal(obj);
}
template<typename Stream> inline uint32_t ser_readdata32be(Stream &s)
{
uint32_t obj;
s.read(std::as_writable_bytes(std::span{&obj, 1}));
s.read(std::as_writable_bytes(std::span<uint32_t, 1>{&obj, 1}));
return be32toh_internal(obj);
}
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
{
uint64_t obj;
s.read(std::as_writable_bytes(std::span{&obj, 1}));
s.read(std::as_writable_bytes(std::span<uint64_t, 1>{&obj, 1}));
return le64toh_internal(obj);
}
class SizeComputer;
/**
* Convert any argument to a reference to X, maintaining constness.
*
@ -252,38 +249,76 @@ const Out& AsBase(const In& x)
template<class T>
concept CharNotInt8 = std::same_as<T, char> && !std::same_as<T, int8_t>;
template <typename T>
concept ByteOrIntegral = std::is_same_v<T, std::byte> ||
(std::is_integral_v<T> && !std::is_same_v<T, char>);
template <typename Stream, CharNotInt8 V> void Serialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
template <typename Stream> void Serialize(Stream& s, std::byte a) { ser_writedata8(s, uint8_t(a)); }
template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N]) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, std::span<B, N> span) { s.write(std::as_bytes(span)); }
template <typename Stream, BasicByte B> void Serialize(Stream& s, std::span<B> span) { s.write(std::as_bytes(span)); }
template <typename Stream, ByteOrIntegral T> void Serialize(Stream& s, T a)
{
if constexpr (ContainsSizeComputer<Stream>) {
s.GetStream().seek(sizeof(T));
} else if constexpr (sizeof(T) == 1) {
ser_writedata8(s, static_cast<uint8_t>(a)); // (u)int8_t or std::byte or bool
} else if constexpr (sizeof(T) == 2) {
ser_writedata16(s, static_cast<uint16_t>(a)); // (u)int16_t
} else if constexpr (sizeof(T) == 4) {
ser_writedata32(s, static_cast<uint32_t>(a)); // (u)int32_t
} else {
static_assert(sizeof(T) == 8);
ser_writedata64(s, static_cast<uint64_t>(a)); // (u)int64_t
}
}
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N])
{
if constexpr (ContainsSizeComputer<Stream>) {
s.GetStream().seek(N);
} else {
s.write(MakeByteSpan(a));
}
}
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a)
{
if constexpr (ContainsSizeComputer<Stream>) {
s.GetStream().seek(N);
} else {
s.write(MakeByteSpan(a));
}
}
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, std::span<B, N> span)
{
if constexpr (ContainsSizeComputer<Stream>) {
s.GetStream().seek(N);
} else {
s.write(std::as_bytes(span));
}
}
template <typename Stream, BasicByte B> void Serialize(Stream& s, std::span<B> span)
{
if constexpr (ContainsSizeComputer<Stream>) {
s.GetStream().seek(span.size());
} else {
s.write(std::as_bytes(span));
}
}
template <typename Stream, CharNotInt8 V> void Unserialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
template <typename Stream> void Unserialize(Stream& s, std::byte& a) { a = std::byte{ser_readdata8(s)}; }
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
template <typename Stream, ByteOrIntegral T> void Unserialize(Stream& s, T& a)
{
if constexpr (sizeof(T) == 1) {
a = static_cast<T>(ser_readdata8(s)); // (u)int8_t or std::byte or bool
} else if constexpr (sizeof(T) == 2) {
a = static_cast<T>(ser_readdata16(s)); // (u)int16_t
} else if constexpr (sizeof(T) == 4) {
a = static_cast<T>(ser_readdata32(s)); // (u)int32_t
} else {
static_assert(sizeof(T) == 8);
a = static_cast<T>(ser_readdata64(s)); // (u)int64_t
}
}
template <typename Stream, BasicByte B, int N> void Unserialize(Stream& s, B (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::array<B, N>& a) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::span<B, N> span) { s.read(std::as_writable_bytes(span)); }
template <typename Stream, BasicByte B> void Unserialize(Stream& s, std::span<B> span) { s.read(std::as_writable_bytes(span)); }
template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
// clang-format on
@ -302,12 +337,14 @@ constexpr inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
else return sizeof(unsigned char) + sizeof(uint64_t);
}
inline void WriteCompactSize(SizeComputer& os, uint64_t nSize);
template<typename Stream>
void WriteCompactSize(Stream& os, uint64_t nSize)
{
if (nSize < 253)
if constexpr (ContainsSizeComputer<Stream>)
{
os.GetStream().seek(GetSizeOfCompactSize(nSize));
}
else if (nSize < 253)
{
ser_writedata8(os, nSize);
}
@ -414,7 +451,7 @@ struct CheckVarIntMode {
};
template<VarIntMode Mode, typename I>
inline unsigned int GetSizeOfVarInt(I n)
constexpr unsigned int GetSizeOfVarInt(I n)
{
CheckVarIntMode<Mode, I>();
int nRet = 0;
@ -427,12 +464,12 @@ inline unsigned int GetSizeOfVarInt(I n)
return nRet;
}
template<typename I>
inline void WriteVarInt(SizeComputer& os, I n);
template<typename Stream, VarIntMode Mode, typename I>
void WriteVarInt(Stream& os, I n)
{
if constexpr (ContainsSizeComputer<Stream>) {
os.GetStream().seek(GetSizeOfVarInt<Mode, I>(n));
} else {
CheckVarIntMode<Mode, I>();
unsigned char tmp[(sizeof(n)*8+6)/7];
int len=0;
@ -447,6 +484,7 @@ void WriteVarInt(Stream& os, I n)
ser_writedata8(os, tmp[len]);
} while(len--);
}
}
template<typename Stream, VarIntMode Mode, typename I>
I ReadVarInt(Stream& is)
@ -489,7 +527,7 @@ public:
* serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
* READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
*
* This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
* This works by constructing a Wrapper<Formatter, T&>-wrapped version of object, where T is
* const during serialization, and non-const during deserialization, which maintains const
* correctness.
*/
@ -534,12 +572,14 @@ struct CustomUintFormatter
template <typename Stream, typename I> void Ser(Stream& s, I v)
{
if (v < 0 || v > MAX) throw std::ios_base::failure("CustomUintFormatter value out of range");
if (BigEndian) {
if constexpr (ContainsSizeComputer<Stream>) {
s.GetStream().seek(Bytes);
} else if (BigEndian) {
uint64_t raw = htobe64_internal(v);
s.write(std::as_bytes(std::span{&raw, 1}).last(Bytes));
s.write(std::as_bytes(std::span{&raw, 1}).template last<Bytes>());
} else {
uint64_t raw = htole64_internal(v);
s.write(std::as_bytes(std::span{&raw, 1}).first(Bytes));
s.write(std::as_bytes(std::span{&raw, 1}).template first<Bytes>());
}
}
@ -549,10 +589,10 @@ struct CustomUintFormatter
static_assert(std::numeric_limits<U>::max() >= MAX && std::numeric_limits<U>::min() <= 0, "Assigned type too small");
uint64_t raw = 0;
if (BigEndian) {
s.read(std::as_writable_bytes(std::span{&raw, 1}).last(Bytes));
s.read(std::as_writable_bytes(std::span{&raw, 1}).last<Bytes>());
v = static_cast<I>(be64toh_internal(raw));
} else {
s.read(std::as_writable_bytes(std::span{&raw, 1}).first(Bytes));
s.read(std::as_writable_bytes(std::span{&raw, 1}).first<Bytes>());
v = static_cast<I>(le64toh_internal(raw));
}
}
@ -1065,10 +1105,17 @@ protected:
public:
SizeComputer() = default;
SizeComputer& GetStream() { return *this; }
const SizeComputer& GetStream() const { return *this; };
void write(std::span<const std::byte> src)
{
this->nSize += src.size();
}
void write(std::span<const std::byte, 1>)
{
this->nSize += 1;
}
/** Pretend _nSize bytes are written, without specifying them. */
void seek(size_t _nSize)
@ -1088,27 +1135,12 @@ public:
}
};
template<typename I>
inline void WriteVarInt(SizeComputer &s, I n)
{
s.seek(GetSizeOfVarInt<I>(n));
}
inline void WriteCompactSize(SizeComputer &s, uint64_t nSize)
{
s.seek(GetSizeOfCompactSize(nSize));
}
template <typename T>
size_t GetSerializeSize(const T& t)
{
return (SizeComputer() << t).size();
}
//! Check if type contains a stream by seeing if has a GetStream() method.
template<typename T>
concept ContainsStream = requires(T t) { t.GetStream(); };
/** Wrapper that overrides the GetParams() function of a stream. */
template <typename SubStream, typename Params>
class ParamsStream
@ -1133,7 +1165,9 @@ public:
template <typename U> ParamsStream& operator<<(const U& obj) { ::Serialize(*this, obj); return *this; }
template <typename U> ParamsStream& operator>>(U&& obj) { ::Unserialize(*this, obj); return *this; }
void write(std::span<const std::byte> src) { GetStream().write(src); }
void write(std::span<const std::byte, 1> src) { GetStream().write(src); }
void read(std::span<std::byte> dst) { GetStream().read(dst); }
void read(std::span<std::byte, 1> dst) { GetStream().read(dst); }
void ignore(size_t num) { GetStream().ignore(num); }
bool eof() const { return GetStream().eof(); }
size_t size() const { return GetStream().size(); }

