Merge bitcoin/bitcoin#27021: Implement Mini version of BlockAssembler to calculate mining scores

6b605b91c1 [fuzz] Add MiniMiner target + diff fuzz against BlockAssembler (glozow)
3f3f2d59ea [unit test] GatherClusters and MiniMiner unit tests (glozow)
59afcc8354 Implement Mini version of BlockAssembler to calculate mining scores (glozow)
56484f0fdc [mempool] find connected mempool entries with GatherClusters(…) (glozow)

Pull request description:

  Implement Mini version of BlockAssembler to calculate mining scores

  Run the mining algorithm on a subset of the mempool, only disturbing the
  mempool to copy out fee information for relevant entries. Intended to be
  used by wallet to calculate amounts needed for fee-bumping unconfirmed
  transactions.

  From comments of sipa and glozow below:

  > > In what way does the code added here differ from the real block assembly code?
  >
  >    * Only operates on the relevant transactions rather than full mempool
  >    * Has the ability to remove transactions that will be replaced so they don't impact their ancestors
  >    * Does not hold mempool lock outside of the constructor, makes copies of the entries it needs instead (though I'm not sure if this has an effect in practice)
  >    * Doesn't do the sanity checks like keeping weight within max block weight and `IsFinalTx()`
  >    * After the block template is built, additionally calculates fees to bump remaining ancestor packages to target feerate

ACKs for top commit:
  achow101:
    ACK 6b605b91c1
  Xekyo:
    > ACK [6b605b9](6b605b91c1) modulo `miniminer_overlap` test.
  furszy:
    ACK 6b605b91 modulo `miniminer_overlap` test.
  theStack:
    Code-review ACK 6b605b91c1

Tree-SHA512: f86a8b4ae0506858a7b15d90f417ebceea5038b395c05c825e3796123ad3b6cb8a98ebb948521316802a4c6d60ebd7041093356b1e2c2922a06b3b96b3b8acb6
This commit is contained in:
glozow 2023-05-19 10:26:12 -04:00
commit 0f8c95dccd
No known key found for this signature in database
GPG key ID: BA03F4DBE0C63FB4
8 changed files with 1215 additions and 2 deletions

View file

@ -217,6 +217,7 @@ BITCOIN_CORE_H = \
node/mempool_args.h \
node/mempool_persist_args.h \
node/miner.h \
node/mini_miner.h \
node/minisketchwrapper.h \
node/psbt.h \
node/transaction.h \
@ -410,6 +411,7 @@ libbitcoin_node_a_SOURCES = \
node/mempool_args.cpp \
node/mempool_persist_args.cpp \
node/miner.cpp \
node/mini_miner.cpp \
node/minisketchwrapper.cpp \
node/psbt.cpp \
node/transaction.cpp \

View file

@ -106,6 +106,7 @@ BITCOIN_TESTS =\
test/merkle_tests.cpp \
test/merkleblock_tests.cpp \
test/miner_tests.cpp \
test/miniminer_tests.cpp \
test/miniscript_tests.cpp \
test/minisketch_tests.cpp \
test/multisig_tests.cpp \
@ -287,6 +288,7 @@ test_fuzz_fuzz_SOURCES = \
test/fuzz/message.cpp \
test/fuzz/miniscript.cpp \
test/fuzz/minisketch.cpp \
test/fuzz/mini_miner.cpp \
test/fuzz/muhash.cpp \
test/fuzz/multiplication_overflow.cpp \
test/fuzz/net.cpp \

