mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-01-10 11:57:28 -03:00
crypto: Add Num3072 implementation
Num3072 is a specialized bignum implementation used in MuHash3072. Co-authored-by: Pieter Wuille <pieter.wuille@gmail.com>
This commit is contained in:
parent
589f958662
commit
0b4d290bf5
2 changed files with 339 additions and 0 deletions
277
src/crypto/muhash.cpp
Normal file
277
src/crypto/muhash.cpp
Normal file
|
@ -0,0 +1,277 @@
|
|||
// Copyright (c) 2017-2020 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <crypto/muhash.h>
|
||||
|
||||
#include <crypto/chacha20.h>
|
||||
#include <crypto/common.h>
|
||||
#include <hash.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <limits>
|
||||
|
||||
namespace {
|
||||
|
||||
using limb_t = Num3072::limb_t;
|
||||
using double_limb_t = Num3072::double_limb_t;
|
||||
constexpr int LIMB_SIZE = Num3072::LIMB_SIZE;
|
||||
constexpr int LIMBS = Num3072::LIMBS;
|
||||
/** 2^3072 - 1103717, the largest 3072-bit safe prime number, is used as the modulus. */
|
||||
constexpr limb_t MAX_PRIME_DIFF = 1103717;
|
||||
|
||||
/** Extract the lowest limb of [c0,c1,c2] into n, and left shift the number by 1 limb. */
|
||||
inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n)
|
||||
{
|
||||
n = c0;
|
||||
c0 = c1;
|
||||
c1 = c2;
|
||||
c2 = 0;
|
||||
}
|
||||
|
||||
/** [c0,c1] = a * b */
|
||||
inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b)
|
||||
{
|
||||
double_limb_t t = (double_limb_t)a * b;
|
||||
c1 = t >> LIMB_SIZE;
|
||||
c0 = t;
|
||||
}
|
||||
|
||||
/* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */
|
||||
inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n)
|
||||
{
|
||||
double_limb_t t = (double_limb_t)d0 * n + c0;
|
||||
c0 = t;
|
||||
t >>= LIMB_SIZE;
|
||||
t += (double_limb_t)d1 * n + c1;
|
||||
c1 = t;
|
||||
t >>= LIMB_SIZE;
|
||||
c2 = t + d2 * n;
|
||||
}
|
||||
|
||||
/* [c0,c1] *= n */
|
||||
inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n)
|
||||
{
|
||||
double_limb_t t = (double_limb_t)c0 * n;
|
||||
c0 = t;
|
||||
t >>= LIMB_SIZE;
|
||||
t += (double_limb_t)c1 * n;
|
||||
c1 = t;
|
||||
}
|
||||
|
||||
/** [c0,c1,c2] += a * b */
|
||||
inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
|
||||
{
|
||||
double_limb_t t = (double_limb_t)a * b;
|
||||
limb_t th = t >> LIMB_SIZE;
|
||||
limb_t tl = t;
|
||||
|
||||
c0 += tl;
|
||||
th += (c0 < tl) ? 1 : 0;
|
||||
c1 += th;
|
||||
c2 += (c1 < th) ? 1 : 0;
|
||||
}
|
||||
|
||||
/** [c0,c1,c2] += 2 * a * b */
|
||||
inline void muldbladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
|
||||
{
|
||||
double_limb_t t = (double_limb_t)a * b;
|
||||
limb_t th = t >> LIMB_SIZE;
|
||||
limb_t tl = t;
|
||||
|
||||
c0 += tl;
|
||||
limb_t tt = th + ((c0 < tl) ? 1 : 0);
|
||||
c1 += tt;
|
||||
c2 += (c1 < tt) ? 1 : 0;
|
||||
c0 += tl;
|
||||
th += (c0 < tl) ? 1 : 0;
|
||||
c1 += th;
|
||||
c2 += (c1 < th) ? 1 : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add limb a to [c0,c1]: [c0,c1] += a. Then extract the lowest
|
||||
* limb of [c0,c1] into n, and left shift the number by 1 limb.
