This commit is contained in:
Pieter Wuille 2025-04-29 11:52:23 +02:00 committed by GitHub
commit 11deeac27a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 1274 additions and 104 deletions

View file

@ -229,8 +229,8 @@ void BenchLinearizeOptimally(benchmark::Bench& bench, const std::array<uint8_t,
reader >> Using<DepGraphFormatter>(depgraph); reader >> Using<DepGraphFormatter>(depgraph);
uint64_t rng_seed = 0; uint64_t rng_seed = 0;
bench.run([&] { bench.run([&] {
auto res = Linearize(depgraph, /*max_iterations=*/10000000, rng_seed++); auto [_lin, optimal, _cost] = Linearize(depgraph, /*max_iterations=*/10000000, rng_seed++);
assert(res.second); assert(optimal);
}); });
}; };

View file

@ -1030,19 +1030,20 @@ public:
* linearize. * linearize.
* @param[in] old_linearization An existing linearization for the cluster (which must be * @param[in] old_linearization An existing linearization for the cluster (which must be
* topologically valid), or empty. * topologically valid), or empty.
* @return A pair of: * @return A tuple of:
* - The resulting linearization. It is guaranteed to be at least as * - The resulting linearization. It is guaranteed to be at least as
* good (in the feerate diagram sense) as old_linearization. * good (in the feerate diagram sense) as old_linearization.
* - A boolean indicating whether the result is guaranteed to be * - A boolean indicating whether the result is guaranteed to be
* optimal. * optimal.
* - How many optimization steps were actually performed.
* *
* Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount(). * Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount().
*/ */
template<typename SetType> template<typename SetType>
std::pair<std::vector<DepGraphIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, std::span<const DepGraphIndex> old_linearization = {}) noexcept std::tuple<std::vector<DepGraphIndex>, bool, uint64_t> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, std::span<const DepGraphIndex> old_linearization = {}) noexcept
{ {
Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount()); Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
if (depgraph.TxCount() == 0) return {{}, true}; if (depgraph.TxCount() == 0) return {{}, true, 0};
uint64_t iterations_left = max_iterations; uint64_t iterations_left = max_iterations;
std::vector<DepGraphIndex> linearization; std::vector<DepGraphIndex> linearization;
@ -1113,7 +1114,7 @@ std::pair<std::vector<DepGraphIndex>, bool> Linearize(const DepGraph<SetType>& d
} }
} }
return {std::move(linearization), optimal}; return {std::move(linearization), optimal, max_iterations - iterations_left};
} }
/** Improve a given linearization. /** Improve a given linearization.

View file

@ -906,7 +906,8 @@ FUZZ_TARGET(clusterlin_linearize)
// Invoke Linearize(). // Invoke Linearize().
iter_count &= 0x7ffff; iter_count &= 0x7ffff;
auto [linearization, optimal] = Linearize(depgraph, iter_count, rng_seed, old_linearization); auto [linearization, optimal, cost] = Linearize(depgraph, iter_count, rng_seed, old_linearization);
assert(cost <= iter_count);
SanityCheck(depgraph, linearization); SanityCheck(depgraph, linearization);
auto chunking = ChunkLinearization(depgraph, linearization); auto chunking = ChunkLinearization(depgraph, linearization);
@ -1090,7 +1091,7 @@ FUZZ_TARGET(clusterlin_postlinearize_tree)
// Try to find an even better linearization directly. This must not change the diagram for the // Try to find an even better linearization directly. This must not change the diagram for the
// same reason. // same reason.
auto [opt_linearization, _optimal] = Linearize(depgraph_tree, 100000, rng_seed, post_linearization); auto [opt_linearization, _optimal, _cost] = Linearize(depgraph_tree, 100000, rng_seed, post_linearization);
auto opt_chunking = ChunkLinearization(depgraph_tree, opt_linearization); auto opt_chunking = ChunkLinearization(depgraph_tree, opt_linearization);
auto cmp_opt = CompareChunks(opt_chunking, post_chunking); auto cmp_opt = CompareChunks(opt_chunking, post_chunking);
assert(cmp_opt == 0); assert(cmp_opt == 0);

View file

@ -11,6 +11,7 @@
#include <util/feefrac.h> #include <util/feefrac.h>
#include <algorithm> #include <algorithm>
#include <iterator>
#include <map> #include <map>
#include <memory> #include <memory>
#include <set> #include <set>
@ -52,9 +53,17 @@ struct SimTxGraph
std::optional<bool> oversized; std::optional<bool> oversized;
/** The configured maximum number of transactions per cluster. */ /** The configured maximum number of transactions per cluster. */
DepGraphIndex max_cluster_count; DepGraphIndex max_cluster_count;
/** Which transactions have been modified in the graph since creation, either directly or by
* being in a cluster which includes modifications. Only relevant for the staging graph. */
SetType modified;
/** The configured maximum total size of transactions per cluster. */
uint64_t max_cluster_size;
/** Whether the corresponding real graph is known to be optimally linearized. */
bool real_is_optimal{false};
/** Construct a new SimTxGraph with the specified maximum cluster count. */ /** Construct a new SimTxGraph with the specified maximum cluster count. */
explicit SimTxGraph(DepGraphIndex max_cluster) : max_cluster_count(max_cluster) {} explicit SimTxGraph(DepGraphIndex max_cluster, uint64_t max_size) :
max_cluster_count(max_cluster), max_cluster_size(max_size) {}
// Permit copying and moving. // Permit copying and moving.
