miniscript: convert non-critical asserts to Assumes

This commit is contained in:
Pieter Wuille 2023-10-16 17:52:19 -04:00
parent 88f8e44683
commit 12ad92c882
2 changed files with 54 additions and 52 deletions

View file

@ -16,20 +16,20 @@ namespace internal {
Type SanitizeType(Type e) {
int num_types = (e << "K"_mst) + (e << "V"_mst) + (e << "B"_mst) + (e << "W"_mst);
if (num_types == 0) return ""_mst; // No valid type, don't care about the rest
assert(num_types == 1); // K, V, B, W all conflict with each other
assert(!(e << "z"_mst) || !(e << "o"_mst)); // z conflicts with o
assert(!(e << "n"_mst) || !(e << "z"_mst)); // n conflicts with z
assert(!(e << "n"_mst) || !(e << "W"_mst)); // n conflicts with W
assert(!(e << "V"_mst) || !(e << "d"_mst)); // V conflicts with d
assert(!(e << "K"_mst) || (e << "u"_mst)); // K implies u
assert(!(e << "V"_mst) || !(e << "u"_mst)); // V conflicts with u
assert(!(e << "e"_mst) || !(e << "f"_mst)); // e conflicts with f
assert(!(e << "e"_mst) || (e << "d"_mst)); // e implies d
assert(!(e << "V"_mst) || !(e << "e"_mst)); // V conflicts with e
assert(!(e << "d"_mst) || !(e << "f"_mst)); // d conflicts with f
assert(!(e << "V"_mst) || (e << "f"_mst)); // V implies f
assert(!(e << "K"_mst) || (e << "s"_mst)); // K implies s
assert(!(e << "z"_mst) || (e << "m"_mst)); // z implies m
Assume(num_types == 1); // K, V, B, W all conflict with each other
Assume(!(e << "z"_mst) || !(e << "o"_mst)); // z conflicts with o
Assume(!(e << "n"_mst) || !(e << "z"_mst)); // n conflicts with z
Assume(!(e << "n"_mst) || !(e << "W"_mst)); // n conflicts with W
Assume(!(e << "V"_mst) || !(e << "d"_mst)); // V conflicts with d
Assume(!(e << "K"_mst) || (e << "u"_mst)); // K implies u
Assume(!(e << "V"_mst) || !(e << "u"_mst)); // V conflicts with u
Assume(!(e << "e"_mst) || !(e << "f"_mst)); // e conflicts with f
Assume(!(e << "e"_mst) || (e << "d"_mst)); // e implies d
Assume(!(e << "V"_mst) || !(e << "e"_mst)); // V conflicts with e
Assume(!(e << "d"_mst) || !(e << "f"_mst)); // d conflicts with f
Assume(!(e << "V"_mst) || (e << "f"_mst)); // V implies f
Assume(!(e << "K"_mst) || (e << "s"_mst)); // K implies s
Assume(!(e << "z"_mst) || (e << "m"_mst)); // z implies m
return e;
}
@ -37,46 +37,46 @@ Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Ty
size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx) {
// Sanity check on data
if (fragment == Fragment::SHA256 || fragment == Fragment::HASH256) {
assert(data_size == 32);
Assume(data_size == 32);
} else if (fragment == Fragment::RIPEMD160 || fragment == Fragment::HASH160) {
assert(data_size == 20);
Assume(data_size == 20);
} else {
assert(data_size == 0);
Assume(data_size == 0);
}
// Sanity check on k
if (fragment == Fragment::OLDER || fragment == Fragment::AFTER) {
assert(k >= 1 && k < 0x80000000UL);
Assume(k >= 1 && k < 0x80000000UL);
} else if (fragment == Fragment::MULTI || fragment == Fragment::MULTI_A) {
assert(k >= 1 && k <= n_keys);
Assume(k >= 1 && k <= n_keys);
} else if (fragment == Fragment::THRESH) {
assert(k >= 1 && k <= n_subs);
Assume(k >= 1 && k <= n_subs);
} else {
assert(k == 0);
Assume(k == 0);
}
// Sanity check on subs
if (fragment == Fragment::AND_V || fragment == Fragment::AND_B || fragment == Fragment::OR_B ||
fragment == Fragment::OR_C || fragment == Fragment::OR_I || fragment == Fragment::OR_D) {
assert(n_subs == 2);
Assume(n_subs == 2);
} else if (fragment == Fragment::ANDOR) {
assert(n_subs == 3);
Assume(n_subs == 3);
} else if (fragment == Fragment::WRAP_A || fragment == Fragment::WRAP_S || fragment == Fragment::WRAP_C ||
fragment == Fragment::WRAP_D || fragment == Fragment::WRAP_V || fragment == Fragment::WRAP_J ||
fragment == Fragment::WRAP_N) {
assert(n_subs == 1);
Assume(n_subs == 1);
} else if (fragment != Fragment::THRESH) {
assert(n_subs == 0);
Assume(n_subs == 0);
}
// Sanity check on keys
if (fragment == Fragment::PK_K || fragment == Fragment::PK_H) {
assert(n_keys == 1);
Assume(n_keys == 1);
} else if (fragment == Fragment::MULTI) {
assert(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTISIG);
assert(!IsTapscript(ms_ctx));
Assume(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTISIG);
Assume(!IsTapscript(ms_ctx));
} else if (fragment == Fragment::MULTI_A) {
assert(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTI_A);
assert(IsTapscript(ms_ctx));
Assume(n_keys >= 1 && n_keys <= MAX_PUBKEYS_PER_MULTI_A);
Assume(IsTapscript(ms_ctx));
} else {
assert(n_keys == 0);
Assume(n_keys == 0);