|
||||
* */
|
||||
inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n)
|
||||
{
|
||||
limb_t c2 = 0;
|
||||
|
||||
// add
|
||||
c0 += a;
|
||||
if (c0 < a) {
|
||||
c1 += 1;
|
||||
|
||||
// Handle case when c1 has overflown
|
||||
if (c1 == 0)
|
||||
c2 = 1;
|
||||
}
|
||||
|
||||
// extract
|
||||
n = c0;
|
||||
c0 = c1;
|
||||
c1 = c2;
|
||||
}
|
||||
|
||||
/** in_out = in_out^(2^sq) * mul */
|
||||
inline void square_n_mul(Num3072& in_out, const int sq, const Num3072& mul)
|
||||
{
|
||||
for (int j = 0; j < sq; ++j) in_out.Square();
|
||||
in_out.Multiply(mul);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
/** Indicates wether d is larger than the modulus. */
|
||||
bool Num3072::IsOverflow() const
|
||||
{
|
||||
if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false;
|
||||
for (int i = 1; i < LIMBS; ++i) {
|
||||
if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void Num3072::FullReduce()
|
||||
{
|
||||
limb_t c0 = MAX_PRIME_DIFF;
|
||||
limb_t c1 = 0;
|
||||
for (int i = 0; i < LIMBS; ++i) {
|
||||
addnextract2(c0, c1, this->limbs[i], this->limbs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
Num3072 Num3072::GetInverse() const
|
||||
{
|
||||
// For fast exponentiation a sliding window exponentiation with repunit
|
||||
// precomputation is utilized. See "Fast Point Decompression for Standard
|
||||
// Elliptic Curves" (Brumley, Järvinen, 2008).
|
||||
|
||||
Num3072 p[12]; // p[i] = a^(2^(2^i)-1)
|
||||
Num3072 out;
|
||||
|
||||
p[0] = *this;
|
||||
|
||||
for (int i = 0; i < 11; ++i) {
|
||||
p[i + 1] = p[i];
|
||||
for (int j = 0; j < (1 << i); ++j) p[i + 1].Square();
|
||||
p[i + 1].Multiply(p[i]);
|
||||
}
|
||||
|
||||
out = p[11];
|
||||
|
||||
square_n_mul(out, 512, p[9]);
|
||||
square_n_mul(out, 256, p[8]);
|
||||
square_n_mul(out, 128, p[7]);
|
||||
square_n_mul(out, 64, p[6]);
|
||||
square_n_mul(out, 32, p[5]);
|
||||
square_n_mul(out, 8, p[3]);
|
||||
square_n_mul(out, 2, p[1]);
|
||||
square_n_mul(out, 1, p[0]);
|
||||
square_n_mul(out, 5, p[2]);
|
||||
square_n_mul(out, 3, p[0]);
|
||||
square_n_mul(out, 2, p[0]);
|
||||
square_n_mul(out, 4, p[0]);
|
||||
square_n_mul(out, 4, p[1]);
|
||||
square_n_mul(out, 3, p[0]);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void Num3072::Multiply(const Num3072& a)
|
||||
{
|
||||
limb_t c0 = 0, c1 = 0, c2 = 0;
|
||||
Num3072 tmp;
|
||||
|
||||
/* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */
|
||||
for (int j = 0; j < LIMBS - 1; ++j) {
|
||||
limb_t d0 = 0, d1 = 0, d2 = 0;
|
||||
mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]);
|
||||
for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]);
|
||||
mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
|
||||
for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]);
|
||||
extract3(c0, c1, c2, tmp.limbs[j]);
|
||||
}
|
||||
|
||||
/* Compute limb N-1 of a*b into tmp. */
|
||||
assert(c2 == 0);
|
||||
for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]);
|
||||
extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
|
||||
|
||||
/* Perform a second reduction. */
|
||||
muln2(c0, c1, MAX_PRIME_DIFF);
|
||||
for (int j = 0; j < LIMBS; ++j) {
|
||||
addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
|
||||
}
|
||||
|
||||
assert(c1 == 0);
|
||||
assert(c0 == 0 || c0 == 1);
|
||||
|
||||
/* Perform up to two more reductions if the internal state has already
|
||||
* overflown the MAX of Num3072 or if it is larger than the modulus or
|
||||
* if both are the case.
