mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-25 18:53:23 -03:00
Field 5x64
This commit is contained in:
parent
561b0e1044
commit
1487ca95c6
4 changed files with 321 additions and 0 deletions
|
@ -22,6 +22,8 @@
|
|||
#include "field_10x26.h"
|
||||
#elif defined(USE_FIELD_5X52)
|
||||
#include "field_5x52.h"
|
||||
#elif defined(USE_FIELD_5X64)
|
||||
#include "field_5x64.h"
|
||||
#else
|
||||
#error "Please select field implementation"
|
||||
#endif
|
||||
|
|
19
src/field_5x64.h
Normal file
19
src/field_5x64.h
Normal file
|
@ -0,0 +1,19 @@
|
|||
// Copyright (c) 2013 Pieter Wuille
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef _SECP256K1_FIELD_REPR_
|
||||
#define _SECP256K1_FIELD_REPR_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
typedef struct {
|
||||
// X = sum(i=0..4, elem[i]*2^64) mod n
|
||||
uint64_t n[5];
|
||||
#ifdef VERIFY
|
||||
int reduced; // n[4] == 0
|
||||
int normalized; // reduced and X < 2^256 - 0x100003D1
|
||||
#endif
|
||||
} secp256k1_fe_t;
|
||||
|
||||
#endif
|
|
@ -11,6 +11,8 @@
|
|||
#include "field_10x26.h"
|
||||
#elif defined(USE_FIELD_5X52)
|
||||
#include "field_5x52.h"
|
||||
#elif defined(USE_FIELD_5X64)
|
||||
#include "field_5x64.h"
|
||||
#else
|
||||
#error "Please select field implementation"
|
||||
#endif
|
||||
|
|
298
src/impl/field_5x64.h
Normal file
298
src/impl/field_5x64.h
Normal file
|
@ -0,0 +1,298 @@
|
|||
// Copyright (c) 2013 Pieter Wuille
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
|
||||
#define _SECP256K1_FIELD_REPR_IMPL_H_
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include "../num.h"
|
||||
#include "../field.h"
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
||||
* represented as 4 uint64_t's in base 2^64, and one overflow uint64_t.
|
||||
*/
|
||||
|
||||
#define FULL_LIMB (0xFFFFFFFFFFFFFFFFULL)
|
||||
#define LAST_LIMB (0xFFFFFFFEFFFFFC2FULL)
|
||||
#define COMP_LIMB (0x00000001000003D1ULL)
|
||||
|
||||
void static secp256k1_fe_inner_start(void) {}
|
||||
void static secp256k1_fe_inner_stop(void) {}
|
||||
|
||||
void static secp256k1_fe_reduce(secp256k1_fe_t *r) {
|
||||
unsigned __int128 c = (unsigned __int128)r->n[4] * COMP_LIMB + r->n[0];
|
||||
uint64_t n0 = c;
|
||||
c = (c >> 64) + r->n[1];
|
||||
uint64_t n1 = c;
|
||||
c = (c >> 64) + r->n[2];
|
||||
r->n[2] = c;
|
||||
c = (c >> 64) + r->n[3];
|
||||
r->n[3] = c;
|
||||
c = (c >> 64) * COMP_LIMB + n0;
|
||||
r->n[0] = c;
|
||||
r->n[1] = n1 + (c >> 64);
|
||||
assert(r->n[1] >= n1);
|
||||
r->n[4] = 0;
|
||||
#ifdef VERIFY
|
||||
r->reduced = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
void static secp256k1_fe_normalize(secp256k1_fe_t *r) {
|
||||
secp256k1_fe_reduce(r);
|
||||
|
||||
// Subtract p if result >= p
|
||||
uint64_t mask = -(int64_t)((r->n[0] < LAST_LIMB) | (r->n[1] != ~0ULL) | (r->n[2] != ~0ULL) | (r->n[3] != ~0ULL));
|
||||
r->n[0] -= (~mask & LAST_LIMB);
|
||||
r->n[1] &= mask;
|
||||
r->n[2] &= mask;
|
||||
r->n[3] &= mask;
|
||||
assert(r->n[4] == 0);
|
||||
|
||||
#ifdef VERIFY
|
||||
r->normalized = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
|
||||
r->n[0] = a;
|
||||
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->reduced = 1;
|
||||
r->normalized = 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO: not constant time!
