bitcoin/src/netaddress.cpp

1256 lines
36 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <netaddress.h>
2020-08-07 13:55:51 -04:00
#include <crypto/common.h>
#include <crypto/sha3.h>
#include <hash.h>
#include <prevector.h>
2020-08-07 13:55:51 -04:00
#include <tinyformat.h>
#include <util/asmap.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <algorithm>
#include <array>
#include <cstdint>
#include <ios>
#include <iterator>
#include <tuple>
constexpr size_t CNetAddr::V1_SERIALIZATION_SIZE;
constexpr size_t CNetAddr::MAX_ADDRV2_SIZE;
CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const
{
switch (m_net) {
case NET_IPV4:
return BIP155Network::IPV4;
case NET_IPV6:
return BIP155Network::IPV6;
case NET_ONION:
return BIP155Network::TORV3;
case NET_I2P:
return BIP155Network::I2P;
case NET_CJDNS:
return BIP155Network::CJDNS;
case NET_INTERNAL: // should have been handled before calling this function
case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX: // m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
{
switch (possible_bip155_net) {
case BIP155Network::IPV4:
if (address_size == ADDR_IPV4_SIZE) {
m_net = NET_IPV4;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
ADDR_IPV4_SIZE));
case BIP155Network::IPV6:
if (address_size == ADDR_IPV6_SIZE) {
m_net = NET_IPV6;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
ADDR_IPV6_SIZE));
case BIP155Network::TORV3:
if (address_size == ADDR_TORV3_SIZE) {
m_net = NET_ONION;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
ADDR_TORV3_SIZE));
case BIP155Network::I2P:
if (address_size == ADDR_I2P_SIZE) {
m_net = NET_I2P;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
ADDR_I2P_SIZE));
case BIP155Network::CJDNS:
if (address_size == ADDR_CJDNS_SIZE) {
m_net = NET_CJDNS;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
ADDR_CJDNS_SIZE));
}
// Don't throw on addresses with unknown network ids (maybe from the future).
// Instead silently drop them and have the unserialization code consume
// subsequent ones which may be known to us.
return false;
}
/**
* Construct an unspecified IPv6 network address (::/128).
*
* @note This address is considered invalid by CNetAddr::IsValid()
*/
CNetAddr::CNetAddr() {}
void CNetAddr::SetIP(const CNetAddr& ipIn)
{
// Size check.
switch (ipIn.m_net) {
case NET_IPV4:
assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
break;
case NET_IPV6:
assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
break;
case NET_ONION:
assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
break;
case NET_I2P:
assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
break;
case NET_CJDNS:
assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
break;
case NET_INTERNAL:
assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
break;
case NET_UNROUTABLE:
case NET_MAX:
assert(false);
} // no default case, so the compiler can warn about missing cases
m_net = ipIn.m_net;
m_addr = ipIn.m_addr;
}
void CNetAddr::SetLegacyIPv6(Span<const uint8_t> ipv6)
{
assert(ipv6.size() == ADDR_IPV6_SIZE);
size_t skip{0};
if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
// IPv4-in-IPv6
m_net = NET_IPV4;
skip = sizeof(IPV4_IN_IPV6_PREFIX);
} else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
// TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
// Mimic a default-constructed CNetAddr object which is !IsValid() and thus
// will not be gossiped, but continue reading next addresses from the stream.
m_net = NET_IPV6;
m_addr.assign(ADDR_IPV6_SIZE, 0x0);
return;
} else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
// Internal-in-IPv6
m_net = NET_INTERNAL;
skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
} else {
// IPv6
m_net = NET_IPV6;
}
m_addr.assign(ipv6.begin() + skip, ipv6.end());
}
/**
* Create an "internal" address that represents a name or FQDN. AddrMan uses
* these fake addresses to keep track of which DNS seeds were used.
* @returns Whether or not the operation was successful.