SimTxGraph(const SimTxGraph&) noexcept = default; SimTxGraph(const SimTxGraph&) noexcept = default;
@ -74,15 +83,33 @@ struct SimTxGraph
while (todo.Any()) { while (todo.Any()) {
auto component = graph.FindConnectedComponent(todo); auto component = graph.FindConnectedComponent(todo);
if (component.Count() > max_cluster_count) oversized = true; if (component.Count() > max_cluster_count) oversized = true;
uint64_t component_size{0};
for (auto i : component) component_size += graph.FeeRate(i).size;
if (component_size > max_cluster_size) oversized = true;
todo -= component; todo -= component;
} }
} }
return *oversized; return *oversized;
} }
void MakeModified(DepGraphIndex index)
{
modified |= graph.GetConnectedComponent(graph.Positions(), index);
}
/** Determine the number of (non-removed) transactions in the graph. */ /** Determine the number of (non-removed) transactions in the graph. */
DepGraphIndex GetTransactionCount() const { return graph.TxCount(); } DepGraphIndex GetTransactionCount() const { return graph.TxCount(); }
/** Get the sum of all fees/sizes in the graph. */
FeePerWeight SumAll() const
{
FeePerWeight ret;
for (auto i : graph.Positions()) {
ret += graph.FeeRate(i);
}
return ret;
}
/** Get the position where ref occurs in this simulated graph, or -1 if it does not. */ /** Get the position where ref occurs in this simulated graph, or -1 if it does not. */
Pos Find(const TxGraph::Ref* ref) const Pos Find(const TxGraph::Ref* ref) const
{ {
@ -104,10 +131,14 @@ struct SimTxGraph
{ {
assert(graph.TxCount() < MAX_TRANSACTIONS); assert(graph.TxCount() < MAX_TRANSACTIONS);
auto simpos = graph.AddTransaction(feerate); auto simpos = graph.AddTransaction(feerate);
real_is_optimal = false;
MakeModified(simpos);
assert(graph.Positions()[simpos]); assert(graph.Positions()[simpos]);
simmap[simpos] = std::make_shared<TxGraph::Ref>(); simmap[simpos] = std::make_shared<TxGraph::Ref>();
auto ptr = simmap[simpos].get(); auto ptr = simmap[simpos].get();
simrevmap[ptr] = simpos; simrevmap[ptr] = simpos;
// This may invalidate our cached oversized value.
if (oversized.has_value() && !*oversized) oversized = std::nullopt;
return ptr; return ptr;
} }
@ -119,6 +150,8 @@ struct SimTxGraph
auto chl_pos = Find(child); auto chl_pos = Find(child);
if (chl_pos == MISSING) return; if (chl_pos == MISSING) return;
graph.AddDependencies(SetType::Singleton(par_pos), chl_pos); graph.AddDependencies(SetType::Singleton(par_pos), chl_pos);
MakeModified(par_pos);
real_is_optimal = false;
// This may invalidate our cached oversized value. // This may invalidate our cached oversized value.
if (oversized.has_value() && !*oversized) oversized = std::nullopt; if (oversized.has_value() && !*oversized) oversized = std::nullopt;
} }
@ -128,6 +161,8 @@ struct SimTxGraph
{ {
auto pos = Find(ref); auto pos = Find(ref);
if (pos == MISSING) return; if (pos == MISSING) return;
// No need to invoke MakeModified, because this equally affects main and staging.
real_is_optimal = false;
graph.FeeRate(pos).fee = fee; graph.FeeRate(pos).fee = fee;
} }
@ -136,6 +171,8 @@ struct SimTxGraph
{ {
auto pos = Find(ref); auto pos = Find(ref);
if (pos == MISSING) return; if (pos == MISSING) return;
MakeModified(pos);
real_is_optimal = false;
graph.RemoveTransactions(SetType::Singleton(pos)); graph.RemoveTransactions(SetType::Singleton(pos));
simrevmap.erase(simmap[pos].get()); simrevmap.erase(simmap[pos].get());
// Retain the TxGraph::Ref corresponding to this position, so the Ref destruction isn't // Retain the TxGraph::Ref corresponding to this position, so the Ref destruction isn't
@ -160,7 +197,9 @@ struct SimTxGraph
auto remove = std::partition(removed.begin(), removed.end(), [&](auto& arg) { return arg.get() != ref; }); auto remove = std::partition(removed.begin(), removed.end(), [&](auto& arg) { return arg.get() != ref; });
removed.erase(remove, removed.end()); removed.erase(remove, removed.end());
} else { } else {
MakeModified(pos);
graph.RemoveTransactions(SetType::Singleton(pos)); graph.RemoveTransactions(SetType::Singleton(pos));
real_is_optimal = false;
simrevmap.erase(simmap[pos].get()); simrevmap.erase(simmap[pos].get());
simmap[pos].reset(); simmap[pos].reset();
// This may invalidate our cached oversized value. // This may invalidate our cached oversized value.