|
||||
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
|
||||
#ifdef VERIFY
|
||||
assert(a->normalized);
|
||||
#endif
|
||||
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0);
|
||||
}
|
||||
|
||||
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
|
||||
#ifdef VERIFY
|
||||
assert(a->normalized);
|
||||
#endif
|
||||
return a->n[0] & 1;
|
||||
}
|
||||
|
||||
// TODO: not constant time!
|
||||
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
|
||||
#ifdef VERIFY
|
||||
assert(a->normalized);
|
||||
assert(b->normalized);
|
||||
#endif
|
||||
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3]);
|
||||
}
|
||||
|
||||
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
|
||||
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
||||
for (int i=0; i<32; i++) {
|
||||
r->n[i/8] |= (uint64_t)a[31-i] << (i&7)*8;
|
||||
}
|
||||
#ifdef VERIFY
|
||||
r->reduced = 1;
|
||||
r->normalized = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
||||
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
|
||||
#ifdef VERIFY
|
||||
assert(a->normalized);
|
||||
#endif
|
||||
for (int i=0; i<32; i++) {
|
||||
r[31-i] = a->n[i/8] >> ((i&7)*8);
|
||||
}
|
||||
}
|
||||
|
||||
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *ac, int m) {
|
||||
secp256k1_fe_t a = *ac;
|
||||
secp256k1_fe_reduce(&a);
|
||||
unsigned __int128 c = (unsigned __int128)(~a.n[0]) + LAST_LIMB + 1;
|
||||
r->n[0] = c;
|
||||
c = (c >> 64) + (~a.n[1]) + FULL_LIMB;
|
||||
r->n[1] = c;
|
||||
c = (c >> 64) + (~a.n[2]) + FULL_LIMB;
|
||||
r->n[2] = c;
|
||||
c = (c >> 64) + (~a.n[3]) + FULL_LIMB;
|
||||
r->n[3] = c;
|
||||
r->n[4] = 0;
|
||||
#ifdef VERIFY
|
||||
r->reduced = 1;
|
||||
r->normalized = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
|
||||
#ifdef VERIFY
|
||||
r->reduced = 0;
|
||||
r->normalized = 0;
|
||||
#endif
|
||||
unsigned __int128 c = (unsigned __int128)r->n[0] * a;
|
||||
r->n[0] = c;
|
||||
c = (c >> 64) + (unsigned __int128)r->n[1] * a;
|
||||
r->n[1] = c;
|
||||
c = (c >> 64) + (unsigned __int128)r->n[2] * a;
|
||||
r->n[2] = c;
|
||||
c = (c >> 64) + (unsigned __int128)r->n[3] * a;
|
||||
r->n[3] = c;
|
||||
c = (c >> 64) + (unsigned __int128)r->n[4] * a;
|
||||
r->n[4] = c;
|
||||
}
|
||||
|
||||
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
#ifdef VERIFY
|
||||
r->reduced = 0;
|
||||
r->normalized = 0;
|
||||
#endif
|
||||
unsigned __int128 c = (unsigned __int128)r->n[0] + a->n[0];