* @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193()
*/
bool CNetAddr::SetInternal(const std::string &name)
{
if (name.empty()) {
return false;
}
m_net = NET_INTERNAL;
unsigned char hash[32] = {};
CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
return true;
}
namespace torv3 {
// https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt#n2135
static constexpr size_t CHECKSUM_LEN = 2;
static const unsigned char VERSION[] = {3};
static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
static void Checksum(Span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
{
// TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
static const unsigned char prefix[] = ".onion checksum";
static constexpr size_t prefix_len = 15;
SHA3_256 hasher;
hasher.Write(Span{prefix}.first(prefix_len));
hasher.Write(addr_pubkey);
hasher.Write(VERSION);
uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
hasher.Finalize(checksum_full);
memcpy(checksum, checksum_full, sizeof(checksum));
}
}; // namespace torv3
bool CNetAddr::SetSpecial(const std::string& addr)
{
if (!ValidAsCString(addr)) {
return false;
}
if (SetTor(addr)) {
return true;
}
if (SetI2P(addr)) {
return true;
}
return false;
}
bool CNetAddr::SetTor(const std::string& addr)
{
static const char* suffix{".onion"};
static constexpr size_t suffix_len{6};
if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
return false;
}
bool invalid;
const auto& input = DecodeBase32(addr.substr(0, addr.size() - suffix_len).c_str(), &invalid);
if (invalid) {
return false;
}
if (input.size() == torv3::TOTAL_LEN) {
Span<const uint8_t> input_pubkey{input.data(), ADDR_TORV3_SIZE};
Span<const uint8_t> input_checksum{input.data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
Span<const uint8_t> input_version{input.data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
if (input_version != torv3::VERSION) {
return false;
}
uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
torv3::Checksum(input_pubkey, calculated_checksum);
if (input_checksum != calculated_checksum) {
return false;
}
m_net = NET_ONION;
m_addr.assign(input_pubkey.begin(), input_pubkey.end());
return true;
}
return false;
}
bool CNetAddr::SetI2P(const std::string& addr)
{
// I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
static constexpr size_t b32_len{52};
static const char* suffix{".b32.i2p"};
static constexpr size_t suffix_len{8};
if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
return false;
}
// Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
// can decode it.
const std::string b32_padded = addr.substr(0, b32_len) + "====";
bool invalid;
const auto& address_bytes = DecodeBase32(b32_padded.c_str(), &invalid);
if (invalid || address_bytes.size() != ADDR_I2P_SIZE) {
return false;
}
m_net = NET_I2P;
m_addr.assign(address_bytes.begin(), address_bytes.end());
return true;
}
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
m_net = NET_IPV4;
const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
}
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
{
SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
m_scope_id = scope;
}
bool CNetAddr::IsBindAny() const
{
if (!IsIPv4() && !IsIPv6()) {
return false;
}
return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
}
bool CNetAddr::IsIPv4() const { return m_net == NET_IPV4; }
bool CNetAddr::IsIPv6() const { return m_net == NET_IPV6; }
bool CNetAddr::IsRFC1918() const
{
return IsIPv4() && (
m_addr[0] == 10 ||
(m_addr[0] == 192 && m_addr[1] == 168) ||
(m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
}
bool CNetAddr::IsRFC2544() const
{
return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
}
bool CNetAddr::IsRFC3927() const
{
return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
}
bool CNetAddr::IsRFC6598() const
{
return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
}
bool CNetAddr::IsRFC5737() const
{
return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
}
bool CNetAddr::IsRFC3849() const
{
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
}
bool CNetAddr::IsRFC3964() const
{
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
}
bool CNetAddr::IsRFC6052() const
{
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
}
bool CNetAddr::IsRFC4380() const
{
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
}
bool CNetAddr::IsRFC4862() const
{
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00});
}
bool CNetAddr::IsRFC4193() const
{
return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
}
bool CNetAddr::IsRFC6145() const
{
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
}
bool CNetAddr::IsRFC4843() const
{
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
(m_addr[3] & 0xF0) == 0x10;
}
bool CNetAddr::IsRFC7343() const
{
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
(m_addr[3] & 0xF0) == 0x20;
}
bool CNetAddr::IsHeNet() const
{
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
}
/**
* Check whether this object represents a TOR address.
* @see CNetAddr::SetSpecial(const std::string &)
*/
bool CNetAddr::IsTor() const { return m_net == NET_ONION; }
/**
* Check whether this object represents an I2P address.
*/
bool CNetAddr::IsI2P() const { return m_net == NET_I2P; }
/**
* Check whether this object represents a CJDNS address.