@ -238,12 +277,34 @@ FUZZ_TARGET(txgraph)
// Decide the maximum number of transactions per cluster we will use in this simulation. // Decide the maximum number of transactions per cluster we will use in this simulation.
auto max_count = provider.ConsumeIntegralInRange<DepGraphIndex>(1, MAX_CLUSTER_COUNT_LIMIT); auto max_count = provider.ConsumeIntegralInRange<DepGraphIndex>(1, MAX_CLUSTER_COUNT_LIMIT);
// And the maximum combined size of transactions per cluster.
auto max_size = provider.ConsumeIntegralInRange<uint64_t>(1, 0x3fffff * MAX_CLUSTER_COUNT_LIMIT);
// And the number of iterations to consider a cluster acceptably linearized.
auto acceptable_iters = provider.ConsumeIntegralInRange<uint64_t>(0, 10000);
// Construct a real graph, and a vector of simulated graphs (main, and possibly staging). // Construct a real graph, and a vector of simulated graphs (main, and possibly staging).
auto real = MakeTxGraph(max_count); auto real = MakeTxGraph(max_count, max_size, acceptable_iters);
std::vector<SimTxGraph> sims; std::vector<SimTxGraph> sims;
sims.reserve(2); sims.reserve(2);
sims.emplace_back(max_count); sims.emplace_back(max_count, max_size);
/** Struct encapsulating information about a BlockBuilder that's currently live. */
struct BlockBuilderData
{
/** BlockBuilder object from real. */
std::unique_ptr<TxGraph::BlockBuilder> builder;
/** The set of transactions marked as included in *builder. */
SimTxGraph::SetType included;
/** The set of transactions marked as included or skipped in *builder. */
SimTxGraph::SetType done;
/** The last chunk feerate returned by *builder. IsEmpty() if none yet. */
FeePerWeight last_feerate;
BlockBuilderData(std::unique_ptr<TxGraph::BlockBuilder> builder_in) : builder(std::move(builder_in)) {}
};
/** Currently active block builders. */
std::vector<BlockBuilderData> block_builders;
/** Function to pick any Ref (for either sim in sims: from sim.simmap or sim.removed, or the /** Function to pick any Ref (for either sim in sims: from sim.simmap or sim.removed, or the
* empty Ref). */ * empty Ref). */
@ -282,9 +343,44 @@ FUZZ_TARGET(txgraph)
return &empty_ref; return &empty_ref;
}; };
/** Function to construct the correct fee-size diagram a real graph has based on its graph
* order (as reported by GetCluster(), so it works for both main and staging). */
auto get_diagram_fn = [&](bool main_only) -> std::vector<FeeFrac> {
int level = main_only ? 0 : sims.size() - 1;
auto& sim = sims[level];
// For every transaction in the graph, request its cluster, and throw them into a set.
std::set<std::vector<TxGraph::Ref*>> clusters;
for (auto i : sim.graph.Positions()) {
auto ref = sim.GetRef(i);
clusters.insert(real->GetCluster(*ref, main_only));
}
// Compute the chunkings of each (deduplicated) cluster.
size_t num_tx{0};
std::vector<FeeFrac> chunk_feerates;
for (const auto& cluster : clusters) {
num_tx += cluster.size();
std::vector<SimTxGraph::Pos> linearization;
linearization.reserve(cluster.size());
for (auto refptr : cluster) linearization.push_back(sim.Find(refptr));
for (const FeeFrac& chunk_feerate : ChunkLinearization(sim.graph, linearization)) {
chunk_feerates.push_back(chunk_feerate);
}
}
// Verify the number of transactions after deduplicating clusters. This implicitly verifies
// that GetCluster on each element of a cluster reports the cluster transactions in the same
// order.
assert(num_tx == sim.GetTransactionCount());
// Sort by feerate only, since violating topological constraints within same-feerate
// chunks won't affect diagram comparisons.
std::sort(chunk_feerates.begin(), chunk_feerates.end(), std::greater{});
return chunk_feerates;
};
LIMITED_WHILE(provider.remaining_bytes() > 0, 200) { LIMITED_WHILE(provider.remaining_bytes() > 0, 200) {
// Read a one-byte command. // Read a one-byte command.
int command = provider.ConsumeIntegral<uint8_t>(); int command = provider.ConsumeIntegral<uint8_t>();
int orig_command = command;
// Treat the lowest bit of a command as a flag (which selects a variant of some of the // Treat the lowest bit of a command as a flag (which selects a variant of some of the
// operations), and the second-lowest bit as a way of selecting main vs. staging, and leave // operations), and the second-lowest bit as a way of selecting main vs. staging, and leave
// the rest of the bits in command. // the rest of the bits in command.
@ -292,6 +388,11 @@ FUZZ_TARGET(txgraph)
bool use_main = command & 2; bool use_main = command & 2;
command >>= 2; command >>= 2;
/** Use the bottom 2 bits of command to select an entry in the block_builders vector (if
* any). These use the same bits as alt/use_main, so don't use those in actions below
* where builder_idx is used as well. */
int builder_idx = block_builders.empty() ? -1 : int((orig_command & 3) % block_builders.size());
// Provide convenient aliases for the top simulated graph (main, or staging if it exists), // Provide convenient aliases for the top simulated graph (main, or staging if it exists),
// one for the simulated graph selected based on use_main (for operations that can operate // one for the simulated graph selected based on use_main (for operations that can operate
// on both graphs), and one that always refers to the main graph. // on both graphs), and one that always refers to the main graph.