366
src/node/mini_miner.cpp Normal file
View file

@ -0,0 +1,366 @@
// Copyright (c) 2023 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/mini_miner.h>
#include <consensus/amount.h>
#include <policy/feerate.h>
#include <primitives/transaction.h>
#include <timedata.h>
#include <util/check.h>
#include <util/moneystr.h>
#include <algorithm>
#include <numeric>
#include <utility>
namespace node {
MiniMiner::MiniMiner(const CTxMemPool& mempool, const std::vector<COutPoint>& outpoints)
{
LOCK(mempool.cs);
// Find which outpoints to calculate bump fees for.
// Anything that's spent by the mempool is to-be-replaced
// Anything otherwise unavailable just has a bump fee of 0
for (const auto& outpoint : outpoints) {
if (!mempool.exists(GenTxid::Txid(outpoint.hash))) {
// This UTXO is either confirmed or not yet submitted to mempool.
// If it's confirmed, no bump fee is required.
// If it's not yet submitted, we have no information, so return 0.
m_bump_fees.emplace(outpoint, 0);
continue;
}
// UXTO is created by transaction in mempool, add to map.
// Note: This will either create a missing entry or add the outpoint to an existing entry
m_requested_outpoints_by_txid[outpoint.hash].push_back(outpoint);
if (const auto ptx{mempool.GetConflictTx(outpoint)}) {
// This outpoint is already being spent by another transaction in the mempool. We
// assume that the caller wants to replace this transaction and its descendants. It
// would be unusual for the transaction to have descendants as the wallet wont normally
// attempt to replace transactions with descendants. If the outpoint is from a mempool
// transaction, we still need to calculate its ancestors bump fees (added to
// m_requested_outpoints_by_txid below), but after removing the to-be-replaced entries.
//
// Note that the descendants of a transaction include the transaction itself. Also note,
// that this is only calculating bump fees. RBF fee rules should be handled separately.
CTxMemPool::setEntries descendants;
mempool.CalculateDescendants(mempool.GetIter(ptx->GetHash()).value(), descendants);
for (const auto& desc_txiter : descendants) {
m_to_be_replaced.insert(desc_txiter->GetTx().GetHash());
}
}
}
// No unconfirmed UTXOs, so nothing mempool-related needs to be calculated.
if (m_requested_outpoints_by_txid.empty()) return;
// Calculate the cluster and construct the entry map.
std::vector<uint256> txids_needed;
txids_needed.reserve(m_requested_outpoints_by_txid.size());
for (const auto& [txid, _]: m_requested_outpoints_by_txid) {
txids_needed.push_back(txid);
}
const auto cluster = mempool.GatherClusters(txids_needed);
if (cluster.empty()) {
// An empty cluster means that at least one of the transactions is missing from the mempool
// (should not be possible given processing above) or DoS limit was hit.
m_ready_to_calculate = false;
return;
}
// Add every entry to m_entries_by_txid and m_entries, except the ones that will be replaced.
for (const auto& txiter : cluster) {
if (!m_to_be_replaced.count(txiter->GetTx().GetHash())) {
auto [mapiter, success] = m_entries_by_txid.emplace(txiter->GetTx().GetHash(), MiniMinerMempoolEntry(txiter));
m_entries.push_back(mapiter);
} else {
auto outpoints_it = m_requested_outpoints_by_txid.find(txiter->GetTx().GetHash());
if (outpoints_it != m_requested_outpoints_by_txid.end()) {
// This UTXO is the output of a to-be-replaced transaction. Bump fee is 0; spending
// this UTXO is impossible as it will no longer exist after the replacement.
for (const auto& outpoint : outpoints_it->second) {
m_bump_fees.emplace(outpoint, 0);
}
m_requested_outpoints_by_txid.erase(outpoints_it);
}
}
}
// Build the m_descendant_set_by_txid cache.
for (const auto& txiter : cluster) {
const auto& txid = txiter->GetTx().GetHash();
// Cache descendants for future use. Unlike the real mempool, a descendant MiniMinerMempoolEntry
// will not exist without its ancestor MiniMinerMempoolEntry, so these sets won't be invalidated.
std::vector<MockEntryMap::iterator> cached_descendants;
const bool remove{m_to_be_replaced.count(txid) > 0};
CTxMemPool::setEntries descendants;
mempool.CalculateDescendants(txiter, descendants);
Assume(descendants.count(txiter) > 0);
for (const auto& desc_txiter : descendants) {
const auto txid_desc = desc_txiter->GetTx().GetHash();
const bool remove_desc{m_to_be_replaced.count(txid_desc) > 0};
auto desc_it{m_entries_by_txid.find(txid_desc)};
Assume((desc_it == m_entries_by_txid.end()) == remove_desc);
if (remove) Assume(remove_desc);
// It's possible that remove=false but remove_desc=true.
if (!remove && !remove_desc) {
cached_descendants.push_back(desc_it);
}
}
if (remove) {
Assume(cached_descendants.empty());
} else {
m_descendant_set_by_txid.emplace(txid, cached_descendants);
}
}
// Release the mempool lock; we now have all the information we need for a subset of the entries
// we care about. We will solely operate on the MiniMinerMempoolEntry map from now on.
Assume(m_in_block.empty());
Assume(m_requested_outpoints_by_txid.size() <= outpoints.size());
SanityCheck();
}
// Compare by min(ancestor feerate, individual feerate), then iterator
//
// Under the ancestor-based mining approach, high-feerate children can pay for parents, but high-feerate
// parents do not incentive inclusion of their children. Therefore the mining algorithm only considers
// transactions for inclusion on basis of the minimum of their own feerate or their ancestor feerate.
struct AncestorFeerateComparator
{
template<typename I>
bool operator()(const I& a, const I& b) const {
auto min_feerate = [](const MiniMinerMempoolEntry& e) -> CFeeRate {
const CAmount ancestor_fee{e.GetModFeesWithAncestors()};
const int64_t ancestor_size{e.GetSizeWithAncestors()};
const CAmount tx_fee{e.GetModifiedFee()};
const int64_t tx_size{e.GetTxSize()};
// Comparing ancestor feerate with individual feerate:
// ancestor_fee / ancestor_size <= tx_fee / tx_size
// Avoid division and possible loss of precision by
// multiplying both sides by the sizes:
return ancestor_fee * tx_size < tx_fee * ancestor_size ?
CFeeRate(ancestor_fee, ancestor_size) :
CFeeRate(tx_fee, tx_size);
};
CFeeRate a_feerate{min_feerate(a->second)};
CFeeRate b_feerate{min_feerate(b->second)};
if (a_feerate != b_feerate) {
return a_feerate > b_feerate;
}
// Use txid as tiebreaker for stable sorting
return a->first < b->first;
}
};
void MiniMiner::DeleteAncestorPackage(const std::set<MockEntryMap::iterator, IteratorComparator>& ancestors)
{
Assume(ancestors.size() >= 1);
// "Mine" all transactions in this ancestor set.
for (auto& anc : ancestors) {
Assume(m_in_block.count(anc->first) == 0);
m_in_block.insert(anc->first);
m_total_fees += anc->second.GetModifiedFee();
m_total_vsize += anc->second.GetTxSize();
auto it = m_descendant_set_by_txid.find(anc->first);
// Each entrys descendant set includes itself
Assume(it != m_descendant_set_by_txid.end());
for (auto& descendant : it->second) {
// If these fail, we must be double-deducting.
Assume(descendant->second.GetModFeesWithAncestors() >= anc->second.GetModifiedFee());
Assume(descendant->second.vsize_with_ancestors >= anc->second.GetTxSize());
descendant->second.fee_with_ancestors -= anc->second.GetModifiedFee();
descendant->second.vsize_with_ancestors -= anc->second.GetTxSize();
}
}
// Delete these entries.
for (const auto& anc : ancestors) {
m_descendant_set_by_txid.erase(anc->first);
// The above loop should have deducted each ancestor's size and fees from each of their
// respective descendants exactly once.
Assume(anc->second.GetModFeesWithAncestors() == 0);
Assume(anc->second.GetSizeWithAncestors() == 0);
auto vec_it = std::find(m_entries.begin(), m_entries.end(), anc);
Assume(vec_it != m_entries.end());
m_entries.erase(vec_it);
m_entries_by_txid.erase(anc);
}
}
void MiniMiner::SanityCheck() const
{
// m_entries, m_entries_by_txid, and m_descendant_set_by_txid all same size
Assume(m_entries.size() == m_entries_by_txid.size());
Assume(m_entries.size() == m_descendant_set_by_txid.size());
// Cached ancestor values should be at least as large as the transaction's own fee and size
Assume(std::all_of(m_entries.begin(), m_entries.end(), [](const auto& entry) {
return entry->second.GetSizeWithAncestors() >= entry->second.GetTxSize() &&
entry->second.GetModFeesWithAncestors() >= entry->second.GetModifiedFee();}));
// None of the entries should be to-be-replaced transactions
Assume(std::all_of(m_to_be_replaced.begin(), m_to_be_replaced.end(),
[&](const auto& txid){return m_entries_by_txid.find(txid) == m_entries_by_txid.end();}));
}
void MiniMiner::BuildMockTemplate(const CFeeRate& target_feerate)
{
while (!m_entries_by_txid.empty()) {
// Sort again, since transaction removal may change some m_entries' ancestor feerates.
std::sort(m_entries.begin(), m_entries.end(), AncestorFeerateComparator());
// Pick highest ancestor feerate entry.
auto best_iter = m_entries.begin();
Assume(best_iter != m_entries.end());
const auto ancestor_package_size = (*best_iter)->second.GetSizeWithAncestors();
const auto ancestor_package_fee = (*best_iter)->second.GetModFeesWithAncestors();
// Stop here. Everything that didn't "make it into the block" has bumpfee.
if (ancestor_package_fee < target_feerate.GetFee(ancestor_package_size)) {
break;
}
// Calculate ancestors on the fly. This lookup should be fairly cheap, and ancestor sets
// change at every iteration, so this is more efficient than maintaining a cache.
std::set<MockEntryMap::iterator, IteratorComparator> ancestors;
{
std::set<MockEntryMap::iterator, IteratorComparator> to_process;
to_process.insert(*best_iter);
while (!to_process.empty()) {
auto iter = to_process.begin();
Assume(iter != to_process.end());
ancestors.insert(*iter);
for (const auto& input : (*iter)->second.GetTx().vin) {
if (auto parent_it{m_entries_by_txid.find(input.prevout.hash)}; parent_it != m_entries_by_txid.end()) {
if (ancestors.count(parent_it) == 0) {
to_process.insert(parent_it);
}
}
}
to_process.erase(iter);
}
}
DeleteAncestorPackage(ancestors);
SanityCheck();
}
Assume(m_in_block.empty() || m_total_fees >= target_feerate.GetFee(m_total_vsize));
// Do not try to continue building the block template with a different feerate.
m_ready_to_calculate = false;
}
std::map<COutPoint, CAmount> MiniMiner::CalculateBumpFees(const CFeeRate& target_feerate)
{
if (!m_ready_to_calculate) return {};
// Build a block template until the target feerate is hit.
BuildMockTemplate(target_feerate);
// Each transaction that "made it into the block" has a bumpfee of 0, i.e. they are part of an
// ancestor package with at least the target feerate and don't need to be bumped.
for (const auto& txid : m_in_block) {
// Not all of the block transactions were necessarily requested.
auto it = m_requested_outpoints_by_txid.find(txid);
if (it != m_requested_outpoints_by_txid.end()) {
for (const auto& outpoint : it->second) {
m_bump_fees.emplace(outpoint, 0);
}
m_requested_outpoints_by_txid.erase(it);
}
}
// A transactions and its ancestors will only be picked into a block when
// both the ancestor set feerate and the individual feerate meet the target
// feerate.
//
// We had to convince ourselves that after running the mini miner and
// picking all eligible transactions into our MockBlockTemplate, there
// could still be transactions remaining that have a lower individual
// feerate than their ancestor feerate. So here is an example:
//
// ┌─────────────────┐
// │ │
// │ Grandparent │
// │ 1700 vB │
// │ 1700 sats │ Target feerate: 10 s/vB
// │ 1 s/vB │ GP Ancestor Set Feerate (ASFR): 1 s/vB
// │ │ P1_ASFR: 9.84s/vB
// └──────▲───▲──────┘ P2_ASFR: 2.47 s/vB
// │ │ C_ASFR: 10.27 s/vB
// ┌───────────────┐ │ │ ┌──────────────┐
// │ ├────┘ └────┤ │ ⇒ C_FR < TFR < C_ASFR
// │ Parent 1 │ │ Parent 2 │
// │ 200 vB │ │ 200 vB │
// │ 17000 sats │ │ 3000 sats │
// │ 85 s/vB │ │ 15 s/vB │
// │ │ │ │
// └───────────▲───┘ └───▲──────────┘
// │ │
// │ ┌───────────┐ │
// └────┤ ├────┘
// │ Child │
// │ 100 vB │
// │ 900 sats │
// │ 9 s/vB │
// │ │
// └───────────┘
//
// We therefore calculate both the bump fee that is necessary to elevate
// the individual transaction to the target feerate:
// target_feerate × tx_size - tx_fees
// and the bump fee that is necessary to bump the entire ancestor set to
// the target feerate:
// target_feerate × ancestor_set_size - ancestor_set_fees
// By picking the maximum from the two, we ensure that a transaction meets
// both criteria.
for (const auto& [txid, outpoints] : m_requested_outpoints_by_txid) {
auto it = m_entries_by_txid.find(txid);
Assume(it != m_entries_by_txid.end());
if (it != m_entries_by_txid.end()) {
Assume(target_feerate.GetFee(it->second.GetSizeWithAncestors()) > std::min(it->second.GetModifiedFee(), it->second.GetModFeesWithAncestors()));
CAmount bump_fee_with_ancestors = target_feerate.GetFee(it->second.GetSizeWithAncestors()) - it->second.GetModFeesWithAncestors();
CAmount bump_fee_individual = target_feerate.GetFee(it->second.GetTxSize()) - it->second.GetModifiedFee();
const CAmount bump_fee{std::max(bump_fee_with_ancestors, bump_fee_individual)};
Assume(bump_fee >= 0);
for (const auto& outpoint : outpoints) {
m_bump_fees.emplace(outpoint, bump_fee);
}
}
}
return m_bump_fees;
}
std::optional<CAmount> MiniMiner::CalculateTotalBumpFees(const CFeeRate& target_feerate)
{
if (!m_ready_to_calculate) return std::nullopt;
// Build a block template until the target feerate is hit.
BuildMockTemplate(target_feerate);
// All remaining ancestors that are not part of m_in_block must be bumped, but no other relatives
std::set<MockEntryMap::iterator, IteratorComparator> ancestors;
std::set<MockEntryMap::iterator, IteratorComparator> to_process;
for (const auto& [txid, outpoints] : m_requested_outpoints_by_txid) {
// Skip any ancestors that already have a miner score higher than the target feerate
// (already "made it" into the block)
if (m_in_block.count(txid)) continue;
auto iter = m_entries_by_txid.find(txid);
if (iter == m_entries_by_txid.end()) continue;
to_process.insert(iter);
ancestors.insert(iter);
}
while (!to_process.empty()) {
auto iter = to_process.begin();
const CTransaction& tx = (*iter)->second.GetTx();
for (const auto& input : tx.vin) {
if (auto parent_it{m_entries_by_txid.find(input.prevout.hash)}; parent_it != m_entries_by_txid.end()) {
to_process.insert(parent_it);
ancestors.insert(parent_it);
}
}
to_process.erase(iter);
}
const auto ancestor_package_size = std::accumulate(ancestors.cbegin(), ancestors.cend(), int64_t{0},
[](int64_t sum, const auto it) {return sum + it->second.GetTxSize();});
const auto ancestor_package_fee = std::accumulate(ancestors.cbegin(), ancestors.cend(), CAmount{0},
[](CAmount sum, const auto it) {return sum + it->second.GetModifiedFee();});
return target_feerate.GetFee(ancestor_package_size) - ancestor_package_fee;
}
} // namespace node