*/
bool CNetAddr::IsCJDNS() const { return m_net == NET_CJDNS; }
bool CNetAddr::IsLocal() const
{
// IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
2019-02-04 15:47:46 -03:00
return true;
}
2019-02-04 15:47:46 -03:00
// IPv6 loopback (::1/128)
static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
2019-02-04 15:47:46 -03:00
return true;
}
2019-02-04 15:47:46 -03:00
return false;
}
/**
* @returns Whether or not this network address is a valid address that @a could
* be used to refer to an actual host.
*
* @note A valid address may or may not be publicly routable on the global
* internet. As in, the set of valid addresses is a superset of the set of
* publicly routable addresses.
*
* @see CNetAddr::IsRoutable()
*/
bool CNetAddr::IsValid() const
{
// unspecified IPv6 address (::/128)
unsigned char ipNone6[16] = {};
if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
return false;
}
2020-12-10 14:26:58 -03:00
// CJDNS addresses always start with 0xfc
if (IsCJDNS() && (m_addr[0] != 0xFC)) {
return false;
}
// documentation IPv6 address
if (IsRFC3849())
return false;
if (IsInternal())
return false;
if (IsIPv4()) {
const uint32_t addr = ReadBE32(m_addr.data());
if (addr == INADDR_ANY || addr == INADDR_NONE) {
return false;
}
}
return true;
}
/**
* @returns Whether or not this network address is publicly routable on the
* global internet.
*
* @note A routable address is always valid. As in, the set of routable addresses
* is a subset of the set of valid addresses.
*
* @see CNetAddr::IsValid()
*/
bool CNetAddr::IsRoutable() const
{
return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
}
/**
* @returns Whether or not this is a dummy address that represents a name.
*
* @see CNetAddr::SetInternal(const std::string &)
*/
bool CNetAddr::IsInternal() const
{
return m_net == NET_INTERNAL;
}
bool CNetAddr::IsAddrV1Compatible() const
{
switch (m_net) {
case NET_IPV4:
case NET_IPV6:
case NET_INTERNAL:
return true;
case NET_ONION:
case NET_I2P:
case NET_CJDNS:
return false;
case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX: // m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
enum Network CNetAddr::GetNetwork() const
{
if (IsInternal())
return NET_INTERNAL;
if (!IsRoutable())
return NET_UNROUTABLE;
return m_net;
}
static std::string IPv4ToString(Span<const uint8_t> a)
{
return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
}
// Return an IPv6 address text representation with zero compression as described in RFC 5952
// ("A Recommendation for IPv6 Address Text Representation").
static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id)
{
assert(a.size() == ADDR_IPV6_SIZE);
const std::array groups{
ReadBE16(&a[0]),
ReadBE16(&a[2]),
ReadBE16(&a[4]),
ReadBE16(&a[6]),
ReadBE16(&a[8]),
ReadBE16(&a[10]),
ReadBE16(&a[12]),
ReadBE16(&a[14]),
};
// The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
// https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
struct ZeroSpan {
size_t start_index{0};
size_t len{0};
};
// Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
// zero sequences of equal length are found.
ZeroSpan longest, current;
for (size_t i{0}; i < groups.size(); ++i) {
if (groups[i] != 0) {
current = {i + 1, 0};
continue;
}
current.len += 1;
if (current.len > longest.len) {
longest = current;
}
}
std::string r;
r.reserve(39);
for (size_t i{0}; i < groups.size(); ++i) {
// Replace the longest sequence of consecutive all-zero fields with two colons ("::").
if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
if (i == longest.start_index) {
r += "::";
}
continue;
}
r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
}
if (scope_id != 0) {
r += strprintf("%%%u", scope_id);
}
return r;
}
static std::string OnionToString(Span<const uint8_t> addr)
{
uint8_t checksum[torv3::CHECKSUM_LEN];
torv3::Checksum(addr, checksum);
// TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
return EncodeBase32(address) + ".onion";
}
std::string CNetAddr::ToStringIP() const
{
switch (m_net) {
case NET_IPV4:
return IPv4ToString(m_addr);
case NET_IPV6:
return IPv6ToString(m_addr, m_scope_id);
case NET_ONION:
return OnionToString(m_addr);
case NET_I2P:
return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
case NET_CJDNS:
return IPv6ToString(m_addr, 0);
case NET_INTERNAL:
return EncodeBase32(m_addr) + ".internal";
case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX: // m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
std::string CNetAddr::ToString() const
{
return ToStringIP();
}
bool operator==(const CNetAddr& a, const CNetAddr& b)
{
return a.m_net == b.m_net && a.m_addr == b.m_addr;
}
bool operator<(const CNetAddr& a, const CNetAddr& b)
{
return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
}
/**
* Try to get our IPv4 address.