View file

@ -9,8 +9,7 @@
#include <array>
AutoFile::AutoFile(std::FILE* file, std::vector<std::byte> data_xor)
: m_file{file}, m_xor{std::move(data_xor)}
AutoFile::AutoFile(std::FILE* file, const Obfuscation& obfuscation) : m_file{file}, m_obfuscation{obfuscation}
{
if (!IsNull()) {
auto pos{std::ftell(m_file)};
@ -21,12 +20,12 @@ AutoFile::AutoFile(std::FILE* file, std::vector<std::byte> data_xor)
std::size_t AutoFile::detail_fread(std::span<std::byte> dst)
{
if (!m_file) throw std::ios_base::failure("AutoFile::read: file handle is nullptr");
size_t ret = std::fread(dst.data(), 1, dst.size(), m_file);
if (!m_xor.empty()) {
if (!m_position.has_value()) throw std::ios_base::failure("AutoFile::read: position unknown");
util::Xor(dst.subspan(0, ret), m_xor, *m_position);
const size_t ret = std::fread(dst.data(), 1, dst.size(), m_file);
if (m_obfuscation) {
if (!m_position) throw std::ios_base::failure("AutoFile::read: position unknown");
m_obfuscation(dst, *m_position);
}
if (m_position.has_value()) *m_position += ret;
if (m_position) *m_position += ret;
return ret;
}
@ -63,6 +62,12 @@ void AutoFile::read(std::span<std::byte> dst)
throw std::ios_base::failure(feof() ? "AutoFile::read: end of file" : "AutoFile::read: fread failed");
}
}
void AutoFile::read(std::span<std::byte, 1> dst)
{
if (detail_fread(dst) != 1) {
throw std::ios_base::failure(feof() ? "AutoFile::read: end of file" : "AutoFile::read: fread failed");
}
}
void AutoFile::ignore(size_t nSize)
{
@ -81,7 +86,7 @@ void AutoFile::ignore(size_t nSize)
void AutoFile::write(std::span<const std::byte> src)
{
if (!m_file) throw std::ios_base::failure("AutoFile::write: file handle is nullptr");
if (m_xor.empty()) {
if (!m_obfuscation) {
if (std::fwrite(src.data(), 1, src.size(), m_file) != src.size()) {
throw std::ios_base::failure("AutoFile::write: write failed");
}
@ -96,13 +101,32 @@ void AutoFile::write(std::span<const std::byte> src)
}
}
}
void AutoFile::write(std::span<const std::byte, 1> src)
{
if (!m_file) throw std::ios_base::failure("AutoFile::write: file handle is nullptr");
if (!m_obfuscation) {
if (std::fwrite(src.data(), 1, 1, m_file) != 1) {
throw std::ios_base::failure("AutoFile::write: write failed");
}
if (m_position.has_value()) *m_position += 1;
} else {
if (!m_position.has_value()) throw std::ios_base::failure("AutoFile::write: position unknown");
std::byte temp_byte = src[0];
std::span val(&temp_byte, 1);
m_obfuscation(val, *m_position);
if (fwrite(val.data(), 1, 1, m_file) != 1) {
throw std::ios_base::failure{"XorFile::write: failed"};
}
*m_position += 1;
}
}
void AutoFile::write_buffer(std::span<std::byte> src)
{
if (!m_file) throw std::ios_base::failure("AutoFile::write_buffer: file handle is nullptr");
if (m_xor.size()) {
if (m_obfuscation) {
if (!m_position) throw std::ios_base::failure("AutoFile::write_buffer: obfuscation position unknown");
util::Xor(src, m_xor, *m_position); // obfuscate in-place
m_obfuscation(src, *m_position); // obfuscate in-place
}
if (std::fwrite(src.data(), 1, src.size(), m_file) != src.size()) {
throw std::ios_base::failure("AutoFile::write_buffer: write failed");