121
src/node/mini_miner.h Normal file
View file

@ -0,0 +1,121 @@
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NODE_MINI_MINER_H
#define BITCOIN_NODE_MINI_MINER_H
#include <txmempool.h>
#include <memory>
#include <optional>
#include <stdint.h>
namespace node {
// Container for tracking updates to ancestor feerate as we include ancestors in the "block"
class MiniMinerMempoolEntry
{
const CAmount fee_individual;
const CTransactionRef tx;
const int64_t vsize_individual;
// This class must be constructed while holding mempool.cs. After construction, the object's
// methods can be called without holding that lock.
public:
CAmount fee_with_ancestors;
int64_t vsize_with_ancestors;
explicit MiniMinerMempoolEntry(CTxMemPool::txiter entry) :
fee_individual{entry->GetModifiedFee()},
tx{entry->GetSharedTx()},
vsize_individual(entry->GetTxSize()),
fee_with_ancestors{entry->GetModFeesWithAncestors()},
vsize_with_ancestors(entry->GetSizeWithAncestors())
{ }
CAmount GetModifiedFee() const { return fee_individual; }
CAmount GetModFeesWithAncestors() const { return fee_with_ancestors; }
int64_t GetTxSize() const { return vsize_individual; }
int64_t GetSizeWithAncestors() const { return vsize_with_ancestors; }
const CTransaction& GetTx() const LIFETIMEBOUND { return *tx; }
};
// Comparator needed for std::set<MockEntryMap::iterator>
struct IteratorComparator
{
template<typename I>
bool operator()(const I& a, const I& b) const
{
return &(*a) < &(*b);
}
};
/** A minimal version of BlockAssembler. Allows us to run the mining algorithm on a subset of
* mempool transactions, ignoring consensus rules, to calculate mining scores. */
class MiniMiner
{
// When true, a caller may use CalculateBumpFees(). Becomes false if we failed to retrieve
// mempool entries (i.e. cluster size too large) or bump fees have already been calculated.
bool m_ready_to_calculate{true};
// Set once per lifetime, fill in during initialization.
// txids of to-be-replaced transactions
std::set<uint256> m_to_be_replaced;
// If multiple argument outpoints correspond to the same transaction, cache them together in
// a single entry indexed by txid. Then we can just work with txids since all outpoints from
// the same tx will have the same bumpfee. Excludes non-mempool transactions.
std::map<uint256, std::vector<COutPoint>> m_requested_outpoints_by_txid;
// What we're trying to calculate.
std::map<COutPoint, CAmount> m_bump_fees;
// The constructed block template
std::set<uint256> m_in_block;
// Information on the current status of the block
CAmount m_total_fees{0};
int32_t m_total_vsize{0};
/** Main data structure holding the entries, can be indexed by txid */
std::map<uint256, MiniMinerMempoolEntry> m_entries_by_txid;
using MockEntryMap = decltype(m_entries_by_txid);
/** Vector of entries, can be sorted by ancestor feerate. */
std::vector<MockEntryMap::iterator> m_entries;
/** Map of txid to its descendants. Should be inclusive. */
std::map<uint256, std::vector<MockEntryMap::iterator>> m_descendant_set_by_txid;
/** Consider this ancestor package "mined" so remove all these entries from our data structures. */
void DeleteAncestorPackage(const std::set<MockEntryMap::iterator, IteratorComparator>& ancestors);
/** Perform some checks. */
void SanityCheck() const;
public:
/** Returns true if CalculateBumpFees may be called, false if not. */
bool IsReadyToCalculate() const { return m_ready_to_calculate; }
/** Build a block template until the target feerate is hit. */
void BuildMockTemplate(const CFeeRate& target_feerate);
/** Returns set of txids in the block template if one has been constructed. */
std::set<uint256> GetMockTemplateTxids() const { return m_in_block; }
MiniMiner(const CTxMemPool& mempool, const std::vector<COutPoint>& outpoints);
/** Construct a new block template and, for each outpoint corresponding to a transaction that
* did not make it into the block, calculate the cost of bumping those transactions (and their
* ancestors) to the minimum feerate. Returns a map from outpoint to bump fee, or an empty map
* if they cannot be calculated. */
std::map<COutPoint, CAmount> CalculateBumpFees(const CFeeRate& target_feerate);
/** Construct a new block template and, calculate the cost of bumping all transactions that did
* not make it into the block to the target feerate. Returns the total bump fee, or std::nullopt
* if it cannot be calculated. */
std::optional<CAmount> CalculateTotalBumpFees(const CFeeRate& target_feerate);
};
} // namespace node
#endif // BITCOIN_NODE_MINI_MINER_H