}
// Below is the per-fragment logic for computing the expression types.
@ -431,38 +431,38 @@ void SanityCheckSatisfaction(Type typ, const InputResult& ret)
// (the actual satisfaction code in ProduceInputHelper does not use GetType)
// For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
if (typ << "z"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 0);
if (typ << "z"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 0);
if (typ << "z"_mst && ret.nsat.available != Availability::NO) Assume(ret.nsat.stack.size() == 0);
if (typ << "z"_mst && ret.sat.available != Availability::NO) Assume(ret.sat.stack.size() == 0);
// For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
if (typ << "o"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 1);
if (typ << "o"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 1);
if (typ << "o"_mst && ret.nsat.available != Availability::NO) Assume(ret.nsat.stack.size() == 1);
if (typ << "o"_mst && ret.sat.available != Availability::NO) Assume(ret.sat.stack.size() == 1);
// For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
// the top element cannot be 0.
if (typ << "n"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() >= 1);
if (typ << "n"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() >= 1);
if (typ << "n"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.stack.back().empty());
if (typ << "n"_mst && ret.sat.available != Availability::NO) Assume(ret.sat.stack.size() >= 1);
if (typ << "n"_mst && ret.nsat.available != Availability::NO) Assume(ret.nsat.stack.size() >= 1);
if (typ << "n"_mst && ret.sat.available != Availability::NO) Assume(!ret.sat.stack.back().empty());
// For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
// it must be canonical.
if (typ << "d"_mst) assert(ret.nsat.available != Availability::NO);
if (typ << "d"_mst) assert(!ret.nsat.has_sig);
if (typ << "d"_mst && !ret.nsat.malleable) assert(!ret.nsat.non_canon);
if (typ << "d"_mst) Assume(ret.nsat.available != Availability::NO);
if (typ << "d"_mst) Assume(!ret.nsat.has_sig);
if (typ << "d"_mst && !ret.nsat.malleable) Assume(!ret.nsat.non_canon);
// For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
if (typ << "f"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.has_sig);
if (typ << "s"_mst && ret.sat.available != Availability::NO) assert(ret.sat.has_sig);
if (typ << "f"_mst && ret.nsat.available != Availability::NO) Assume(ret.nsat.has_sig);
if (typ << "s"_mst && ret.sat.available != Availability::NO) Assume(ret.sat.has_sig);
// For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
if (typ << "me"_mst) assert(ret.nsat.available != Availability::NO);
if (typ << "me"_mst) assert(!ret.nsat.malleable);
if (typ << "me"_mst) Assume(ret.nsat.available != Availability::NO);
if (typ << "me"_mst) Assume(!ret.nsat.malleable);
// For 'm' nodes, if a satisfaction exists, it must be non-malleable.
if (typ << "m"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.malleable);
if (typ << "m"_mst && ret.sat.available != Availability::NO) Assume(!ret.sat.malleable);
// If a non-malleable satisfaction exists, it must be canonical.
if (ret.sat.available != Availability::NO && !ret.sat.malleable) assert(!ret.sat.non_canon);
if (ret.sat.available != Availability::NO && !ret.sat.malleable) Assume(!ret.sat.non_canon);
}
} // namespace internal

View file

@ -637,7 +637,7 @@ private:
stack.pop_back();
}
// The final remaining results element is the root result, return it.
assert(results.size() == 1);
Assume(results.size() == 1);
return std::move(results[0]);
}
@ -1202,7 +1202,7 @@ private:
// The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
// satisfying 0 keys.
auto& nsat{sats[0]};
assert(node.k != 0);
Assume(node.k != 0);
assert(node.k <= sats.size());
return {std::move(nsat), std::move(sats[node.k])};
}
@ -1544,7 +1544,8 @@ public:
case Fragment::THRESH:
return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
default: // wrappers
assert(subs.size() == 1);
assert(subs.size() >= 1);
Assume(subs.size() == 1);
return subs[0];
}
});
@ -2094,8 +2095,9 @@ inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
}
// Sanity checks on the produced miniscript
assert(constructed.size() == 1);
assert(constructed[0]->ScriptSize() == script_size);
assert(constructed.size() >= 1);
Assume(constructed.size() == 1);
Assume(constructed[0]->ScriptSize() == script_size);
if (in.size() > 0) return {};
NodeRef<Key> tl_node = std::move(constructed.front());
tl_node->DuplicateKeyCheck(ctx);