|
||||
r->n[0] = c;
|
||||
c = (unsigned __int128)r->n[1] + a->n[1] + (c >> 64);
|
||||
r->n[1] = c;
|
||||
c = (unsigned __int128)r->n[2] + a->n[2] + (c >> 64);
|
||||
r->n[2] = c;
|
||||
c = (unsigned __int128)r->n[3] + a->n[3] + (c >> 64);
|
||||
r->n[3] = c;
|
||||
c = (unsigned __int128)r->n[4] + a->n[4] + (c >> 64);
|
||||
r->n[4] = c;
|
||||
assert((c >> 64) == 0);
|
||||
}
|
||||
|
||||
#define muladd_c3(a,b,c0,c1,c2) { \
|
||||
unsigned __int128 q1 = ((unsigned __int128)(a)) * (b) + (c0); \
|
||||
(c0) = q1; \
|
||||
unsigned __int128 q2 = (q1 >> 64) + (c1) + (((unsigned __int128)(c2)) << 64); \
|
||||
(c1) = q2; \
|
||||
(c2) = q2 >> 64; \
|
||||
}
|
||||
|
||||
/*#define muladd_c3(a,b,c0,c1,c2) { \
|
||||
unsigned __int128 q = (unsigned __int128)(a) * (b) + (c0); \
|
||||
(c0) = q; \
|
||||
(c1) += (q >> 64); \
|
||||
(c2) += ((c1) < (q >> 64))?1:0; \
|
||||
}*/
|
||||
|
||||
#define muladd2_c3(a,b,c0,c1,c2) { \
|
||||
unsigned __int128 q = (unsigned __int128)(a) * (b); \
|
||||
uint64_t t1 = (q >> 64); \
|
||||
uint64_t t0 = q; \
|
||||
uint64_t t2 = t1+t1; (c2) += (t2<t1)?1:0; \
|
||||
t1 = t0+t0; t2 += (t1<t0)?1:0; \
|
||||
(c0) += t1; t2 += ((c0)<t1)?1:0; \
|
||||
(c1) += t2; (c2) += ((c1)<t2)?1:0; \
|
||||
}
|
||||
|
||||
/*#define muladd2_c3(a,b,c0,c1,c2) { \
|
||||
muladd_c3(a,b,c0,c1,c2); \
|
||||
muladd_c3(a,b,c0,c1,c2); \
|
||||
}*/
|
||||
|
||||
#define mul_c2(a,b,c0,c1) { \
|
||||
unsigned __int128 q = (unsigned __int128)(a) * (b); \
|
||||
(c0) = q; \
|
||||
(c1) = (q >> 64); \
|
||||
}
|
||||
|
||||
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *ac, const secp256k1_fe_t *bc) {
|
||||
secp256k1_fe_t a = *ac, b = *bc;
|
||||
secp256k1_fe_reduce(&a);
|
||||
secp256k1_fe_reduce(&b);
|
||||
uint64_t c1,c2,c3;
|
||||
c3=0;
|
||||
mul_c2(a.n[0], b.n[0], c1, c2);
|
||||
uint64_t r0 = c1; c1 = 0;
|
||||
muladd_c3(a.n[0], b.n[1], c2, c3, c1);
|
||||
muladd_c3(a.n[1], b.n[0], c2, c3, c1);
|
||||
uint64_t r1 = c2; c2 = 0;
|
||||
muladd_c3(a.n[2], b.n[0], c3, c1, c2);
|
||||
muladd_c3(a.n[1], b.n[1], c3, c1, c2);
|
||||
muladd_c3(a.n[0], b.n[2], c3, c1, c2);
|
||||
uint64_t r2 = c3; c3 = 0;
|
||||
muladd_c3(a.n[0], b.n[3], c1, c2, c3);
|
||||
muladd_c3(a.n[1], b.n[2], c1, c2, c3);
|
||||
muladd_c3(a.n[2], b.n[1], c1, c2, c3);
|
||||
muladd_c3(a.n[3], b.n[0], c1, c2, c3);
|
||||
uint64_t r3 = c1; c1 = 0;
|
||||
muladd_c3(a.n[3], b.n[1], c2, c3, c1);
|
||||
muladd_c3(a.n[2], b.n[2], c2, c3, c1);