View file

@ -0,0 +1,192 @@
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/fuzz/util/mempool.h>
#include <test/util/script.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <test/util/mining.h>
#include <node/mini_miner.h>
#include <node/miner.h>
#include <primitives/transaction.h>
#include <random.h>
#include <txmempool.h>
#include <deque>
#include <vector>
namespace {
const TestingSetup* g_setup;
std::deque<COutPoint> g_available_coins;
void initialize_miner()
{
static const auto testing_setup = MakeNoLogFileContext<const TestingSetup>();
g_setup = testing_setup.get();
for (uint32_t i = 0; i < uint32_t{100}; ++i) {
g_available_coins.push_back(COutPoint{uint256::ZERO, i});
}
}
// Test that the MiniMiner can run with various outpoints and feerates.
FUZZ_TARGET_INIT(mini_miner, initialize_miner)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
CTxMemPool pool{CTxMemPool::Options{}};
std::vector<COutPoint> outpoints;
std::deque<COutPoint> available_coins = g_available_coins;
LOCK2(::cs_main, pool.cs);
// Cluster size cannot exceed 500
LIMITED_WHILE(!available_coins.empty(), 500)
{
CMutableTransaction mtx = CMutableTransaction();
const size_t num_inputs = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, available_coins.size());
const size_t num_outputs = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, 50);
for (size_t n{0}; n < num_inputs; ++n) {
auto prevout = available_coins.front();
mtx.vin.push_back(CTxIn(prevout, CScript()));
available_coins.pop_front();
}
for (uint32_t n{0}; n < num_outputs; ++n) {
mtx.vout.push_back(CTxOut(100, P2WSH_OP_TRUE));
}
CTransactionRef tx = MakeTransactionRef(mtx);
TestMemPoolEntryHelper entry;
const CAmount fee{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/100000)};
assert(MoneyRange(fee));
pool.addUnchecked(entry.Fee(fee).FromTx(tx));
// All outputs are available to spend
for (uint32_t n{0}; n < num_outputs; ++n) {
if (fuzzed_data_provider.ConsumeBool()) {
available_coins.push_back(COutPoint{tx->GetHash(), n});
}
}
if (fuzzed_data_provider.ConsumeBool() && !tx->vout.empty()) {
// Add outpoint from this tx (may or not be spent by a later tx)
outpoints.push_back(COutPoint{tx->GetHash(),
(uint32_t)fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, tx->vout.size())});
} else {
// Add some random outpoint (will be interpreted as confirmed or not yet submitted
// to mempool).
auto outpoint = ConsumeDeserializable<COutPoint>(fuzzed_data_provider);
if (outpoint.has_value() && std::find(outpoints.begin(), outpoints.end(), *outpoint) == outpoints.end()) {
outpoints.push_back(*outpoint);
}
}
}
const CFeeRate target_feerate{CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/1000)}};
std::optional<CAmount> total_bumpfee;
CAmount sum_fees = 0;
{
node::MiniMiner mini_miner{pool, outpoints};
assert(mini_miner.IsReadyToCalculate());
const auto bump_fees = mini_miner.CalculateBumpFees(target_feerate);
for (const auto& outpoint : outpoints) {
auto it = bump_fees.find(outpoint);
assert(it != bump_fees.end());
assert(it->second >= 0);
sum_fees += it->second;
}
assert(!mini_miner.IsReadyToCalculate());
}
{
node::MiniMiner mini_miner{pool, outpoints};
assert(mini_miner.IsReadyToCalculate());
total_bumpfee = mini_miner.CalculateTotalBumpFees(target_feerate);
assert(total_bumpfee.has_value());
assert(!mini_miner.IsReadyToCalculate());
}
// Overlapping ancestry across multiple outpoints can only reduce the total bump fee.
assert (sum_fees >= *total_bumpfee);
}
// Test that MiniMiner and BlockAssembler build the same block given the same transactions and constraints.
FUZZ_TARGET_INIT(mini_miner_selection, initialize_miner)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
CTxMemPool pool{CTxMemPool::Options{}};
// Make a copy to preserve determinism.
std::deque<COutPoint> available_coins = g_available_coins;
std::vector<CTransactionRef> transactions;
LOCK2(::cs_main, pool.cs);
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 100)
{
CMutableTransaction mtx = CMutableTransaction();
const size_t num_inputs = 2;
const size_t num_outputs = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(2, 5);
for (size_t n{0}; n < num_inputs; ++n) {
auto prevout = available_coins.front();
mtx.vin.push_back(CTxIn(prevout, CScript()));
available_coins.pop_front();
}
for (uint32_t n{0}; n < num_outputs; ++n) {
mtx.vout.push_back(CTxOut(100, P2WSH_OP_TRUE));
}
CTransactionRef tx = MakeTransactionRef(mtx);
// First 2 outputs are available to spend. The rest are added to outpoints to calculate bumpfees.
// There is no overlap between spendable coins and outpoints passed to MiniMiner because the
// MiniMiner interprets spent coins as to-be-replaced and excludes them.
for (uint32_t n{0}; n < num_outputs - 1; ++n) {
if (fuzzed_data_provider.ConsumeBool()) {
available_coins.push_front(COutPoint{tx->GetHash(), n});
} else {
available_coins.push_back(COutPoint{tx->GetHash(), n});
}
}
// Stop if pool reaches DEFAULT_BLOCK_MAX_WEIGHT because BlockAssembler will stop when the
// block template reaches that, but the MiniMiner will keep going.
if (pool.GetTotalTxSize() + GetVirtualTransactionSize(*tx) >= DEFAULT_BLOCK_MAX_WEIGHT) break;
TestMemPoolEntryHelper entry;
const CAmount fee{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/100000)};
assert(MoneyRange(fee));
pool.addUnchecked(entry.Fee(fee).FromTx(tx));
transactions.push_back(tx);
}
std::vector<COutPoint> outpoints;
for (const auto& coin : g_available_coins) {
if (!pool.GetConflictTx(coin)) outpoints.push_back(coin);
}
for (const auto& tx : transactions) {
assert(pool.exists(GenTxid::Txid(tx->GetHash())));
for (uint32_t n{0}; n < tx->vout.size(); ++n) {
COutPoint coin{tx->GetHash(), n};
if (!pool.GetConflictTx(coin)) outpoints.push_back(coin);
}
}
const CFeeRate target_feerate{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/100000)};
node::BlockAssembler::Options miner_options;
miner_options.blockMinFeeRate = target_feerate;
miner_options.nBlockMaxWeight = DEFAULT_BLOCK_MAX_WEIGHT;
miner_options.test_block_validity = false;
node::BlockAssembler miner{g_setup->m_node.chainman->ActiveChainstate(), &pool, miner_options};
node::MiniMiner mini_miner{pool, outpoints};
assert(mini_miner.IsReadyToCalculate());
CScript spk_placeholder = CScript() << OP_0;
// Use BlockAssembler as oracle. BlockAssembler and MiniMiner should select the same
// transactions, stopping once packages do not meet target_feerate.
const auto blocktemplate{miner.CreateNewBlock(spk_placeholder)};
mini_miner.BuildMockTemplate(target_feerate);
assert(!mini_miner.IsReadyToCalculate());
auto mock_template_txids = mini_miner.GetMockTemplateTxids();
// MiniMiner doesn't add a coinbase tx.
assert(mock_template_txids.count(blocktemplate->block.vtx[0]->GetHash()) == 0);
mock_template_txids.emplace(blocktemplate->block.vtx[0]->GetHash());
assert(mock_template_txids.size() <= blocktemplate->block.vtx.size());
assert(mock_template_txids.size() >= blocktemplate->block.vtx.size());
assert(mock_template_txids.size() == blocktemplate->block.vtx.size());
for (const auto& tx : blocktemplate->block.vtx) {
assert(mock_template_txids.count(tx->GetHash()));
}
}
} // namespace