View file

@ -6,6 +6,7 @@
#ifndef BITCOIN_STREAMS_H
#define BITCOIN_STREAMS_H
#include <obfuscation.h>
#include <serialize.h>
#include <span.h>
#include <support/allocators/zeroafterfree.h>
@ -21,30 +22,8 @@
#include <stdint.h>
#include <string.h>
#include <string>
#include <utility>
#include <vector>
namespace util {
inline void Xor(std::span<std::byte> write, std::span<const std::byte> key, size_t key_offset = 0)
{
if (key.size() == 0) {
return;
}
key_offset %= key.size();
for (size_t i = 0, j = key_offset; i != write.size(); i++) {
write[i] ^= key[j++];
// This potentially acts on very many bytes of data, so it's
// important that we calculate `j`, i.e. the `key` index in this
// way instead of doing a %, which would effectively be a division
// for each byte Xor'd -- much slower than need be.
if (j == key.size())
j = 0;
}
}
} // namespace util
/* Minimal stream for overwriting and/or appending to an existing byte vector
*
* The referenced vector will grow as necessary
@ -83,6 +62,17 @@ public:
}
nPos += src.size();
}
void write(std::span<const std::byte, 1> src)
{
assert(nPos <= vchData.size());
const auto byte{*UCharCast(&src[0])};
if (nPos < vchData.size()) {
vchData[nPos] = byte;
} else {
vchData.push_back(byte);
}
nPos += 1;
}
template <typename T>
VectorWriter& operator<<(const T& obj)
{
@ -162,6 +152,7 @@ public:
typedef vector_type::reverse_iterator reverse_iterator;
explicit DataStream() = default;
explicit DataStream(size_type n) { reserve(n); }
explicit DataStream(std::span<const uint8_t> sp) : DataStream{std::as_bytes(sp)} {}
explicit DataStream(std::span<const value_type> sp) : vch(sp.data(), sp.data() + sp.size()) {}
@ -253,6 +244,10 @@ public:
// Write to the end of the buffer
vch.insert(vch.end(), src.begin(), src.end());
}
void write(std::span<const value_type, 1> src)
{
vch.push_back(src[0]);
}
template<typename T>
DataStream& operator<<(const T& obj)
@ -268,14 +263,9 @@ public:
return (*this);
}
/**
* XOR the contents of this stream with a certain key.
*
* @param[in] key The key used to XOR the data in this stream.
*/
void Xor(const std::vector<unsigned char>& key)
void Obfuscate(const Obfuscation& obfuscation)
{
util::Xor(MakeWritableByteSpan(*this), MakeByteSpan(key));
if (obfuscation) obfuscation(MakeWritableByteSpan(*this));
}
/** Compute total memory usage of this object (own memory + any dynamic memory). */
@ -392,11 +382,11 @@ class AutoFile
{
protected:
std::FILE* m_file;
std::vector<std::byte> m_xor;
Obfuscation m_obfuscation;
std::optional<int64_t> m_position;
public:
explicit AutoFile(std::FILE* file, std::vector<std::byte> data_xor={});
explicit AutoFile(std::FILE* file, const Obfuscation& obfuscation = 0);
~AutoFile() { fclose(); }
@ -428,7 +418,7 @@ public:
bool IsNull() const { return m_file == nullptr; }
/** Continue with a different XOR key */
void SetXor(std::vector<std::byte> data_xor) { m_xor = data_xor; }
void SetObfuscation(const Obfuscation& obfuscation) { m_obfuscation = obfuscation; }
/** Implementation detail, only used internally. */
std::size_t detail_fread(std::span<std::byte> dst);
@ -452,8 +442,10 @@ public:
// Stream subset
//
void read(std::span<std::byte> dst);
void read(std::span<std::byte, 1> dst);
void ignore(size_t nSize);
void write(std::span<const std::byte> src);
void write(std::span<const std::byte, 1> src);
template <typename T>
AutoFile& operator<<(const T& obj)

View file

@ -1079,7 +1079,7 @@ BOOST_AUTO_TEST_CASE(sha256d64)
in[j] = m_rng.randbits(8);
}
for (int j = 0; j < i; ++j) {
CHash256().Write({in + 64 * j, 64}).Finalize({out1 + 32 * j, 32});
CHash256().Write(std::span{in + 64 * j, 64}).Finalize({out1 + 32 * j, 32});
}
SHA256D64(out2, in, i);
BOOST_CHECK(memcmp(out1, out2, 32 * i) == 0);

View file

@ -14,16 +14,6 @@
using util::ToString;
// Test if a string consists entirely of null characters
static bool is_null_key(const std::vector<unsigned char>& key) {
bool isnull = true;
for (unsigned int i = 0; i < key.size(); i++)
isnull &= (key[i] == '\x00');
return isnull;
}
BOOST_FIXTURE_TEST_SUITE(dbwrapper_tests, BasicTestingSetup)
BOOST_AUTO_TEST_CASE(dbwrapper)
@ -37,7 +27,7 @@ BOOST_AUTO_TEST_CASE(dbwrapper)
uint256 res;
// Ensure that we're doing real obfuscation when obfuscate=true
BOOST_CHECK(obfuscate != is_null_key(dbwrapper_private::GetObfuscateKey(dbw)));
BOOST_CHECK(obfuscate == dbwrapper_private::GetObfuscation(dbw));
BOOST_CHECK(dbw.Write(key, in));
BOOST_CHECK(dbw.Read(key, res));
@ -57,7 +47,7 @@ BOOST_AUTO_TEST_CASE(dbwrapper_basic_data)
bool res_bool;
// Ensure that we're doing real obfuscation when obfuscate=true
BOOST_CHECK(obfuscate != is_null_key(dbwrapper_private::GetObfuscateKey(dbw)));
BOOST_CHECK(obfuscate == dbwrapper_private::GetObfuscation(dbw));
//Simulate block raw data - "b + block hash"
std::string key_block = "b" + m_rng.rand256().ToString();
@ -232,7 +222,7 @@ BOOST_AUTO_TEST_CASE(existing_data_no_obfuscate)
BOOST_CHECK_EQUAL(res2.ToString(), in.ToString());
BOOST_CHECK(!odbw.IsEmpty()); // There should be existing data
BOOST_CHECK(is_null_key(dbwrapper_private::GetObfuscateKey(odbw))); // The key should be an empty string
BOOST_CHECK(!dbwrapper_private::GetObfuscation(odbw));
uint256 in2 = m_rng.rand256();
uint256 res3;
@ -269,7 +259,7 @@ BOOST_AUTO_TEST_CASE(existing_data_reindex)
// Check that the key/val we wrote with unobfuscated wrapper doesn't exist
uint256 res2;
BOOST_CHECK(!odbw.Read(key, res2));
BOOST_CHECK(!is_null_key(dbwrapper_private::GetObfuscateKey(odbw)));
BOOST_CHECK(dbwrapper_private::GetObfuscation(odbw));
uint256 in2 = m_rng.rand256();
uint256 res3;