|
||||
muladd_c3(a.n[1], b.n[3], c2, c3, c1);
|
||||
uint64_t r4 = c2; c2 = 0;
|
||||
muladd_c3(a.n[2], b.n[3], c3, c1, c2);
|
||||
muladd_c3(a.n[3], b.n[2], c3, c1, c2);
|
||||
uint64_t r5 = c3; c3 = 0;
|
||||
muladd_c3(a.n[3], b.n[3], c1, c2, c3);
|
||||
uint64_t r6 = c1;
|
||||
uint64_t r7 = c2;
|
||||
assert(c3 == 0);
|
||||
unsigned __int128 c = (unsigned __int128)r4 * COMP_LIMB + r0;
|
||||
r->n[0] = c;
|
||||
c = (unsigned __int128)r5 * COMP_LIMB + r1 + (c >> 64);
|
||||
r->n[1] = c;
|
||||
c = (unsigned __int128)r6 * COMP_LIMB + r2 + (c >> 64);
|
||||
r->n[2] = c;
|
||||
c = (unsigned __int128)r7 * COMP_LIMB + r3 + (c >> 64);
|
||||
r->n[3] = c;
|
||||
r->n[4] = c >> 64;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->normalized = 0;
|
||||
r->reduced = 0;
|
||||
#endif
|
||||
secp256k1_fe_reduce(r);
|
||||
}
|
||||
|
||||
/*void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
|
||||
secp256k1_fe_mul(r, a, a);
|
||||
}*/
|
||||
|
||||
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *ac) {
|
||||
secp256k1_fe_t a = *ac;
|
||||
secp256k1_fe_reduce(&a);
|
||||
uint64_t c1,c2,c3;
|
||||
c3=0;
|
||||
mul_c2(a.n[0], a.n[0], c1, c2);
|
||||
uint64_t r0 = c1; c1 = 0;
|
||||
muladd2_c3(a.n[0], a.n[1], c2, c3, c1);
|
||||
uint64_t r1 = c2; c2 = 0;
|
||||
muladd2_c3(a.n[2], a.n[0], c3, c1, c2);
|
||||
muladd_c3(a.n[1], a.n[1], c3, c1, c2);
|
||||
uint64_t r2 = c3; c3 = 0;
|
||||
muladd2_c3(a.n[0], a.n[3], c1, c2, c3);
|
||||
muladd2_c3(a.n[1], a.n[2], c1, c2, c3);
|
||||
uint64_t r3 = c1; c1 = 0;
|
||||
muladd2_c3(a.n[3], a.n[1], c2, c3, c1);
|
||||
muladd_c3(a.n[2], a.n[2], c2, c3, c1);
|
||||
uint64_t r4 = c2; c2 = 0;
|
||||
muladd2_c3(a.n[2], a.n[3], c3, c1, c2);
|
||||
uint64_t r5 = c3; c3 = 0;
|
||||
muladd_c3(a.n[3], a.n[3], c1, c2, c3);
|
||||
uint64_t r6 = c1;
|
||||
uint64_t r7 = c2;
|
||||
assert(c3 == 0);
|
||||
unsigned __int128 c = (unsigned __int128)r4 * COMP_LIMB + r0;
|
||||
r->n[0] = c;
|
||||
c = (unsigned __int128)r5 * COMP_LIMB + r1 + (c >> 64);
|
||||
r->n[1] = c;
|
||||
c = (unsigned __int128)r6 * COMP_LIMB + r2 + (c >> 64);
|
||||
r->n[2] = c;
|
||||
c = (unsigned __int128)r7 * COMP_LIMB + r3 + (c >> 64);
|
||||
r->n[3] = c;
|
||||
r->n[4] = c >> 64;
|
||||
|
||||
#ifdef VERIFY
|
||||
r->normalized = 0;
|
||||
r->reduced = 0;
|
||||
#endif
|
||||
secp256k1_fe_reduce(r);
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Add table
Reference in a new issue