View file

@ -0,0 +1,477 @@
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <node/mini_miner.h>
#include <txmempool.h>
#include <util/system.h>
#include <util/time.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <boost/test/unit_test.hpp>
#include <optional>
#include <vector>
BOOST_FIXTURE_TEST_SUITE(miniminer_tests, TestingSetup)
static inline CTransactionRef make_tx(const std::vector<COutPoint>& inputs, size_t num_outputs)
{
CMutableTransaction tx = CMutableTransaction();
tx.vin.resize(inputs.size());
tx.vout.resize(num_outputs);
for (size_t i = 0; i < inputs.size(); ++i) {
tx.vin[i].prevout = inputs[i];
}
for (size_t i = 0; i < num_outputs; ++i) {
tx.vout[i].scriptPubKey = CScript() << OP_11 << OP_EQUAL;
// The actual input and output values of these transactions don't really
// matter, since all accounting will use the entries' cached fees.
tx.vout[i].nValue = COIN;
}
return MakeTransactionRef(tx);
}
static inline bool sanity_check(const std::vector<CTransactionRef>& transactions,
const std::map<COutPoint, CAmount>& bumpfees)
{
// No negative bumpfees.
for (const auto& [outpoint, fee] : bumpfees) {
if (fee < 0) return false;
if (fee == 0) continue;
auto outpoint_ = outpoint; // structured bindings can't be captured in C++17, so we need to use a variable
const bool found = std::any_of(transactions.cbegin(), transactions.cend(), [&](const auto& tx) {
return outpoint_.hash == tx->GetHash() && outpoint_.n < tx->vout.size();
});
if (!found) return false;
}
for (const auto& tx : transactions) {
// If tx has multiple outputs, they must all have the same bumpfee (if they exist).
if (tx->vout.size() > 1) {
std::set<CAmount> distinct_bumpfees;
for (size_t i{0}; i < tx->vout.size(); ++i) {
const auto bumpfee = bumpfees.find(COutPoint{tx->GetHash(), static_cast<uint32_t>(i)});
if (bumpfee != bumpfees.end()) distinct_bumpfees.insert(bumpfee->second);
}
if (distinct_bumpfees.size() > 1) return false;
}
}
return true;
}
template <typename Key, typename Value>
Value Find(const std::map<Key, Value>& map, const Key& key)
{
auto it = map.find(key);
BOOST_CHECK_MESSAGE(it != map.end(), strprintf("Cannot find %s", key.ToString()));
return it->second;
}
BOOST_FIXTURE_TEST_CASE(miniminer_1p1c, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(::cs_main, pool.cs);
TestMemPoolEntryHelper entry;
const CAmount low_fee{CENT/2000};
const CAmount normal_fee{CENT/200};
const CAmount high_fee{CENT/10};
// Create a parent tx1 and child tx2 with normal fees:
const auto tx1 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(normal_fee).FromTx(tx1));
const auto tx2 = make_tx({COutPoint{tx1->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(normal_fee).FromTx(tx2));
// Create a low-feerate parent tx3 and high-feerate child tx4 (cpfp)
const auto tx3 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx3));
const auto tx4 = make_tx({COutPoint{tx3->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx4));
// Create a parent tx5 and child tx6 where both have low fees
const auto tx5 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx5));
const auto tx6 = make_tx({COutPoint{tx5->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx6));
// Make tx6's modified fee much higher than its base fee. This should cause it to pass
// the fee-related checks despite being low-feerate.
pool.PrioritiseTransaction(tx6->GetHash(), CENT/100);
// Create a high-feerate parent tx7, low-feerate child tx8
const auto tx7 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx7));
const auto tx8 = make_tx({COutPoint{tx7->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx8));
std::vector<COutPoint> all_unspent_outpoints({
COutPoint{tx1->GetHash(), 1},
COutPoint{tx2->GetHash(), 0},
COutPoint{tx3->GetHash(), 1},
COutPoint{tx4->GetHash(), 0},
COutPoint{tx5->GetHash(), 1},
COutPoint{tx6->GetHash(), 0},
COutPoint{tx7->GetHash(), 1},
COutPoint{tx8->GetHash(), 0}
});
for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
std::vector<COutPoint> all_spent_outpoints({
COutPoint{tx1->GetHash(), 0},
COutPoint{tx3->GetHash(), 0},
COutPoint{tx5->GetHash(), 0},
COutPoint{tx7->GetHash(), 0}
});
for (const auto& outpoint : all_spent_outpoints) BOOST_CHECK(pool.GetConflictTx(outpoint) != nullptr);
std::vector<COutPoint> all_parent_outputs({
COutPoint{tx1->GetHash(), 0},
COutPoint{tx1->GetHash(), 1},
COutPoint{tx3->GetHash(), 0},
COutPoint{tx3->GetHash(), 1},
COutPoint{tx5->GetHash(), 0},
COutPoint{tx5->GetHash(), 1},
COutPoint{tx7->GetHash(), 0},
COutPoint{tx7->GetHash(), 1}
});
std::vector<CTransactionRef> all_transactions{tx1, tx2, tx3, tx4, tx5, tx6, tx7, tx8};
struct TxDimensions {
size_t vsize; CAmount mod_fee; CFeeRate feerate;
};
std::map<uint256, TxDimensions> tx_dims;
for (const auto& tx : all_transactions) {
const auto it = pool.GetIter(tx->GetHash()).value();
tx_dims.emplace(tx->GetHash(), TxDimensions{it->GetTxSize(), it->GetModifiedFee(),
CFeeRate(it->GetModifiedFee(), it->GetTxSize())});
}
const std::vector<CFeeRate> various_normal_feerates({CFeeRate(0), CFeeRate(500), CFeeRate(999),
CFeeRate(1000), CFeeRate(2000), CFeeRate(2500),
CFeeRate(3333), CFeeRate(7800), CFeeRate(11199),
CFeeRate(23330), CFeeRate(50000), CFeeRate(5*CENT)});
// All nonexistent entries have a bumpfee of zero, regardless of feerate
std::vector<COutPoint> nonexistent_outpoints({ COutPoint{GetRandHash(), 0}, COutPoint{GetRandHash(), 3} });
for (const auto& outpoint : nonexistent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
for (const auto& feerate : various_normal_feerates) {
node::MiniMiner mini_miner(pool, nonexistent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(feerate);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
BOOST_CHECK(bump_fees.size() == nonexistent_outpoints.size());
for (const auto& outpoint: nonexistent_outpoints) {
auto it = bump_fees.find(outpoint);
BOOST_CHECK(it != bump_fees.end());
BOOST_CHECK_EQUAL(it->second, 0);
}
}
// Gather bump fees for all available UTXOs.
for (const auto& target_feerate : various_normal_feerates) {
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
// Check tx1 bumpfee: no other bumper.
const TxDimensions& tx1_dimensions = tx_dims.find(tx1->GetHash())->second;
CAmount bumpfee1 = Find(bump_fees, COutPoint{tx1->GetHash(), 1});
if (target_feerate <= tx1_dimensions.feerate) {
BOOST_CHECK_EQUAL(bumpfee1, 0);
} else {
// Difference is fee to bump tx1 from current to target feerate.
BOOST_CHECK_EQUAL(bumpfee1, target_feerate.GetFee(tx1_dimensions.vsize) - tx1_dimensions.mod_fee);
}
// Check tx3 bumpfee: assisted by tx4.
const TxDimensions& tx3_dimensions = tx_dims.find(tx3->GetHash())->second;
const TxDimensions& tx4_dimensions = tx_dims.find(tx4->GetHash())->second;
const CFeeRate tx3_feerate = CFeeRate(tx3_dimensions.mod_fee + tx4_dimensions.mod_fee, tx3_dimensions.vsize + tx4_dimensions.vsize);
CAmount bumpfee3 = Find(bump_fees, COutPoint{tx3->GetHash(), 1});