View file

@ -20,7 +20,7 @@ FUZZ_TARGET(autofile)
FuzzedFileProvider fuzzed_file_provider{fuzzed_data_provider};
AutoFile auto_file{
fuzzed_file_provider.open(),
ConsumeRandomLengthByteVector<std::byte>(fuzzed_data_provider),
fuzzed_data_provider.ConsumeIntegral<uint64_t>()
};
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 100)
{
@ -29,14 +29,14 @@ FUZZ_TARGET(autofile)
[&] {
std::array<std::byte, 4096> arr{};
try {
auto_file.read({arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
auto_file.read(std::span{arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
} catch (const std::ios_base::failure&) {
}
},
[&] {
const std::array<std::byte, 4096> arr{};
try {
auto_file.write({arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
auto_file.write(std::span{arr.data(), fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, 4096)});
} catch (const std::ios_base::failure&) {
}
},

View file

@ -22,7 +22,7 @@ FUZZ_TARGET(buffered_file)
std::optional<BufferedFile> opt_buffered_file;
AutoFile fuzzed_file{
fuzzed_file_provider.open(),
ConsumeRandomLengthByteVector<std::byte>(fuzzed_data_provider),
fuzzed_data_provider.ConsumeIntegral<uint64_t>()
};
try {
auto n_buf_size = fuzzed_data_provider.ConsumeIntegralInRange<uint64_t>(0, 4096);

View file

@ -119,7 +119,7 @@ FUZZ_TARGET(integer, .init = initialize_integer)
(void)MillisToTimeval(i64);
(void)SighashToStr(uch);
(void)SipHashUint256(u64, u64, u256);
(void)SipHashUint256Extra(u64, u64, u256, u32);
(void)Uint256ExtraSipHasher(u64, u64)(u256, u32);
(void)ToLower(ch);
(void)ToUpper(ch);
{
@ -236,10 +236,6 @@ FUZZ_TARGET(integer, .init = initialize_integer)
const uint16_t deserialized_u16 = ser_readdata16(stream);
assert(u16 == deserialized_u16 && stream.empty());
ser_writedata16be(stream, u16);
const uint16_t deserialized_u16be = ser_readdata16be(stream);
assert(u16 == deserialized_u16be && stream.empty());
ser_writedata8(stream, u8);
const uint8_t deserialized_u8 = ser_readdata8(stream);
assert(u8 == deserialized_u8 && stream.empty());

View file

@ -130,21 +130,21 @@ BOOST_AUTO_TEST_CASE(siphash)
ss << TX_WITH_WITNESS(tx);
BOOST_CHECK_EQUAL(SipHashUint256(1, 2, ss.GetHash()), 0x79751e980c2a0a35ULL);
// Check consistency between CSipHasher and SipHashUint256[Extra].
// Check consistency between CSipHasher and SipHashUint256 and Uint256ExtraSipHasher.
FastRandomContext ctx;
for (int i = 0; i < 16; ++i) {
uint64_t k0 = ctx.rand64();
uint64_t k1 = ctx.rand64();
uint64_t k2 = ctx.rand64();
uint256 x = m_rng.rand256();
uint32_t n = ctx.rand32();
uint8_t nb[4];
WriteLE32(nb, n);
CSipHasher sip256(k1, k2);
CSipHasher sip256(k0, k1);
sip256.Write(x);
CSipHasher sip288 = sip256;
sip288.Write(nb);
BOOST_CHECK_EQUAL(SipHashUint256(k1, k2, x), sip256.Finalize());
BOOST_CHECK_EQUAL(SipHashUint256Extra(k1, k2, x, n), sip288.Finalize());
BOOST_CHECK_EQUAL(SipHashUint256(k0, k1, x), sip256.Finalize());
BOOST_CHECK_EQUAL(Uint256ExtraSipHasher(k0, k1)(x, n), sip288.Finalize());
}
}

View file

@ -1158,6 +1158,91 @@ BOOST_AUTO_TEST_CASE(script_CHECKMULTISIG23)
BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_INVALID_STACK_OPERATION, ScriptErrorString(err));
}
BOOST_AUTO_TEST_CASE(script_size_and_capacity_test)
{
BOOST_CHECK_EQUAL(sizeof(prevector<34, uint8_t>), sizeof(prevector<36, uint8_t>));
BOOST_CHECK_EQUAL(sizeof(CScriptBase), 40);
BOOST_CHECK_EQUAL(sizeof(CScript), 40);
BOOST_CHECK_EQUAL(sizeof(CTxOut), 48);
CKey dummyKey;
dummyKey.MakeNewKey(true);
std::vector<std::vector<uint8_t>> dummyVSolutions;
// Small OP_RETURN is stack allocated
{
const auto scriptSmallOpReturn{CScript() << OP_RETURN << std::vector<uint8_t>(10, 0xaa)};
BOOST_CHECK_EQUAL(Solver(scriptSmallOpReturn, dummyVSolutions), TxoutType::NULL_DATA);
BOOST_CHECK_EQUAL(scriptSmallOpReturn.size(), 12);
BOOST_CHECK_EQUAL(scriptSmallOpReturn.capacity(), 36);
BOOST_CHECK_EQUAL(scriptSmallOpReturn.allocated_memory(), 0);
}
// P2WPKH is stack allocated
{
const auto scriptP2WPKH{GetScriptForDestination(WitnessV0KeyHash{PKHash{CKeyID{CPubKey{dummyKey.GetPubKey()}.GetID()}}})};
BOOST_CHECK_EQUAL(Solver(scriptP2WPKH, dummyVSolutions), TxoutType::WITNESS_V0_KEYHASH);
BOOST_CHECK_EQUAL(scriptP2WPKH.size(), 22);
BOOST_CHECK_EQUAL(scriptP2WPKH.capacity(), 36);
BOOST_CHECK_EQUAL(scriptP2WPKH.allocated_memory(), 0);
}
// P2SH is stack allocated
{
const auto scriptP2SH{GetScriptForDestination(ScriptHash{CScript{} << OP_TRUE})};
BOOST_CHECK(scriptP2SH.IsPayToScriptHash());
BOOST_CHECK_EQUAL(scriptP2SH.size(), 23);
BOOST_CHECK_EQUAL(scriptP2SH.capacity(), 36);
BOOST_CHECK_EQUAL(scriptP2SH.allocated_memory(), 0);
}
// P2PKH is stack allocated
{
const auto scriptP2PKH{GetScriptForDestination(PKHash{CKeyID{CPubKey{dummyKey.GetPubKey()}.GetID()}})};
BOOST_CHECK_EQUAL(Solver(scriptP2PKH, dummyVSolutions), TxoutType::PUBKEYHASH);
BOOST_CHECK_EQUAL(scriptP2PKH.size(), 25);
BOOST_CHECK_EQUAL(scriptP2PKH.capacity(), 36);
BOOST_CHECK_EQUAL(scriptP2PKH.allocated_memory(), 0);
}
// P2WSH is stack allocated
{
const auto scriptP2WSH{GetScriptForDestination(WitnessV0ScriptHash{CScript{} << OP_TRUE})};
BOOST_CHECK(scriptP2WSH.IsPayToWitnessScriptHash());
BOOST_CHECK_EQUAL(scriptP2WSH.size(), 34);
BOOST_CHECK_EQUAL(scriptP2WSH.capacity(), 36);
BOOST_CHECK_EQUAL(scriptP2WSH.allocated_memory(), 0);
}
// P2TR is stack allocated
{
const auto scriptTaproot{GetScriptForDestination(WitnessV1Taproot{XOnlyPubKey{CPubKey{dummyKey.GetPubKey()}}})};
BOOST_CHECK_EQUAL(Solver(scriptTaproot, dummyVSolutions), TxoutType::WITNESS_V1_TAPROOT);
BOOST_CHECK_EQUAL(scriptTaproot.size(), 34);
BOOST_CHECK_EQUAL(scriptTaproot.capacity(), 36);
BOOST_CHECK_EQUAL(scriptTaproot.allocated_memory(), 0);
}
// P2PK is stack allocated
{
const auto scriptPubKey{GetScriptForRawPubKey(CPubKey{dummyKey.GetPubKey()})};
BOOST_CHECK_EQUAL(Solver(scriptPubKey, dummyVSolutions), TxoutType::PUBKEY);
BOOST_CHECK_EQUAL(scriptPubKey.size(), 35);
BOOST_CHECK_EQUAL(scriptPubKey.capacity(), 36);
BOOST_CHECK_EQUAL(scriptPubKey.allocated_memory(), 0);
}
// MULTISIG is always heap allocated
{
const auto scriptMultisig{GetScriptForMultisig(1, std::vector{2, CPubKey{dummyKey.GetPubKey()}})};
BOOST_CHECK_EQUAL(Solver(scriptMultisig, dummyVSolutions), TxoutType::MULTISIG);
BOOST_CHECK_EQUAL(scriptMultisig.size(), 71);
BOOST_CHECK_EQUAL(scriptMultisig.capacity(), 103);
BOOST_CHECK_EQUAL(scriptMultisig.allocated_memory(), 103);
}
}
/* Wrapper around ProduceSignature to combine two scriptsigs */
SignatureData CombineSignatures(const CTxOut& txout, const CMutableTransaction& tx, const SignatureData& scriptSig1, const SignatureData& scriptSig2)
{