@ -302,7 +403,7 @@ FUZZ_TARGET(txgraph)
// Keep decrementing command for each applicable operation, until one is hit. Multiple // Keep decrementing command for each applicable operation, until one is hit. Multiple
// iterations may be necessary. // iterations may be necessary.
while (true) { while (true) {
if (top_sim.GetTransactionCount() < SimTxGraph::MAX_TRANSACTIONS && command-- == 0) { if ((block_builders.empty() || sims.size() > 1) && top_sim.GetTransactionCount() < SimTxGraph::MAX_TRANSACTIONS && command-- == 0) {
// AddTransaction. // AddTransaction.
int64_t fee; int64_t fee;
int32_t size; int32_t size;
@ -314,7 +415,7 @@ FUZZ_TARGET(txgraph)
// Otherwise, use smaller range which consume fewer fuzz input bytes, as just // Otherwise, use smaller range which consume fewer fuzz input bytes, as just
// these are likely sufficient to trigger all interesting code paths already. // these are likely sufficient to trigger all interesting code paths already.
fee = provider.ConsumeIntegral<uint8_t>(); fee = provider.ConsumeIntegral<uint8_t>();
size = provider.ConsumeIntegral<uint8_t>() + 1; size = provider.ConsumeIntegralInRange<uint32_t>(1, 0xff);
} }
FeePerWeight feerate{fee, size}; FeePerWeight feerate{fee, size};
// Create a real TxGraph::Ref. // Create a real TxGraph::Ref.
@ -324,7 +425,7 @@ FUZZ_TARGET(txgraph)
// Move it in place. // Move it in place.
*ref_loc = std::move(ref); *ref_loc = std::move(ref);
break; break;
} else if (top_sim.GetTransactionCount() + top_sim.removed.size() > 1 && command-- == 0) { } else if ((block_builders.empty() || sims.size() > 1) && top_sim.GetTransactionCount() + top_sim.removed.size() > 1 && command-- == 0) {
// AddDependency. // AddDependency.
auto par = pick_fn(); auto par = pick_fn();
auto chl = pick_fn(); auto chl = pick_fn();
@ -336,9 +437,10 @@ FUZZ_TARGET(txgraph)
if (top_sim.graph.Ancestors(pos_par)[pos_chl]) break; if (top_sim.graph.Ancestors(pos_par)[pos_chl]) break;
} }
top_sim.AddDependency(par, chl); top_sim.AddDependency(par, chl);
top_sim.real_is_optimal = false;
real->AddDependency(*par, *chl); real->AddDependency(*par, *chl);
break; break;
} else if (top_sim.removed.size() < 100 && command-- == 0) { } else if ((block_builders.empty() || sims.size() > 1) && top_sim.removed.size() < 100 && command-- == 0) {
// RemoveTransaction. Either all its ancestors or all its descendants are also // RemoveTransaction. Either all its ancestors or all its descendants are also
// removed (if any), to make sure TxGraph's reordering of removals and dependencies // removed (if any), to make sure TxGraph's reordering of removals and dependencies
// has no effect. // has no effect.
@ -368,7 +470,7 @@ FUZZ_TARGET(txgraph)
} }
sel_sim.removed.pop_back(); sel_sim.removed.pop_back();
break; break;
} else if (command-- == 0) { } else if (block_builders.empty() && command-- == 0) {
// ~Ref (of any transaction). // ~Ref (of any transaction).
std::vector<TxGraph::Ref*> to_destroy; std::vector<TxGraph::Ref*> to_destroy;
to_destroy.push_back(pick_fn()); to_destroy.push_back(pick_fn());
@ -390,7 +492,7 @@ FUZZ_TARGET(txgraph)
} }
} }
break; break;
} else if (command-- == 0) { } else if (block_builders.empty() && command-- == 0) {
// SetTransactionFee. // SetTransactionFee.
int64_t fee; int64_t fee;
if (alt) { if (alt) {
@ -444,6 +546,7 @@ FUZZ_TARGET(txgraph)
// Just do some quick checks that the reported value is in range. A full // Just do some quick checks that the reported value is in range. A full
// recomputation of expected chunk feerates is done at the end. // recomputation of expected chunk feerates is done at the end.
assert(feerate.size >= main_sim.graph.FeeRate(simpos).size); assert(feerate.size >= main_sim.graph.FeeRate(simpos).size);
assert(feerate.size <= main_sim.SumAll().size);
} }
break; break;
} else if (!sel_sim.IsOversized() && command-- == 0) { } else if (!sel_sim.IsOversized() && command-- == 0) {
@ -487,13 +590,17 @@ FUZZ_TARGET(txgraph)
assert(result.size() <= max_count); assert(result.size() <= max_count);
// Require the result to be topologically valid and not contain duplicates. // Require the result to be topologically valid and not contain duplicates.
auto left = sel_sim.graph.Positions(); auto left = sel_sim.graph.Positions();
uint64_t total_size{0};
for (auto refptr : result) { for (auto refptr : result) {
auto simpos = sel_sim.Find(refptr); auto simpos = sel_sim.Find(refptr);
total_size += sel_sim.graph.FeeRate(simpos).size;
assert(simpos != SimTxGraph::MISSING); assert(simpos != SimTxGraph::MISSING);
assert(left[simpos]); assert(left[simpos]);
left.Reset(simpos); left.Reset(simpos);
assert(!sel_sim.graph.Ancestors(simpos).Overlaps(left)); assert(!sel_sim.graph.Ancestors(simpos).Overlaps(left));
} }
// Check cluster size limit.
assert(total_size <= max_size);
// Require the set to be connected. // Require the set to be connected.