*
* @param[out] pipv4Addr The in_addr struct to which to copy.
*
* @returns Whether or not the operation was successful, in particular, whether
* or not our address was an IPv4 address.
*
* @see CNetAddr::IsIPv4()
*/
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
if (!IsIPv4())
return false;
assert(sizeof(*pipv4Addr) == m_addr.size());
memcpy(pipv4Addr, m_addr.data(), m_addr.size());
return true;
}
/**
* Try to get our IPv6 (or CJDNS) address.
*
* @param[out] pipv6Addr The in6_addr struct to which to copy.
*
* @returns Whether or not the operation was successful, in particular, whether
* or not our address was an IPv6 address.
*
* @see CNetAddr::IsIPv6()
*/
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
if (!IsIPv6() && !IsCJDNS()) {
return false;
}
assert(sizeof(*pipv6Addr) == m_addr.size());
memcpy(pipv6Addr, m_addr.data(), m_addr.size());
return true;
}
bool CNetAddr::HasLinkedIPv4() const
{
return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
}
uint32_t CNetAddr::GetLinkedIPv4() const
{
if (IsIPv4()) {
return ReadBE32(m_addr.data());
} else if (IsRFC6052() || IsRFC6145()) {
// mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
} else if (IsRFC3964()) {
// 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
} else if (IsRFC4380()) {
// Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
}
assert(false);
}
Network CNetAddr::GetNetClass() const
{
// Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
// Check for "internal" first because such addresses are also !IsRoutable()
// and we don't want to return NET_UNROUTABLE in that case.
if (IsInternal()) {
return NET_INTERNAL;
}
if (!IsRoutable()) {
return NET_UNROUTABLE;
}
if (HasLinkedIPv4()) {
return NET_IPV4;
}
return m_net;
}
uint32_t CNetAddr::GetMappedAS(const std::vector<bool> &asmap) const {
uint32_t net_class = GetNetClass();
if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) {
return 0; // Indicates not found, safe because AS0 is reserved per RFC7607.
}
std::vector<bool> ip_bits(128);
if (HasLinkedIPv4()) {
// For lookup, treat as if it was just an IPv4 address (IPV4_IN_IPV6_PREFIX + IPv4 bits)
for (int8_t byte_i = 0; byte_i < 12; ++byte_i) {
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
ip_bits[byte_i * 8 + bit_i] = (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1;
}
}
uint32_t ipv4 = GetLinkedIPv4();
for (int i = 0; i < 32; ++i) {
ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1;
}
} else {
// Use all 128 bits of the IPv6 address otherwise
assert(IsIPv6());
for (int8_t byte_i = 0; byte_i < 16; ++byte_i) {
uint8_t cur_byte = m_addr[byte_i];
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1;
}
}
}
uint32_t mapped_as = Interpret(asmap, ip_bits);
return mapped_as;
}
/**
* Get the canonical identifier of our network group
*
* The groups are assigned in a way where it should be costly for an attacker to
* obtain addresses with many different group identifiers, even if it is cheap
* to obtain addresses with the same identifier.
*
* @note No two connections will be attempted to addresses with the same network
* group.
*/
std::vector<unsigned char> CNetAddr::GetGroup(const std::vector<bool> &asmap) const
{
std::vector<unsigned char> vchRet;
uint32_t net_class = GetNetClass();
// If non-empty asmap is supplied and the address is IPv4/IPv6,
// return ASN to be used for bucketing.
uint32_t asn = GetMappedAS(asmap);
if (asn != 0) { // Either asmap was empty, or address has non-asmappable net class (e.g. TOR).
vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in the same bucket
for (int i = 0; i < 4; i++) {
vchRet.push_back((asn >> (8 * i)) & 0xFF);
}
return vchRet;
}
vchRet.push_back(net_class);
int nBits{0};
if (IsLocal()) {
// all local addresses belong to the same group
} else if (IsInternal()) {
// all internal-usage addresses get their own group
nBits = ADDR_INTERNAL_SIZE * 8;
} else if (!IsRoutable()) {
// all other unroutable addresses belong to the same group
} else if (HasLinkedIPv4()) {
// IPv4 addresses (and mapped IPv4 addresses) use /16 groups
uint32_t ipv4 = GetLinkedIPv4();
vchRet.push_back((ipv4 >> 24) & 0xFF);
vchRet.push_back((ipv4 >> 16) & 0xFF);
return vchRet;
} else if (IsTor() || IsI2P()) {
nBits = 4;
} else if (IsCJDNS()) {
// Treat in the same way as Tor and I2P because the address in all of
// them is "random" bytes (derived from a public key). However in CJDNS
// the first byte is a constant 0xfc, so the random bytes come after it.