View file

@ -13,19 +13,129 @@
#include <boost/test/unit_test.hpp>
using namespace std::string_literals;
using namespace util::hex_literals;
BOOST_FIXTURE_TEST_SUITE(streams_tests, BasicTestingSetup)
// Test that obfuscation can be properly reversed even with random chunk sizes.
BOOST_AUTO_TEST_CASE(xor_roundtrip_random_chunks)
{
auto apply_random_xor_chunks{[&](std::span<std::byte> write, const Obfuscation& obfuscation) {
for (size_t offset{0}; offset < write.size();) {
const size_t chunk_size{1 + m_rng.randrange(write.size() - offset)};
obfuscation(write.subspan(offset, chunk_size), offset);
offset += chunk_size;
}
}};
for (size_t test{0}; test < 100; ++test) {
const size_t write_size{1 + m_rng.randrange(100U)};
const std::vector original{m_rng.randbytes<std::byte>(write_size)};
std::vector roundtrip{original};
const auto key_bytes{m_rng.randbytes<std::byte>(Obfuscation::SIZE_BYTES)};
const Obfuscation obfuscation{key_bytes};
apply_random_xor_chunks(roundtrip, obfuscation);
// Verify intermediate state is different from original (unless key is zero)
const bool all_zero = !obfuscation || (HexStr(key_bytes).find_first_not_of('0') >= write_size * 2);
BOOST_CHECK_EQUAL(original != roundtrip, !all_zero);
apply_random_xor_chunks(roundtrip, obfuscation);
BOOST_CHECK(original == roundtrip);
}
}
// Compares optimized obfuscation against a trivial byte-by-byte reference implementation
// with random offsets to ensure proper handling of key wrapping.
BOOST_AUTO_TEST_CASE(xor_bytes_reference)
{
auto expected_xor{[](std::span<std::byte> write, const std::span<const std::byte> key, size_t key_offset) {
for (auto& b : write) {
b ^= key[key_offset++ % key.size()];
}
}};
for (size_t test{0}; test < 100; ++test) {
const size_t write_size{1 + m_rng.randrange(100U)};
const size_t key_offset{m_rng.randrange(3 * 8U)}; // Should wrap around
const auto key_bytes{m_rng.randbytes<std::byte>(Obfuscation::SIZE_BYTES)};
const Obfuscation obfuscation{key_bytes};
std::vector expected{m_rng.randbytes<std::byte>(write_size)};
std::vector actual{expected};
expected_xor(expected, key_bytes, key_offset);
obfuscation(actual, key_offset);
BOOST_CHECK_EQUAL_COLLECTIONS(expected.begin(), expected.end(), actual.begin(), actual.end());
}
}
BOOST_AUTO_TEST_CASE(obfuscation_constructors)
{
constexpr uint64_t test_key = 0x0123456789ABCDEF;
// Direct uint64_t constructor
const Obfuscation obf1{test_key};
BOOST_CHECK_EQUAL(obf1.Key(), test_key);
// std::span constructor
std::array<std::byte, Obfuscation::SIZE_BYTES> key_bytes{};
std::memcpy(key_bytes.data(), &test_key, Obfuscation::SIZE_BYTES);
const Obfuscation obf2{std::span{key_bytes}};
BOOST_CHECK_EQUAL(obf2.Key(), test_key);
// std::vector<uint8_t> constructor
std::vector<uint8_t> uint8_key(Obfuscation::SIZE_BYTES);
std::memcpy(uint8_key.data(), &test_key, uint8_key.size());
const Obfuscation obf4{uint8_key};
BOOST_CHECK_EQUAL(obf4.Key(), test_key);
// std::vector<std::byte> constructor
std::vector<std::byte> byte_vector_key(Obfuscation::SIZE_BYTES);
std::memcpy(byte_vector_key.data(), &test_key, byte_vector_key.size());
const Obfuscation obf5{byte_vector_key};
BOOST_CHECK_EQUAL(obf5.Key(), test_key);
}
BOOST_AUTO_TEST_CASE(obfuscation_serialize)
{
const Obfuscation original{0xDEADBEEF};
// Serialize
DataStream ds;
ds << original;
BOOST_CHECK_EQUAL(ds.size(), 1 + Obfuscation::SIZE_BYTES); // serialized as a vector
// Deserialize
Obfuscation recovered{0};
ds >> recovered;
BOOST_CHECK_EQUAL(recovered.Key(), original.Key());
}
BOOST_AUTO_TEST_CASE(obfuscation_empty)
{
const Obfuscation null_obf{0};
BOOST_CHECK(!null_obf);
}
BOOST_AUTO_TEST_CASE(xor_file)
{
fs::path xor_path{m_args.GetDataDirBase() / "test_xor.bin"};
auto raw_file{[&](const auto& mode) { return fsbridge::fopen(xor_path, mode); }};
const std::vector<uint8_t> test1{1, 2, 3};
const std::vector<uint8_t> test2{4, 5};
const std::vector<std::byte> xor_pat{std::byte{0xff}, std::byte{0x00}};
auto key_bytes{"ff00ff00ff00ff00"_hex_v};
uint64_t xor_key;
std::memcpy(&xor_key, key_bytes.data(), sizeof(xor_key));
{
// Check errors for missing file
AutoFile xor_file{raw_file("rb"), xor_pat};
AutoFile xor_file{raw_file("rb"), key_bytes};
BOOST_CHECK_EXCEPTION(xor_file << std::byte{}, std::ios_base::failure, HasReason{"AutoFile::write: file handle is nullpt"});
BOOST_CHECK_EXCEPTION(xor_file >> std::byte{}, std::ios_base::failure, HasReason{"AutoFile::read: file handle is nullpt"});
BOOST_CHECK_EXCEPTION(xor_file.ignore(1), std::ios_base::failure, HasReason{"AutoFile::ignore: file handle is nullpt"});
@ -37,7 +147,7 @@ BOOST_AUTO_TEST_CASE(xor_file)
#else
const char* mode = "wbx";
#endif
AutoFile xor_file{raw_file(mode), xor_pat};
AutoFile xor_file{raw_file(mode), xor_key};
xor_file << test1 << test2;
}
{
@ -50,7 +160,7 @@ BOOST_AUTO_TEST_CASE(xor_file)
BOOST_CHECK_EXCEPTION(non_xor_file.ignore(1), std::ios_base::failure, HasReason{"AutoFile::ignore: end of file"});
}
{
AutoFile xor_file{raw_file("rb"), xor_pat};
AutoFile xor_file{raw_file("rb"), xor_key};
std::vector<std::byte> read1, read2;
xor_file >> read1 >> read2;
BOOST_CHECK_EQUAL(HexStr(read1), HexStr(test1));
@ -59,7 +169,7 @@ BOOST_AUTO_TEST_CASE(xor_file)
BOOST_CHECK_EXCEPTION(xor_file >> std::byte{}, std::ios_base::failure, HasReason{"AutoFile::read: end of file"});
}
{
AutoFile xor_file{raw_file("rb"), xor_pat};
AutoFile xor_file{raw_file("rb"), xor_key};
std::vector<std::byte> read2;
// Check that ignore works
xor_file.ignore(4);
@ -227,29 +337,30 @@ BOOST_AUTO_TEST_CASE(streams_serializedata_xor)
// Degenerate case
{
DataStream ds{in};
ds.Xor({0x00, 0x00});
Obfuscation{0}(ds);
BOOST_CHECK_EQUAL(""s, ds.str());
}
in.push_back(std::byte{0x0f});
in.push_back(std::byte{0xf0});
// Single character key
{
const Obfuscation obfuscation{"ffffffffffffffff"_hex_v};
DataStream ds{in};
ds.Xor({0xff});
obfuscation(ds);
BOOST_CHECK_EQUAL("\xf0\x0f"s, ds.str());
}
// Multi character key
in.clear();
in.push_back(std::byte{0xf0});
in.push_back(std::byte{0x0f});
{
const Obfuscation obfuscation{"ff0fff0fff0fff0f"_hex_v};
DataStream ds{in};
ds.Xor({0xff, 0x0f});
obfuscation(ds);
BOOST_CHECK_EQUAL("\x0f\x00"s, ds.str());
}
}