if (target_feerate <= tx3_feerate) {
// As long as target feerate is below tx4's ancestor feerate, there is no bump fee.
BOOST_CHECK_EQUAL(bumpfee3, 0);
} else {
// Difference is fee to bump tx3 from current to target feerate, without tx4.
BOOST_CHECK_EQUAL(bumpfee3, target_feerate.GetFee(tx3_dimensions.vsize) - tx3_dimensions.mod_fee);
}
// If tx6s modified fees are sufficient for tx5 and tx6 to be picked
// into the block, our prospective new transaction would not need to
// bump tx5 when using tx5s second output. If however even tx6s
// modified fee (which essentially indicates "effective feerate") is
// not sufficient to bump tx5, using the second output of tx5 would
// require our transaction to bump tx5 from scratch since we evaluate
// transaction packages per ancestor sets and do not consider multiple
// childrens fees.
const TxDimensions& tx5_dimensions = tx_dims.find(tx5->GetHash())->second;
const TxDimensions& tx6_dimensions = tx_dims.find(tx6->GetHash())->second;
const CFeeRate tx5_feerate = CFeeRate(tx5_dimensions.mod_fee + tx6_dimensions.mod_fee, tx5_dimensions.vsize + tx6_dimensions.vsize);
CAmount bumpfee5 = Find(bump_fees, COutPoint{tx5->GetHash(), 1});
if (target_feerate <= tx5_feerate) {
// As long as target feerate is below tx6's ancestor feerate, there is no bump fee.
BOOST_CHECK_EQUAL(bumpfee5, 0);
} else {
// Difference is fee to bump tx5 from current to target feerate, without tx6.
BOOST_CHECK_EQUAL(bumpfee5, target_feerate.GetFee(tx5_dimensions.vsize) - tx5_dimensions.mod_fee);
}
}
// Spent outpoints should usually not be requested as they would not be
// considered available. However, when they are explicitly requested, we
// can calculate their bumpfee to facilitate RBF-replacements
for (const auto& target_feerate : various_normal_feerates) {
node::MiniMiner mini_miner_all_spent(pool, all_spent_outpoints);
BOOST_CHECK(mini_miner_all_spent.IsReadyToCalculate());
auto bump_fees_all_spent = mini_miner_all_spent.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner_all_spent.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees_all_spent.size(), all_spent_outpoints.size());
node::MiniMiner mini_miner_all_parents(pool, all_parent_outputs);
BOOST_CHECK(mini_miner_all_parents.IsReadyToCalculate());
auto bump_fees_all_parents = mini_miner_all_parents.CalculateBumpFees(target_feerate);
BOOST_CHECK(!mini_miner_all_parents.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees_all_parents.size(), all_parent_outputs.size());
for (auto& bump_fees : {bump_fees_all_parents, bump_fees_all_spent}) {
// For all_parents case, both outputs from the parent should have the same bump fee,
// even though only one of them is in a to-be-replaced transaction.
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
// Check tx1 bumpfee: no other bumper.
const TxDimensions& tx1_dimensions = tx_dims.find(tx1->GetHash())->second;
CAmount it1_spent = Find(bump_fees, COutPoint{tx1->GetHash(), 0});
if (target_feerate <= tx1_dimensions.feerate) {
BOOST_CHECK_EQUAL(it1_spent, 0);
} else {
// Difference is fee to bump tx1 from current to target feerate.
BOOST_CHECK_EQUAL(it1_spent, target_feerate.GetFee(tx1_dimensions.vsize) - tx1_dimensions.mod_fee);
}
// Check tx3 bumpfee: no other bumper, because tx4 is to-be-replaced.
const TxDimensions& tx3_dimensions = tx_dims.find(tx3->GetHash())->second;
const CFeeRate tx3_feerate_unbumped = tx3_dimensions.feerate;
auto it3_spent = Find(bump_fees, COutPoint{tx3->GetHash(), 0});
if (target_feerate <= tx3_feerate_unbumped) {
BOOST_CHECK_EQUAL(it3_spent, 0);
} else {
// Difference is fee to bump tx3 from current to target feerate, without tx4.
BOOST_CHECK_EQUAL(it3_spent, target_feerate.GetFee(tx3_dimensions.vsize) - tx3_dimensions.mod_fee);
}
// Check tx5 bumpfee: no other bumper, because tx6 is to-be-replaced.
const TxDimensions& tx5_dimensions = tx_dims.find(tx5->GetHash())->second;
const CFeeRate tx5_feerate_unbumped = tx5_dimensions.feerate;
auto it5_spent = Find(bump_fees, COutPoint{tx5->GetHash(), 0});
if (target_feerate <= tx5_feerate_unbumped) {
BOOST_CHECK_EQUAL(it5_spent, 0);
} else {
// Difference is fee to bump tx5 from current to target feerate, without tx6.
BOOST_CHECK_EQUAL(it5_spent, target_feerate.GetFee(tx5_dimensions.vsize) - tx5_dimensions.mod_fee);
}
}
}
}
BOOST_FIXTURE_TEST_CASE(miniminer_overlap, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(::cs_main, pool.cs);
TestMemPoolEntryHelper entry;
const CAmount low_fee{CENT/2000};
const CAmount med_fee{CENT/200};
const CAmount high_fee{CENT/10};
// Create 3 parents of different feerates, and 1 child spending from all 3.
const auto tx1 = make_tx({COutPoint{m_coinbase_txns[0]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx1));
const auto tx2 = make_tx({COutPoint{m_coinbase_txns[1]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx2));
const auto tx3 = make_tx({COutPoint{m_coinbase_txns[2]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx3));
const auto tx4 = make_tx({COutPoint{tx1->GetHash(), 0}, COutPoint{tx2->GetHash(), 0}, COutPoint{tx3->GetHash(), 0}}, /*num_outputs=*/3);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx4));
// Create 1 grandparent and 1 parent, then 2 children.
const auto tx5 = make_tx({COutPoint{m_coinbase_txns[3]->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx5));
const auto tx6 = make_tx({COutPoint{tx5->GetHash(), 0}}, /*num_outputs=*/3);
pool.addUnchecked(entry.Fee(low_fee).FromTx(tx6));
const auto tx7 = make_tx({COutPoint{tx6->GetHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(med_fee).FromTx(tx7));
const auto tx8 = make_tx({COutPoint{tx6->GetHash(), 1}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(high_fee).FromTx(tx8));
std::vector<CTransactionRef> all_transactions{tx1, tx2, tx3, tx4, tx5, tx6, tx7, tx8};
std::vector<int64_t> tx_vsizes;
tx_vsizes.reserve(all_transactions.size());
for (const auto& tx : all_transactions) tx_vsizes.push_back(GetVirtualTransactionSize(*tx));
std::vector<COutPoint> all_unspent_outpoints({
COutPoint{tx1->GetHash(), 1},
COutPoint{tx2->GetHash(), 1},
COutPoint{tx3->GetHash(), 1},
COutPoint{tx4->GetHash(), 0},
COutPoint{tx4->GetHash(), 1},
COutPoint{tx4->GetHash(), 2},
COutPoint{tx5->GetHash(), 1},
COutPoint{tx6->GetHash(), 2},
COutPoint{tx7->GetHash(), 0},
COutPoint{tx8->GetHash(), 0}
});
for (const auto& outpoint : all_unspent_outpoints) BOOST_CHECK(!pool.isSpent(outpoint));
const auto tx3_feerate = CFeeRate(high_fee, tx_vsizes[2]);
const auto tx4_feerate = CFeeRate(high_fee, tx_vsizes[3]);
// tx4's feerate is lower than tx3's. same fee, different weight.
BOOST_CHECK(tx3_feerate > tx4_feerate);
const auto tx4_anc_feerate = CFeeRate(low_fee + med_fee + high_fee, tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[3]);
const auto tx5_feerate = CFeeRate(high_fee, tx_vsizes[4]);
const auto tx7_anc_feerate = CFeeRate(low_fee + med_fee, tx_vsizes[5] + tx_vsizes[6]);