// Thus skip the constant 8 bits at the start.
nBits = 12;
} else if (IsHeNet()) {
// for he.net, use /36 groups
nBits = 36;
} else {
// for the rest of the IPv6 network, use /32 groups
nBits = 32;
}
// Push our address onto vchRet.
const size_t num_bytes = nBits / 8;
vchRet.insert(vchRet.end(), m_addr.begin(), m_addr.begin() + num_bytes);
nBits %= 8;
// ...for the last byte, push nBits and for the rest of the byte push 1's
if (nBits > 0) {
assert(num_bytes < m_addr.size());
vchRet.push_back(m_addr[num_bytes] | ((1 << (8 - nBits)) - 1));
}
return vchRet;
}
std::vector<unsigned char> CNetAddr::GetAddrBytes() const
{
if (IsAddrV1Compatible()) {
uint8_t serialized[V1_SERIALIZATION_SIZE];
SerializeV1Array(serialized);
return {std::begin(serialized), std::end(serialized)};
}
return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
}
uint64_t CNetAddr::GetHash() const
{
uint256 hash = Hash(m_addr);
uint64_t nRet;
memcpy(&nRet, &hash, sizeof(nRet));
return nRet;
}
// private extensions to enum Network, only returned by GetExtNetwork,
// and only used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO = NET_MAX + 1;
int static GetExtNetwork(const CNetAddr *addr)
{
if (addr == nullptr)
return NET_UNKNOWN;
if (addr->IsRFC4380())
return NET_TEREDO;
return addr->GetNetwork();
}
/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
{
enum Reachability {
REACH_UNREACHABLE,
REACH_DEFAULT,
REACH_TEREDO,
REACH_IPV6_WEAK,
REACH_IPV4,
REACH_IPV6_STRONG,
REACH_PRIVATE
};
if (!IsRoutable() || IsInternal())
return REACH_UNREACHABLE;
int ourNet = GetExtNetwork(this);
int theirNet = GetExtNetwork(paddrPartner);
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
switch(theirNet) {
case NET_IPV4:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4;
}
case NET_IPV6:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV4: return REACH_IPV4;
case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
}
case NET_ONION:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
case NET_ONION: return REACH_PRIVATE;
}
case NET_I2P:
switch (ourNet) {
case NET_I2P: return REACH_PRIVATE;
default: return REACH_DEFAULT;
}
case NET_CJDNS:
switch (ourNet) {
case NET_CJDNS: return REACH_PRIVATE;
default: return REACH_DEFAULT;
}
case NET_TEREDO:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
}
case NET_UNKNOWN:
case NET_UNROUTABLE:
default:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
case NET_ONION: return REACH_PRIVATE; // either from Tor, or don't care about our address
}
}
}
2018-01-26 07:48:56 -03:00
CService::CService() : port(0)
{
}
CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
{
}
CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}
CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
assert(addr.sin_family == AF_INET);
}
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
{
assert(addr.sin6_family == AF_INET6);
}
bool CService::SetSockAddr(const struct sockaddr *paddr)
{
switch (paddr->sa_family) {
case AF_INET:
*this = CService(*(const struct sockaddr_in*)paddr);
return true;
case AF_INET6:
*this = CService(*(const struct sockaddr_in6*)paddr);
return true;
default:
return false;
}
}
uint16_t CService::GetPort() const
{
return port;
}
bool operator==(const CService& a, const CService& b)
{
return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
}
bool operator<(const CService& a, const CService& b)
{
return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
}
/**
* Obtain the IPv4/6 socket address this represents.
*
* @param[out] paddr The obtained socket address.
* @param[in,out] addrlen The size, in bytes, of the address structure pointed
* to by paddr. The value that's pointed to by this
* parameter might change after calling this function if
* the size of the corresponding address structure
* changed.
*
* @returns Whether or not the operation was successful.