View file

@ -406,20 +406,110 @@ BOOST_AUTO_TEST_CASE(tx_oversized)
}
}
BOOST_AUTO_TEST_CASE(basic_transaction_tests)
static CMutableTransaction CreateTransaction()
{
// Random real transaction (e2769b09e784f32f62ef849763d4f45b98e07ba658647343b915ff832b110436)
unsigned char ch[] = {0x01, 0x00, 0x00, 0x00, 0x01, 0x6b, 0xff, 0x7f, 0xcd, 0x4f, 0x85, 0x65, 0xef, 0x40, 0x6d, 0xd5, 0xd6, 0x3d, 0x4f, 0xf9, 0x4f, 0x31, 0x8f, 0xe8, 0x20, 0x27, 0xfd, 0x4d, 0xc4, 0x51, 0xb0, 0x44, 0x74, 0x01, 0x9f, 0x74, 0xb4, 0x00, 0x00, 0x00, 0x00, 0x8c, 0x49, 0x30, 0x46, 0x02, 0x21, 0x00, 0xda, 0x0d, 0xc6, 0xae, 0xce, 0xfe, 0x1e, 0x06, 0xef, 0xdf, 0x05, 0x77, 0x37, 0x57, 0xde, 0xb1, 0x68, 0x82, 0x09, 0x30, 0xe3, 0xb0, 0xd0, 0x3f, 0x46, 0xf5, 0xfc, 0xf1, 0x50, 0xbf, 0x99, 0x0c, 0x02, 0x21, 0x00, 0xd2, 0x5b, 0x5c, 0x87, 0x04, 0x00, 0x76, 0xe4, 0xf2, 0x53, 0xf8, 0x26, 0x2e, 0x76, 0x3e, 0x2d, 0xd5, 0x1e, 0x7f, 0xf0, 0xbe, 0x15, 0x77, 0x27, 0xc4, 0xbc, 0x42, 0x80, 0x7f, 0x17, 0xbd, 0x39, 0x01, 0x41, 0x04, 0xe6, 0xc2, 0x6e, 0xf6, 0x7d, 0xc6, 0x10, 0xd2, 0xcd, 0x19, 0x24, 0x84, 0x78, 0x9a, 0x6c, 0xf9, 0xae, 0xa9, 0x93, 0x0b, 0x94, 0x4b, 0x7e, 0x2d, 0xb5, 0x34, 0x2b, 0x9d, 0x9e, 0x5b, 0x9f, 0xf7, 0x9a, 0xff, 0x9a, 0x2e, 0xe1, 0x97, 0x8d, 0xd7, 0xfd, 0x01, 0xdf, 0xc5, 0x22, 0xee, 0x02, 0x28, 0x3d, 0x3b, 0x06, 0xa9, 0xd0, 0x3a, 0xcf, 0x80, 0x96, 0x96, 0x8d, 0x7d, 0xbb, 0x0f, 0x91, 0x78, 0xff, 0xff, 0xff, 0xff, 0x02, 0x8b, 0xa7, 0x94, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xba, 0xde, 0xec, 0xfd, 0xef, 0x05, 0x07, 0x24, 0x7f, 0xc8, 0xf7, 0x42, 0x41, 0xd7, 0x3b, 0xc0, 0x39, 0x97, 0x2d, 0x7b, 0x88, 0xac, 0x40, 0x94, 0xa8, 0x02, 0x00, 0x00, 0x00, 0x00, 0x19, 0x76, 0xa9, 0x14, 0xc1, 0x09, 0x32, 0x48, 0x3f, 0xec, 0x93, 0xed, 0x51, 0xf5, 0xfe, 0x95, 0xe7, 0x25, 0x59, 0xf2, 0xcc, 0x70, 0x43, 0xf9, 0x88, 0xac, 0x00, 0x00, 0x00, 0x00, 0x00};
std::vector<unsigned char> vch(ch, ch + sizeof(ch) -1);
DataStream stream(vch);
// Serialized random real transaction (e2769b09e784f32f62ef849763d4f45b98e07ba658647343b915ff832b110436)
static constexpr auto ser_tx{"01000000016bff7fcd4f8565ef406dd5d63d4ff94f318fe82027fd4dc451b04474019f74b4000000008c493046022100da0dc6aecefe1e06efdf05773757deb168820930e3b0d03f46f5fcf150bf990c022100d25b5c87040076e4f253f8262e763e2dd51e7ff0be157727c4bc42807f17bd39014104e6c26ef67dc610d2cd192484789a6cf9aea9930b944b7e2db5342b9d9e5b9ff79aff9a2ee1978dd7fd01dfc522ee02283d3b06a9d03acf8096968d7dbb0f9178ffffffff028ba7940e000000001976a914badeecfdef0507247fc8f74241d73bc039972d7b88ac4094a802000000001976a914c10932483fec93ed51f5fe95e72559f2cc7043f988ac0000000000"_hex};
CMutableTransaction tx;
stream >> TX_WITH_WITNESS(tx);
DataStream(ser_tx) >> TX_WITH_WITNESS(tx);
return tx;
}
BOOST_AUTO_TEST_CASE(transaction_duplicate_input_test)
{
auto tx{CreateTransaction()};
TxValidationState state;
BOOST_CHECK_MESSAGE(CheckTransaction(CTransaction(tx), state) && state.IsValid(), "Simple deserialized transaction should be valid.");
// Check that duplicate txins fail
tx.vin.push_back(tx.vin[0]);
BOOST_CHECK_MESSAGE(!CheckTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with duplicate txins should be invalid.");
// Add duplicate input
tx.vin.emplace_back(tx.vin[0]);
std::ranges::shuffle(tx.vin, m_rng);
BOOST_CHECK_MESSAGE(!CheckTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with 2 duplicate txins should be invalid.");
// ... add a valid input for more complex check
tx.vin.emplace_back(COutPoint(Txid::FromUint256(uint256{1}), 1));
std::ranges::shuffle(tx.vin, m_rng);
BOOST_CHECK_MESSAGE(!CheckTransaction(CTransaction(tx), state) || !state.IsValid(), "Transaction with 3 inputs (2 valid, 1 duplicate) should be invalid.");
}
BOOST_AUTO_TEST_CASE(transaction_duplicate_detection_test)
{
// Randomized testing against hash- and tree-based duplicate check
auto reference_duplicate_check_hash{[](const std::vector<CTxIn>& vin) {
std::unordered_set<COutPoint, SaltedOutpointHasher> vInOutPoints;
for (const auto& txin : vin) {
if (!vInOutPoints.insert(txin.prevout).second) {
return false;
}
}
return true;
}};
auto reference_duplicate_check_tree{[](const std::vector<CTxIn>& vin) {
std::set<COutPoint> vInOutPoints;
for (const auto& txin : vin) {
if (!vInOutPoints.insert(txin.prevout).second) {
return false;
}
}
return true;
}};
std::vector<Txid> hashes;
std::vector<uint32_t> ns;
for (int i = 0; i < 10; ++i) {
hashes.emplace_back(Txid::FromUint256(m_rng.rand256()));
ns.emplace_back(m_rng.rand32());
}
auto tx{CreateTransaction()};
TxValidationState state;
for (int i{0}; i < 100; ++i) {