const auto tx8_anc_feerate = CFeeRate(low_fee + high_fee, tx_vsizes[5] + tx_vsizes[7]);
BOOST_CHECK(tx5_feerate > tx7_anc_feerate);
BOOST_CHECK(tx5_feerate > tx8_anc_feerate);
// Extremely high feerate: everybody's bumpfee is from their full ancestor set.
{
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
const CFeeRate very_high_feerate(COIN);
BOOST_CHECK(tx4_anc_feerate < very_high_feerate);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(very_high_feerate);
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx1_bumpfee = bump_fees.find(COutPoint{tx1->GetHash(), 1});
BOOST_CHECK(tx1_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx1_bumpfee->second, very_high_feerate.GetFee(tx_vsizes[0]) - low_fee);
const auto tx4_bumpfee = bump_fees.find(COutPoint{tx4->GetHash(), 0});
BOOST_CHECK(tx4_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx4_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6]) - (high_fee + low_fee + med_fee));
const auto tx8_bumpfee = bump_fees.find(COutPoint{tx8->GetHash(), 0});
BOOST_CHECK(tx8_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx8_bumpfee->second,
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[7]) - (high_fee + low_fee + high_fee));
// Total fees: if spending multiple outputs from tx4 don't double-count fees.
node::MiniMiner mini_miner_total_tx4(pool, {COutPoint{tx4->GetHash(), 0}, COutPoint{tx4->GetHash(), 1}});
BOOST_CHECK(mini_miner_total_tx4.IsReadyToCalculate());
const auto tx4_bump_fee = mini_miner_total_tx4.CalculateTotalBumpFees(very_high_feerate);
BOOST_CHECK(!mini_miner_total_tx4.IsReadyToCalculate());
BOOST_CHECK(tx4_bump_fee.has_value());
BOOST_CHECK_EQUAL(tx4_bump_fee.value(),
very_high_feerate.GetFee(tx_vsizes[0] + tx_vsizes[1] + tx_vsizes[2] + tx_vsizes[3]) - (low_fee + med_fee + high_fee + high_fee));
// Total fees: if spending both tx7 and tx8, don't double-count fees.
node::MiniMiner mini_miner_tx7_tx8(pool, {COutPoint{tx7->GetHash(), 0}, COutPoint{tx8->GetHash(), 0}});
BOOST_CHECK(mini_miner_tx7_tx8.IsReadyToCalculate());
const auto tx7_tx8_bumpfee = mini_miner_tx7_tx8.CalculateTotalBumpFees(very_high_feerate);
BOOST_CHECK(!mini_miner_tx7_tx8.IsReadyToCalculate());
BOOST_CHECK(tx7_tx8_bumpfee.has_value());
BOOST_CHECK_EQUAL(tx7_tx8_bumpfee.value(),
very_high_feerate.GetFee(tx_vsizes[4] + tx_vsizes[5] + tx_vsizes[6] + tx_vsizes[7]) - (high_fee + low_fee + med_fee + high_fee));
}
// Feerate just below tx5: tx7 and tx8 have different bump fees.
{
const auto just_below_tx5 = CFeeRate(tx5_feerate.GetFeePerK() - 5);
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(just_below_tx5);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second, just_below_tx5.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee));
const auto tx8_bumpfee = bump_fees.find(COutPoint{tx8->GetHash(), 0});
BOOST_CHECK(tx8_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx8_bumpfee->second, just_below_tx5.GetFee(tx_vsizes[5] + tx_vsizes[7]) - (low_fee + high_fee));
// Total fees: if spending both tx7 and tx8, don't double-count fees.
node::MiniMiner mini_miner_tx7_tx8(pool, {COutPoint{tx7->GetHash(), 0}, COutPoint{tx8->GetHash(), 0}});
BOOST_CHECK(mini_miner_tx7_tx8.IsReadyToCalculate());
const auto tx7_tx8_bumpfee = mini_miner_tx7_tx8.CalculateTotalBumpFees(just_below_tx5);
BOOST_CHECK(!mini_miner_tx7_tx8.IsReadyToCalculate());
BOOST_CHECK(tx7_tx8_bumpfee.has_value());
BOOST_CHECK_EQUAL(tx7_tx8_bumpfee.value(), just_below_tx5.GetFee(tx_vsizes[5] + tx_vsizes[6]) - (low_fee + med_fee));
}
// Feerate between tx7 and tx8's ancestor feerates: don't need to bump tx6 because tx8 already does.
{
const auto just_above_tx7 = CFeeRate(med_fee + 10, tx_vsizes[6]);
BOOST_CHECK(just_above_tx7 <= CFeeRate(low_fee + high_fee, tx_vsizes[5] + tx_vsizes[7]));
node::MiniMiner mini_miner(pool, all_unspent_outpoints);
BOOST_CHECK(mini_miner.IsReadyToCalculate());
auto bump_fees = mini_miner.CalculateBumpFees(just_above_tx7);
BOOST_CHECK(!mini_miner.IsReadyToCalculate());
BOOST_CHECK_EQUAL(bump_fees.size(), all_unspent_outpoints.size());
BOOST_CHECK(sanity_check(all_transactions, bump_fees));
const auto tx7_bumpfee = bump_fees.find(COutPoint{tx7->GetHash(), 0});
BOOST_CHECK(tx7_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx7_bumpfee->second, just_above_tx7.GetFee(tx_vsizes[6]) - (med_fee));
const auto tx8_bumpfee = bump_fees.find(COutPoint{tx8->GetHash(), 0});
BOOST_CHECK(tx8_bumpfee != bump_fees.end());
BOOST_CHECK_EQUAL(tx8_bumpfee->second, 0);
}
}
BOOST_FIXTURE_TEST_CASE(calculate_cluster, TestChain100Setup)
{
CTxMemPool& pool = *Assert(m_node.mempool);
LOCK2(cs_main, pool.cs);
// Add chain of size 500
TestMemPoolEntryHelper entry;
std::vector<uint256> chain_txids;
auto& lasttx = m_coinbase_txns[0];
for (auto i{0}; i < 500; ++i) {
const auto tx = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(tx));
chain_txids.push_back(tx->GetHash());
lasttx = tx;
}
const auto cluster_500tx = pool.GatherClusters({lasttx->GetHash()});
CTxMemPool::setEntries cluster_500tx_set{cluster_500tx.begin(), cluster_500tx.end()};
BOOST_CHECK_EQUAL(cluster_500tx.size(), cluster_500tx_set.size());
const auto vec_iters_500 = pool.GetIterVec(chain_txids);
for (const auto& iter : vec_iters_500) BOOST_CHECK(cluster_500tx_set.count(iter));
// GatherClusters stops at 500 transactions.
const auto tx_501 = make_tx({COutPoint{lasttx->GetHash(), 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(tx_501));
const auto cluster_501 = pool.GatherClusters({tx_501->GetHash()});
BOOST_CHECK_EQUAL(cluster_501.size(), 0);
// Zig Zag cluster:
// txp0 txp1 txp2 ... txp48 txp49
// \ / \ / \ \ /
// txc0 txc1 txc2 ... txc48
// Note that each transaction's ancestor size is 1 or 3, and each descendant size is 1, 2 or 3.
// However, all of these transactions are in the same cluster.
std::vector<uint256> zigzag_txids;
for (auto p{0}; p < 50; ++p) {
const auto txp = make_tx({COutPoint{GetRandHash(), 0}}, /*num_outputs=*/2);
pool.addUnchecked(entry.Fee(CENT).FromTx(txp));
zigzag_txids.push_back(txp->GetHash());
}
for (auto c{0}; c < 49; ++c) {
const auto txc = make_tx({COutPoint{zigzag_txids[c], 1}, COutPoint{zigzag_txids[c+1], 0}}, /*num_outputs=*/1);
pool.addUnchecked(entry.Fee(CENT).FromTx(txc));
zigzag_txids.push_back(txc->GetHash());
}
const auto vec_iters_zigzag = pool.GetIterVec(zigzag_txids);
// It doesn't matter which tx we calculate cluster for, everybody is in it.
const std::vector<size_t> indeces{0, 22, 72, zigzag_txids.size() - 1};
for (const auto index : indeces) {
const auto cluster = pool.GatherClusters({zigzag_txids[index]});
BOOST_CHECK_EQUAL(cluster.size(), zigzag_txids.size());
CTxMemPool::setEntries clusterset{cluster.begin(), cluster.end()};
BOOST_CHECK_EQUAL(cluster.size(), clusterset.size());
for (const auto& iter : vec_iters_zigzag) BOOST_CHECK(clusterset.count(iter));
}
}
BOOST_AUTO_TEST_SUITE_END()