auto result_set = sel_sim.MakeSet(result); auto result_set = sel_sim.MakeSet(result);
assert(sel_sim.graph.IsConnected(result_set)); assert(sel_sim.graph.IsConnected(result_set));
@ -517,9 +624,10 @@ FUZZ_TARGET(txgraph)
} else if (sims.size() < 2 && command-- == 0) { } else if (sims.size() < 2 && command-- == 0) {
// StartStaging. // StartStaging.
sims.emplace_back(sims.back()); sims.emplace_back(sims.back());
sims.back().modified = SimTxGraph::SetType{};
real->StartStaging(); real->StartStaging();
break; break;
} else if (sims.size() > 1 && command-- == 0) { } else if (block_builders.empty() && sims.size() > 1 && command-- == 0) {
// CommitStaging. // CommitStaging.
real->CommitStaging(); real->CommitStaging();
sims.erase(sims.begin()); sims.erase(sims.begin());
@ -584,7 +692,135 @@ FUZZ_TARGET(txgraph)
break; break;
} else if (command-- == 0) { } else if (command-- == 0) {
// DoWork. // DoWork.
real->DoWork(); uint64_t iters = provider.ConsumeIntegralInRange<uint64_t>(0, alt ? 10000 : 255);
if (real->DoWork(iters)) {
for (auto& sim : sims) sim.real_is_optimal = true;
}
break;
} else if (sims.size() == 2 && !sims[0].IsOversized() && !sims[1].IsOversized() && command-- == 0) {
// GetMainStagingDiagrams()
auto [main_diagram, staged_diagram] = real->GetMainStagingDiagrams();
auto sum_main = std::accumulate(main_diagram.begin(), main_diagram.end(), FeeFrac{});
auto sum_staged = std::accumulate(staged_diagram.begin(), staged_diagram.end(), FeeFrac{});
auto diagram_gain = sum_staged - sum_main;
auto real_gain = sims[1].SumAll() - sims[0].SumAll();
// Just check that the total fee gained/lost and size gained/lost according to the
// diagram matches the difference in these values in the simulated graph. A more
// complete check of the GetMainStagingDiagrams result is performed at the end.
assert(diagram_gain == real_gain);
// Check that the feerates in each diagram are monotonically decreasing.
for (size_t i = 1; i < main_diagram.size(); ++i) {
assert(FeeRateCompare(main_diagram[i], main_diagram[i - 1]) <= 0);
}
for (size_t i = 1; i < staged_diagram.size(); ++i) {
assert(FeeRateCompare(staged_diagram[i], staged_diagram[i - 1]) <= 0);
}
break;
} else if (block_builders.size() < 4 && !main_sim.IsOversized() && command-- == 0) {
// GetBlockBuilder.
block_builders.emplace_back(real->GetBlockBuilder());
break;
} else if (!block_builders.empty() && command-- == 0) {
// ~BlockBuilder.
block_builders.erase(block_builders.begin() + builder_idx);
break;
} else if (!block_builders.empty() && command-- == 0) {
// BlockBuilder::GetCurrentChunk, followed by Include/Skip.
auto& builder_data = block_builders[builder_idx];
auto new_included = builder_data.included;
auto new_done = builder_data.done;
auto chunk = builder_data.builder->GetCurrentChunk();
if (chunk) {
// Chunk feerates must be monotonously decreasing.
if (!builder_data.last_feerate.IsEmpty()) {
assert(!(chunk->second >> builder_data.last_feerate));
}
builder_data.last_feerate = chunk->second;
// Verify the contents of GetCurrentChunk.
FeePerWeight sum_feerate;
for (TxGraph::Ref* ref : chunk->first) {
// Each transaction in the chunk must exist in the main graph.
auto simpos = main_sim.Find(ref);
assert(simpos != SimTxGraph::MISSING);
// Verify the claimed chunk feerate.
sum_feerate += main_sim.graph.FeeRate(simpos);
// Make sure no transaction is reported twice.
assert(!new_done[simpos]);
new_done.Set(simpos);
// The concatenation of all included transactions must be topologically valid.
new_included.Set(simpos);
assert(main_sim.graph.Ancestors(simpos).IsSubsetOf(new_included));
}
assert(sum_feerate == chunk->second);
} else {
// When we reach the end, if nothing was skipped, the entire graph should have
// been reported.
if (builder_data.done == builder_data.included) {
assert(builder_data.done.Count() == main_sim.GetTransactionCount());
}
}
// Possibly invoke GetCurrentChunk() again, which should give the same result.
if ((orig_command % 7) >= 5) {
auto chunk2 = builder_data.builder->GetCurrentChunk();
assert(chunk == chunk2);
}
// Skip or include.
if ((orig_command % 5) >= 3) {
// Skip.
builder_data.builder->Skip();
} else {
// Include.
builder_data.builder->Include();
builder_data.included = new_included;
}
builder_data.done = new_done;
break;
} else if (!main_sim.IsOversized() && command-- == 0) {
// GetWorstMainChunk.
auto [worst_chunk, worst_chunk_feerate] = real->GetWorstMainChunk();
// Just do some sanity checks here. Consistency with GetBlockBuilder is checked
// below.
if (main_sim.GetTransactionCount() == 0) {
assert(worst_chunk.empty());
assert(worst_chunk_feerate.IsEmpty());
} else {
assert(!worst_chunk.empty());
SimTxGraph::SetType done;
FeePerWeight sum;
for (TxGraph::Ref* ref : worst_chunk) {
// Each transaction in the chunk must exist in the main graph.