if (m_rng.randbool()) {
tx.vin.clear();
}
for (int j{0}, num_inputs{1 + m_rng.randrange(5)}; j < num_inputs; ++j) {
if (COutPoint outpoint(hashes[m_rng.randrange(hashes.size())], ns[m_rng.randrange(ns.size())]); !outpoint.IsNull()) {
tx.vin.emplace_back(outpoint);
}
}
std::ranges::shuffle(tx.vin, m_rng);
bool actual{CheckTransaction(CTransaction(tx), state)};
BOOST_CHECK_EQUAL(actual, reference_duplicate_check_hash(tx.vin));
BOOST_CHECK_EQUAL(actual, reference_duplicate_check_tree(tx.vin));
}
}
BOOST_AUTO_TEST_CASE(transaction_null_prevout_detection_test)
{
// Randomized testing against linear null prevout check
auto reference_null_prevout_check_hash{[](const std::vector<CTxIn>& vin) {
for (const auto& txin : vin) {
if (txin.prevout.IsNull()) {
return false;
}
}
return true;
}};
auto tx{CreateTransaction()};
TxValidationState state;
for (int i{0}; i < 100; ++i) {
if (m_rng.randbool()) {
tx.vin.clear();
}
for (int j{0}, num_inputs{1 + m_rng.randrange(5)}; j < num_inputs; ++j) {
switch (m_rng.randrange(5)) {
case 0: tx.vin.emplace_back(COutPoint()); break; // Null prevout
case 1: tx.vin.emplace_back(Txid::FromUint256(uint256::ZERO), m_rng.rand32()); break; // Null hash, random index
case 2: tx.vin.emplace_back(Txid::FromUint256(m_rng.rand256()), COutPoint::NULL_INDEX); break; // Random hash, Null index
default: tx.vin.emplace_back(Txid::FromUint256(m_rng.rand256()), m_rng.rand32()); // Random prevout
}
}
std::ranges::shuffle(tx.vin, m_rng);
BOOST_CHECK_EQUAL(CheckTransaction(CTransaction(tx), state), reference_null_prevout_check_hash(tx.vin));
}
}
BOOST_AUTO_TEST_CASE(test_Get)
@ -1048,4 +1138,116 @@ BOOST_AUTO_TEST_CASE(test_IsStandard)
CheckIsNotStandard(t, "dust");
}
BOOST_AUTO_TEST_CASE(test_uint256_sorting)
{
// Sorting
std::vector original{
uint256{1},
uint256{2},
uint256{3}
};
std::vector shuffled{original};
std::ranges::shuffle(shuffled, m_rng);
std::sort(shuffled.begin(), shuffled.end());
BOOST_CHECK_EQUAL_COLLECTIONS(original.begin(), original.end(), shuffled.begin(), shuffled.end());
// Operators
constexpr auto a{uint256{1}},
b{uint256{2}},
c{uint256{3}};
BOOST_CHECK(a == a);
BOOST_CHECK(a == uint256{1});
BOOST_CHECK(b == b);
BOOST_CHECK(c == c);
BOOST_CHECK(a != b);
BOOST_CHECK(a != uint256{10});
BOOST_CHECK(a != c);
BOOST_CHECK(b != c);
BOOST_CHECK(a < b);
BOOST_CHECK(a < uint256{10});
BOOST_CHECK(b < c);
BOOST_CHECK(a < c);
}
BOOST_AUTO_TEST_CASE(test_transaction_identifier_sorting)
{
std::vector original{
Txid::FromUint256(uint256{1}),
Txid::FromUint256(uint256{2}),
Txid::FromUint256(uint256{3})
};
std::vector shuffled{original};
std::ranges::shuffle(shuffled, m_rng);
std::sort(shuffled.begin(), shuffled.end());
BOOST_CHECK_EQUAL_COLLECTIONS(original.begin(), original.end(), shuffled.begin(), shuffled.end());
// Operators
const auto a(Txid::FromUint256(uint256{1})),
b(Txid::FromUint256(uint256{2})),
c(Txid::FromUint256(uint256{3}));
BOOST_CHECK(a == uint256{1});
BOOST_CHECK(a == a);
BOOST_CHECK(a == Txid::FromUint256(uint256{1}));
BOOST_CHECK(b == b);
BOOST_CHECK(c == c);
BOOST_CHECK(a != b);
BOOST_CHECK(a != Txid::FromUint256(uint256{10}));
BOOST_CHECK(a != c);
BOOST_CHECK(b != c);
BOOST_CHECK(a < b);
BOOST_CHECK(a < Txid::FromUint256(uint256{10}));
BOOST_CHECK(b < c);
BOOST_CHECK(a < c);
}
BOOST_AUTO_TEST_CASE(test_coutpoint_sorting)
{
// Sorting
std::vector original{
COutPoint(Txid::FromUint256(uint256{1}), 1),
COutPoint(Txid::FromUint256(uint256{1}), 2),
COutPoint(Txid::FromUint256(uint256{1}), 3),
COutPoint(Txid::FromUint256(uint256{2}), 1),
COutPoint(Txid::FromUint256(uint256{2}), 2),
COutPoint(Txid::FromUint256(uint256{2}), 3),
COutPoint(Txid::FromUint256(uint256{3}), 1),
COutPoint(Txid::FromUint256(uint256{3}), 2),
COutPoint(Txid::FromUint256(uint256{3}), 3)
};
std::vector shuffled{original};
std::ranges::shuffle(shuffled, m_rng);
std::sort(shuffled.begin(), shuffled.end());
BOOST_CHECK_EQUAL_COLLECTIONS(original.begin(), original.end(), shuffled.begin(), shuffled.end());
// Operators
const auto a{COutPoint(Txid::FromUint256(uint256{1}), 1)},
b{COutPoint(Txid::FromUint256(uint256{1}), 2)},
c{COutPoint(Txid::FromUint256(uint256{2}), 1)};
BOOST_CHECK(a == a);
BOOST_CHECK(a == COutPoint(Txid::FromUint256(uint256{1}), 1));
BOOST_CHECK(b == b);
BOOST_CHECK(c == c);
BOOST_CHECK(a != b);
BOOST_CHECK(a != COutPoint(Txid::FromUint256(uint256{1}), 10));
BOOST_CHECK(a != c);
BOOST_CHECK(b != c);
BOOST_CHECK(a < b);
BOOST_CHECK(a < COutPoint(Txid::FromUint256(uint256{1}), 10));
BOOST_CHECK(b < c);
BOOST_CHECK(a < c);
}
BOOST_AUTO_TEST_SUITE_END()