View file

@ -26,6 +26,7 @@
#include <validationinterface.h>
#include <cmath>
#include <numeric>
#include <optional>
#include <string_view>
#include <utility>
@ -918,6 +919,19 @@ CTxMemPool::setEntries CTxMemPool::GetIterSet(const std::set<uint256>& hashes) c
return ret;
}
std::vector<CTxMemPool::txiter> CTxMemPool::GetIterVec(const std::vector<uint256>& txids) const
{
AssertLockHeld(cs);
std::vector<txiter> ret;
ret.reserve(txids.size());
for (const auto& txid : txids) {
const auto it{GetIter(txid)};
if (!it) return {};
ret.push_back(*it);
}
return ret;
}
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
{
for (unsigned int i = 0; i < tx.vin.size(); i++)
@ -1147,7 +1161,6 @@ void CTxMemPool::SetLoadTried(bool load_tried)
m_load_tried = load_tried;
}
std::string RemovalReasonToString(const MemPoolRemovalReason& r) noexcept
{
switch (r) {
@ -1160,3 +1173,30 @@ std::string RemovalReasonToString(const MemPoolRemovalReason& r) noexcept
}
assert(false);
}
std::vector<CTxMemPool::txiter> CTxMemPool::GatherClusters(const std::vector<uint256>& txids) const
{
AssertLockHeld(cs);
std::vector<txiter> clustered_txs{GetIterVec(txids)};
// Use epoch: visiting an entry means we have added it to the clustered_txs vector. It does not
// necessarily mean the entry has been processed.
WITH_FRESH_EPOCH(m_epoch);
for (const auto& it : clustered_txs) {
visited(it);
}
// i = index of where the list of entries to process starts
for (size_t i{0}; i < clustered_txs.size(); ++i) {
// DoS protection: if there are 500 or more entries to process, just quit.
if (clustered_txs.size() > 500) return {};
const txiter& tx_iter = clustered_txs.at(i);
for (const auto& entries : {tx_iter->GetMemPoolParentsConst(), tx_iter->GetMemPoolChildrenConst()}) {
for (const CTxMemPoolEntry& entry : entries) {
const auto entry_it = mapTx.iterator_to(entry);
if (!visited(entry_it)) {
clustered_txs.push_back(entry_it);
}
}
}
}
return clustered_txs;
}

View file

@ -522,9 +522,16 @@ public:
/** Returns an iterator to the given hash, if found */
std::optional<txiter> GetIter(const uint256& txid) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Translate a set of hashes into a set of pool iterators to avoid repeated lookups */
/** Translate a set of hashes into a set of pool iterators to avoid repeated lookups.
* Does not require that all of the hashes correspond to actual transactions in the mempool,
* only returns the ones that exist. */
setEntries GetIterSet(const std::set<uint256>& hashes) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Translate a list of hashes into a list of mempool iterators to avoid repeated lookups.
* The nth element in txids becomes the nth element in the returned vector. If any of the txids
* don't actually exist in the mempool, returns an empty vector. */
std::vector<txiter> GetIterVec(const std::vector<uint256>& txids) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Remove a set of transactions from the mempool.
* If a transaction is in this set, then all in-mempool descendants must
* also be in the set, unless this transaction is being removed for being
@ -585,6 +592,12 @@ public:
const Limits& limits,
bool fSearchForParents = true) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Collect the entire cluster of connected transactions for each transaction in txids.
* All txids must correspond to transaction entries in the mempool, otherwise this returns an
* empty vector. This call will also exit early and return an empty vector if it collects 500 or
* more transactions as a DoS protection. */
std::vector<txiter> GatherClusters(const std::vector<uint256>& txids) const EXCLUSIVE_LOCKS_REQUIRED(cs);
/** Calculate all in-mempool ancestors of a set of transactions not already in the mempool and
* check ancestor and descendant limits. Heuristics are used to estimate the ancestor and
* descendant count of all entries if the package were to be added to the mempool. The limits