auto simpos = main_sim.Find(ref);
assert(simpos != SimTxGraph::MISSING);
sum += main_sim.graph.FeeRate(simpos);
// Make sure the chunk contains no duplicate transactions.
assert(!done[simpos]);
done.Set(simpos);
// All elements are preceded by all their descendants.
assert(main_sim.graph.Descendants(simpos).IsSubsetOf(done));
}
assert(sum == worst_chunk_feerate);
}
break;
} else if ((block_builders.empty() || sims.size() > 1) && command-- == 0) {
// Trim.
bool was_oversized = top_sim.IsOversized();
auto removed = real->Trim();
if (!was_oversized) {
assert(removed.empty());
break;
}
auto removed_set = top_sim.MakeSet(removed);
// The removed set must contain all its own descendants.
for (auto simpos : removed_set) {
assert(top_sim.graph.Descendants(simpos).IsSubsetOf(removed_set));
}
// Apply all removals to the simulation, and verify the result is no longer
// oversized. Don't query the real graph for oversizedness; it is compared
// against the simulation anyway later.
for (auto simpos : removed_set) {
top_sim.RemoveTransaction(top_sim.GetRef(simpos));
}
assert(!top_sim.IsOversized());
break; break;
} }
} }
@ -624,6 +860,16 @@ FUZZ_TARGET(txgraph)
} }
assert(todo.None()); assert(todo.None());
// If the real graph claims to be optimal (the last DoWork() call returned true), verify
// that calling Linearize on it does not improve it further.
if (sims[0].real_is_optimal) {
auto real_diagram = ChunkLinearization(sims[0].graph, vec1);
auto [sim_lin, _optimal, _cost] = Linearize(sims[0].graph, 300000, rng.rand64(), vec1);
auto sim_diagram = ChunkLinearization(sims[0].graph, sim_lin);
auto cmp = CompareChunks(real_diagram, sim_diagram);
assert(cmp == 0);
}
// For every transaction in the total ordering, find a random one before it and after it, // For every transaction in the total ordering, find a random one before it and after it,
// and compare their chunk feerates, which must be consistent with the ordering. // and compare their chunk feerates, which must be consistent with the ordering.
for (size_t pos = 0; pos < vec1.size(); ++pos) { for (size_t pos = 0; pos < vec1.size(); ++pos) {
@ -639,6 +885,94 @@ FUZZ_TARGET(txgraph)
assert(FeeRateCompare(after_feerate, pos_feerate) <= 0); assert(FeeRateCompare(after_feerate, pos_feerate) <= 0);
} }
} }
// The same order should be obtained through a BlockBuilder as implied by CompareMainOrder,
// if nothing is skipped.
auto builder = real->GetBlockBuilder();
std::vector<SimTxGraph::Pos> vec_builder;
std::vector<TxGraph::Ref*> last_chunk;
FeePerWeight last_chunk_feerate;
while (auto chunk = builder->GetCurrentChunk()) {
FeePerWeight sum;
for (TxGraph::Ref* ref : chunk->first) {
// The reported chunk feerate must match the chunk feerate obtained by asking
// it for each of the chunk's transactions individually.
assert(real->GetMainChunkFeerate(*ref) == chunk->second);
// Verify the chunk feerate matches the sum of the reported individual feerates.
sum += real->GetIndividualFeerate(*ref);
// Chunks must contain transactions that exist in the graph.
auto simpos = sims[0].Find(ref);
assert(simpos != SimTxGraph::MISSING);
vec_builder.push_back(simpos);
}
assert(sum == chunk->second);
last_chunk = std::move(chunk->first);
last_chunk_feerate = chunk->second;
builder->Include();
}
assert(vec_builder == vec1);
// The last chunk returned by the BlockBuilder must match GetWorstMainChunk, in reverse.
std::reverse(last_chunk.begin(), last_chunk.end());
auto [worst_chunk, worst_chunk_feerate] = real->GetWorstMainChunk();
assert(last_chunk == worst_chunk);
assert(last_chunk_feerate == worst_chunk_feerate);
// Check that the implied ordering gives rise to a combined diagram that matches the
// diagram constructed from the individual cluster linearization chunkings.
auto main_real_diagram = get_diagram_fn(/*main_only=*/true);
auto main_implied_diagram = ChunkLinearization(sims[0].graph, vec1);
assert(CompareChunks(main_real_diagram, main_implied_diagram) == 0);
if (sims.size() >= 2 && !sims[1].IsOversized()) {
// When the staging graph is not oversized as well, call GetMainStagingDiagrams, and
// fully verify the result.
auto [main_cmp_diagram, stage_cmp_diagram] = real->GetMainStagingDiagrams();
// Check that the feerates in each diagram are monotonically decreasing.
for (size_t i = 1; i < main_cmp_diagram.size(); ++i) {
assert(FeeRateCompare(main_cmp_diagram[i], main_cmp_diagram[i - 1]) <= 0);
}
for (size_t i = 1; i < stage_cmp_diagram.size(); ++i) {
assert(FeeRateCompare(stage_cmp_diagram[i], stage_cmp_diagram[i - 1]) <= 0);
}
// Treat the diagrams as sets of chunk feerates, and sort them in the same way so that
// std::set_difference can be used on them below. The exact ordering does not matter
// here, but it has to be consistent with the one used in main_diagram and
// stage_diagram).
std::sort(main_cmp_diagram.begin(), main_cmp_diagram.end(), std::greater{});
std::sort(stage_cmp_diagram.begin(), stage_cmp_diagram.end(), std::greater{});
// Find the chunks that appear in main_diagram but are missing from main_cmp_diagram.