View file

@ -629,3 +629,8 @@ std::ostream& operator<<(std::ostream& os, const uint256& num)
{
return os << num.ToString();
}
std::ostream& operator<<(std::ostream& os, const COutPoint& outpoint)
{
return os << outpoint.hash << ", " << outpoint.n;
}

View file

@ -291,6 +291,7 @@ inline std::ostream& operator<<(std::ostream& os, const std::optional<T>& v)
std::ostream& operator<<(std::ostream& os, const arith_uint256& num);
std::ostream& operator<<(std::ostream& os, const uint160& num);
std::ostream& operator<<(std::ostream& os, const uint256& num);
std::ostream& operator<<(std::ostream& os, const COutPoint& outpoint);
// @}
/**

View file

@ -26,10 +26,8 @@ BOOST_AUTO_TEST_CASE(getcoinscachesizestate)
LOCK(::cs_main);
auto& view = chainstate.CoinsTip();
// The number of bytes consumed by coin's heap data, i.e. CScript
// (prevector<28, unsigned char>) when assigned 56 bytes of data per above.
//
// See also: Coin::DynamicMemoryUsage().
// The number of bytes consumed by coin's heap data, i.e. CScript (prevector<36, unsigned char>)
// when assigned 56 bytes of data per above. See also: Coin::DynamicMemoryUsage().
constexpr unsigned int COIN_SIZE = is_64_bit ? 80 : 64;
auto print_view_mem_usage = [](CCoinsViewCache& view) {

View file

@ -11,9 +11,9 @@ SaltedTxidHasher::SaltedTxidHasher() :
k0{FastRandomContext().rand64()},
k1{FastRandomContext().rand64()} {}
SaltedOutpointHasher::SaltedOutpointHasher(bool deterministic) :
k0{deterministic ? 0x8e819f2607a18de6 : FastRandomContext().rand64()},
k1{deterministic ? 0xf4020d2e3983b0eb : FastRandomContext().rand64()}
SaltedOutpointHasher::SaltedOutpointHasher(bool deterministic) : hasher{
deterministic ? 0x8e819f2607a18de6 : FastRandomContext().rand64(),
deterministic ? 0xf4020d2e3983b0eb : FastRandomContext().rand64()}
{}
SaltedSipHasher::SaltedSipHasher() :

View file

@ -30,12 +30,10 @@ public:
class SaltedOutpointHasher
{
private:
/** Salt */
const uint64_t k0, k1;
const Uint256ExtraSipHasher hasher;
public:
SaltedOutpointHasher(bool deterministic = false);
explicit SaltedOutpointHasher(bool deterministic = false);
/**
* Having the hash noexcept allows libstdc++'s unordered_map to recalculate
@ -47,7 +45,7 @@ public:
* @see https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++/manual/manual/unordered_associative.html
*/
size_t operator()(const COutPoint& id) const noexcept {
return SipHashUint256Extra(k0, k1, id.hash, id.n);
return hasher(id.hash, id.n);
}
};