|
||||
* */
|
||||
if (this->IsOverflow()) this->FullReduce();
|
||||
if (c0) this->FullReduce();
|
||||
}
|
||||
|
||||
void Num3072::Square()
|
||||
{
|
||||
limb_t c0 = 0, c1 = 0, c2 = 0;
|
||||
Num3072 tmp;
|
||||
|
||||
/* Compute limbs 0..N-2 of this*this into tmp, including one reduction. */
|
||||
for (int j = 0; j < LIMBS - 1; ++j) {
|
||||
limb_t d0 = 0, d1 = 0, d2 = 0;
|
||||
for (int i = 0; i < (LIMBS - 1 - j) / 2; ++i) muldbladd3(d0, d1, d2, this->limbs[i + j + 1], this->limbs[LIMBS - 1 - i]);
|
||||
if ((j + 1) & 1) muladd3(d0, d1, d2, this->limbs[(LIMBS - 1 - j) / 2 + j + 1], this->limbs[LIMBS - 1 - (LIMBS - 1 - j) / 2]);
|
||||
mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
|
||||
for (int i = 0; i < (j + 1) / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[j - i]);
|
||||
if ((j + 1) & 1) muladd3(c0, c1, c2, this->limbs[(j + 1) / 2], this->limbs[j - (j + 1) / 2]);
|
||||
extract3(c0, c1, c2, tmp.limbs[j]);
|
||||
}
|
||||
|
||||
assert(c2 == 0);
|
||||
for (int i = 0; i < LIMBS / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[LIMBS - 1 - i]);
|
||||
extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
|
||||
|
||||
/* Perform a second reduction. */
|
||||
muln2(c0, c1, MAX_PRIME_DIFF);
|
||||
for (int j = 0; j < LIMBS; ++j) {
|
||||
addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
|
||||
}
|
||||
|
||||
assert(c1 == 0);
|
||||
assert(c0 == 0 || c0 == 1);
|
||||
|
||||
/* Perform up to two more reductions if the internal state has already
|
||||
* overflown the MAX of Num3072 or if it is larger than the modulus or
|
||||
* if both are the case.
|
||||
* */
|
||||
if (this->IsOverflow()) this->FullReduce();
|
||||
if (c0) this->FullReduce();
|
||||
}
|
||||
|
||||
void Num3072::SetToOne()
|
||||
{
|
||||
this->limbs[0] = 1;
|
||||
for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0;
|
||||
}
|
||||
|
||||
void Num3072::Divide(const Num3072& a)
|
||||
{
|
||||
if (this->IsOverflow()) this->FullReduce();
|
||||
|
||||
Num3072 inv{};
|
||||
if (a.IsOverflow()) {
|
||||
Num3072 b = a;
|
||||
b.FullReduce();
|
||||
inv = b.GetInverse();
|
||||
} else {
|
||||
inv = a.GetInverse();
|
||||
}
|
||||
|
||||
this->Multiply(inv);
|
||||
if (this->IsOverflow()) this->FullReduce();
|
||||
}
|
62
src/crypto/muhash.h
Normal file
62
src/crypto/muhash.h
Normal file
|
@ -0,0 +1,62 @@
|
|||
// Copyright (c) 2017-2020 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_MUHASH_H
|
||||
#define BITCOIN_CRYPTO_MUHASH_H
|
||||
|
||||
#if defined(HAVE_CONFIG_H)
|
||||
#include <config/bitcoin-config.h>
|
||||
#endif
|
||||
|
||||
#include <serialize.h>
|
||||
#include <uint256.h>
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
class Num3072
|
||||
{
|
||||
private:
|
||||
void FullReduce();
|
||||
bool IsOverflow() const;
|
||||
Num3072 GetInverse() const;
|
||||
|
||||
public:
|
||||
|
||||
#ifdef HAVE___INT128
|
||||
typedef unsigned __int128 double_limb_t;
|
||||
typedef uint64_t limb_t;
|
||||
static constexpr int LIMBS = 48;
|
||||
static constexpr int LIMB_SIZE = 64;
|
||||
#else
|
||||
typedef uint64_t double_limb_t;
|
||||
typedef uint32_t limb_t;
|
||||
static constexpr int LIMBS = 96;
|
||||
static constexpr int LIMB_SIZE = 32;
|
||||
#endif
|
||||
limb_t limbs[LIMBS];
|
||||
|
||||
// Sanity check for Num3072 constants
|
||||
static_assert(LIMB_SIZE * LIMBS == 3072, "Num3072 isn't 3072 bits");
|
||||
static_assert(sizeof(double_limb_t) == sizeof(limb_t) * 2, "bad size for double_limb_t");
|
||||
static_assert(sizeof(limb_t) * 8 == LIMB_SIZE, "LIMB_SIZE is incorrect");
|
||||
|
||||
// Hard coded values in MuHash3072 constructor and Finalize
|
||||
static_assert(sizeof(limb_t) == 4 || sizeof(limb_t) == 8, "bad size for limb_t");
|
||||
|
||||
void Multiply(const Num3072& a);
|
||||
void Divide(const Num3072& a);
|
||||
void SetToOne();
|
||||
void Square();
|
||||
|
||||
Num3072() { this->SetToOne(); };
|
||||
|
||||
SERIALIZE_METHODS(Num3072, obj)
|
||||
{
|
||||
for (auto& limb : obj.limbs) {
|
||||
READWRITE(limb);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_MUHASH_H
|
Loading…
Reference in a new issue