// This is allowed, because GetMainStagingDiagrams omits clusters in main unaffected
// by staging.
std::vector<FeeFrac> missing_main_cmp;
std::set_difference(main_real_diagram.begin(), main_real_diagram.end(),
main_cmp_diagram.begin(), main_cmp_diagram.end(),
std::inserter(missing_main_cmp, missing_main_cmp.end()),
std::greater{});
assert(main_cmp_diagram.size() + missing_main_cmp.size() == main_real_diagram.size());
// Do the same for chunks in stage_diagram missing from stage_cmp_diagram.
auto stage_real_diagram = get_diagram_fn(false);
std::vector<FeeFrac> missing_stage_cmp;
std::set_difference(stage_real_diagram.begin(), stage_real_diagram.end(),
stage_cmp_diagram.begin(), stage_cmp_diagram.end(),
std::inserter(missing_stage_cmp, missing_stage_cmp.end()),
std::greater{});
assert(stage_cmp_diagram.size() + missing_stage_cmp.size() == stage_real_diagram.size());
// The missing chunks must be equal across main & staging (otherwise they couldn't have
// been omitted).
assert(missing_main_cmp == missing_stage_cmp);
// The missing part must include at least all transactions in staging which have not been
// modified, or been in a cluster together with modified transactions, since they were
// copied from main. Note that due to the reordering of removals w.r.t. dependency
// additions, it is possible that the real implementation found more unaffected things.
FeeFrac missing_real;
for (const auto& feerate : missing_main_cmp) missing_real += feerate;
FeeFrac missing_expected = sims[1].graph.FeeRate(sims[1].graph.Positions() - sims[1].modified);
// Note that missing_real.fee < missing_expected.fee is possible to due the presence of
// negative-fee transactions.
assert(missing_real.size >= missing_expected.size);
}
} }
assert(real->HaveStaging() == (sims.size() > 1)); assert(real->HaveStaging() == (sims.size() > 1));
@ -680,13 +1014,17 @@ FUZZ_TARGET(txgraph)
// linearization). // linearization).
std::vector<DepGraphIndex> simlin; std::vector<DepGraphIndex> simlin;
SimTxGraph::SetType done; SimTxGraph::SetType done;
uint64_t total_size{0};
for (TxGraph::Ref* ptr : cluster) { for (TxGraph::Ref* ptr : cluster) {
auto simpos = sim.Find(ptr); auto simpos = sim.Find(ptr);
assert(sim.graph.Descendants(simpos).IsSubsetOf(component - done)); assert(sim.graph.Descendants(simpos).IsSubsetOf(component - done));
done.Set(simpos); done.Set(simpos);
assert(sim.graph.Ancestors(simpos).IsSubsetOf(done)); assert(sim.graph.Ancestors(simpos).IsSubsetOf(done));
simlin.push_back(simpos); simlin.push_back(simpos);
total_size += sim.graph.FeeRate(simpos).size;
} }
// Check cluster size.
assert(total_size <= max_size);
// Construct a chunking object for the simulated graph, using the reported cluster // Construct a chunking object for the simulated graph, using the reported cluster
// linearization as ordering, and compare it against the reported chunk feerates. // linearization as ordering, and compare it against the reported chunk feerates.
if (sims.size() == 1 || main_only) { if (sims.size() == 1 || main_only) {
@ -714,6 +1052,8 @@ FUZZ_TARGET(txgraph)
// Sanity check again (because invoking inspectors may modify internal unobservable state). // Sanity check again (because invoking inspectors may modify internal unobservable state).
real->SanityCheck(); real->SanityCheck();
// Kill the block builders.
block_builders.clear();
// Kill the TxGraph object. // Kill the TxGraph object.
real.reset(); real.reset();
// Kill the simulated graphs, with all remaining Refs in it. If any, this verifies that Refs // Kill the simulated graphs, with all remaining Refs in it. If any, this verifies that Refs

File diff suppressed because it is too large Load diff

View file

@ -3,9 +3,11 @@
// file COPYING or http://www.opensource.org/licenses/mit-license.php. // file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <compare> #include <compare>
#include <stdint.h>
#include <memory> #include <memory>
#include <optional>
#include <stdint.h>
#include <vector> #include <vector>
#include <utility>
#include <util/feefrac.h> #include <util/feefrac.h>
@ -61,10 +63,10 @@ public:
/** Virtual destructor, so inheriting is safe. */ /** Virtual destructor, so inheriting is safe. */
virtual ~TxGraph() = default; virtual ~TxGraph() = default;
/** Construct a new transaction with the specified feerate, and return a Ref to it. /** Construct a new transaction with the specified feerate, and return a Ref to it.
* If a staging graph exists, the new transaction is only created there. In all * If a staging graph exists, the new transaction is only created there. In all further
* further calls, only Refs created by AddTransaction() are allowed to be passed to this * calls, only Refs created by AddTransaction() are allowed to be passed to this TxGraph
* TxGraph object (or empty Ref objects). Ref objects may outlive the TxGraph they were * object (or empty Ref objects). Ref objects may outlive the TxGraph they were created
* created for. */ * for. */
[[nodiscard]] virtual Ref AddTransaction(const FeePerWeight& feerate) noexcept = 0; [[nodiscard]] virtual Ref AddTransaction(const FeePerWeight& feerate) noexcept = 0;
/** Remove the specified transaction. If a staging graph exists, the removal only happens /** Remove the specified transaction. If a staging graph exists, the removal only happens
* there. This is a no-op if the transaction was already removed. * there. This is a no-op if the transaction was already removed.
@ -92,9 +94,10 @@ public:
virtual void SetTransactionFee(const Ref& arg, int64_t fee) noexcept = 0; virtual void SetTransactionFee(const Ref& arg, int64_t fee) noexcept = 0;
/** TxGraph is internally lazy, and will not compute many things until they are needed. /** TxGraph is internally lazy, and will not compute many things until they are needed.
* Calling DoWork will compute everything now, so that future operations are fast. This can be * Calling DoWork will perform some work now (controlled by iters) so that future operations
* invoked while oversized. */ * are fast, if there is any. Returns whether all work is done. This can be invoked while
virtual void DoWork() noexcept = 0; * oversized. */
virtual bool DoWork(uint64_t iters) noexcept = 0;
/** Create a staging graph (which cannot exist already). This acts as if a full copy of /** Create a staging graph (which cannot exist already). This acts as if a full copy of
* the transaction graph is made, upon which further modifications are made. This copy can * the transaction graph is made, upon which further modifications are made. This copy can
@ -162,6 +165,44 @@ public:
* main clusters are counted. Refs that do not exist in the queried graph are ignored. Refs * main clusters are counted. Refs that do not exist in the queried graph are ignored. Refs
* can not be null. The queried graph must not be oversized. */ * can not be null. The queried graph must not be oversized. */
virtual GraphIndex CountDistinctClusters(std::span<const Ref* const>, bool main_only = false) noexcept = 0; virtual GraphIndex CountDistinctClusters(std::span<const Ref* const>, bool main_only = false) noexcept = 0;
/** For both main and staging (which must both exist and not be oversized), return the combined
* respective feerate diagrams, including chunks from all clusters, but excluding clusters
* that appear identically in both. Use FeeFrac rather than FeePerWeight so CompareChunks is
* usable without type-conversion. */
virtual std::pair<std::vector<FeeFrac>, std::vector<FeeFrac>> GetMainStagingDiagrams() noexcept = 0;
/** Remove transactions (including their own descendants) according to a fast but best-effort
* strategy such that the TxGraph's cluster and size limits are respected. Applies to staging
* if it exists, and to main otherwise. Returns the list of all removed transactions in
* unspecified order. This has no effect unless the relevant graph is oversized. */
virtual std::vector<Ref*> Trim() noexcept = 0;
/** Interface returned by GetBlockBuilder. */
class BlockBuilder
{
protected:
/** Make constructor non-public (use TxGraph::GetBlockBuilder()). */
BlockBuilder() noexcept = default;
public:
/** Support safe inheritance. */
virtual ~BlockBuilder() = default;
/** Get the chunk that is currently suggested to be included, plus its feerate, if any. */
virtual std::optional<std::pair<std::vector<Ref*>, FeePerWeight>> GetCurrentChunk() noexcept = 0;
/** Mark the current chunk as included, and progress to the next one. */
virtual void Include() noexcept = 0;
/** Mark the current chunk as skipped, and progress to the next one. Further chunks from
* the same cluster as the current one will not be reported anymore. */
virtual void Skip() noexcept = 0;
};
/** Construct a block builder, drawing chunks in order, from the main graph, which cannot be
* oversized. While the returned object exists, no mutators on the main graph are allowed.
* The BlockBuilder object must not outlive the TxGraph it was created with. */
virtual std::unique_ptr<BlockBuilder> GetBlockBuilder() noexcept = 0;
/** Get the last chunk in the main graph, i.e., the last chunk that would be returned by a
* BlockBuilder created now, together with its feerate. The chunk is returned in
* reverse-topological order, so every element is preceded by all its descendants. The main
* graph must not be oversized. If the graph is empty, {{}, FeePerWeight{}} is returned. */
virtual std::pair<std::vector<Ref*>, FeePerWeight> GetWorstMainChunk() noexcept = 0;
/** Perform an internal consistency check on this object. */ /** Perform an internal consistency check on this object. */
virtual void SanityCheck() const = 0; virtual void SanityCheck() const = 0;
@ -205,8 +246,10 @@ public:
}; };
}; };
/** Construct a new TxGraph with the specified limit on transactions within a cluster. That /** Construct a new TxGraph with the specified limit on transactions within a cluster, and the
* number cannot exceed MAX_CLUSTER_COUNT_LIMIT. */ * specified limit on the sum of transaction sizes within a cluster. max_cluster_count cannot
std::unique_ptr<TxGraph> MakeTxGraph(unsigned max_cluster_count) noexcept; * exceed MAX_CLUSTER_COUNT_LIMIT. acceptable_iters controls how many linearization optimization
* steps will be performed before it is considered to be of acceptable quality. */
std::unique_ptr<TxGraph> MakeTxGraph(unsigned max_cluster_count, uint64_t max_cluster_size, uint64_t acceptable_iters) noexcept;
#endif // BITCOIN_TXGRAPH_H #endif // BITCOIN_TXGRAPH_H