*/
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
{
if (IsIPv4()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
return false;
*addrlen = sizeof(struct sockaddr_in);
struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
memset(paddrin, 0, *addrlen);
if (!GetInAddr(&paddrin->sin_addr))
return false;
paddrin->sin_family = AF_INET;
paddrin->sin_port = htons(port);
return true;
}
if (IsIPv6() || IsCJDNS()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
return false;
*addrlen = sizeof(struct sockaddr_in6);
struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
memset(paddrin6, 0, *addrlen);
if (!GetIn6Addr(&paddrin6->sin6_addr))
return false;
paddrin6->sin6_scope_id = m_scope_id;
paddrin6->sin6_family = AF_INET6;
paddrin6->sin6_port = htons(port);
return true;
}
return false;
}
/**
* @returns An identifier unique to this service's address and port number.
*/
std::vector<unsigned char> CService::GetKey() const
{
auto key = GetAddrBytes();
key.push_back(port / 0x100); // most significant byte of our port
key.push_back(port & 0x0FF); // least significant byte of our port
return key;
}
std::string CService::ToStringPort() const
{
return strprintf("%u", port);
}
std::string CService::ToStringIPPort() const
{
if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
return ToStringIP() + ":" + ToStringPort();
} else {
return "[" + ToStringIP() + "]:" + ToStringPort();
}
}
std::string CService::ToString() const
{
return ToStringIPPort();
}
CSubNet::CSubNet():
valid(false)
{
memset(netmask, 0, sizeof(netmask));
}
CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
{
valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
(addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
if (!valid) {
return;
}
assert(mask <= sizeof(netmask) * 8);
network = addr;
uint8_t n = mask;
for (size_t i = 0; i < network.m_addr.size(); ++i) {
const uint8_t bits = n < 8 ? n : 8;
netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
n -= bits;
}
}
/**
* @returns The number of 1-bits in the prefix of the specified subnet mask. If
* the specified subnet mask is not a valid one, -1.
*/
static inline int NetmaskBits(uint8_t x)
{
switch(x) {
case 0x00: return 0;
case 0x80: return 1;
case 0xc0: return 2;
case 0xe0: return 3;
case 0xf0: return 4;
case 0xf8: return 5;
case 0xfc: return 6;
case 0xfe: return 7;
case 0xff: return 8;
default: return -1;
}
}
CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
{
valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
if (!valid) {
return;
}
// Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
bool zeros_found = false;
for (auto b : mask.m_addr) {
const int num_bits = NetmaskBits(b);
if (num_bits == -1 || (zeros_found && num_bits != 0)) {
valid = false;
return;
}
if (num_bits < 8) {
zeros_found = true;
}
}
assert(mask.m_addr.size() <= sizeof(netmask));
memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
network = addr;
// Normalize network according to netmask
for (size_t x = 0; x < network.m_addr.size(); ++x) {
network.m_addr[x] &= netmask[x];
}
}
CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
{
switch (addr.m_net) {
case NET_IPV4:
case NET_IPV6:
valid = true;
assert(addr.m_addr.size() <= sizeof(netmask));
memset(netmask, 0xFF, addr.m_addr.size());
break;
case NET_ONION:
case NET_I2P:
case NET_CJDNS:
valid = true;
break;
case NET_INTERNAL:
case NET_UNROUTABLE:
case NET_MAX:
return;
}
network = addr;
}
/**
* @returns True if this subnet is valid, the specified address is valid, and
* the specified address belongs in this subnet.
*/
bool CSubNet::Match(const CNetAddr &addr) const
{
if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
return false;
switch (network.m_net) {
case NET_IPV4:
case NET_IPV6:
break;
case NET_ONION:
case NET_I2P:
case NET_CJDNS:
case NET_INTERNAL:
return addr == network;
case NET_UNROUTABLE:
case NET_MAX:
return false;
}
assert(network.m_addr.size() == addr.m_addr.size());
for (size_t x = 0; x < addr.m_addr.size(); ++x) {
if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
return false;
}
}
return true;
}
std::string CSubNet::ToString() const
{
std::string suffix;
switch (network.m_net) {
case NET_IPV4:
case NET_IPV6: {
assert(network.m_addr.size() <= sizeof(netmask));
uint8_t cidr = 0;
for (size_t i = 0; i < network.m_addr.size(); ++i) {
if (netmask[i] == 0x00) {
break;
}
cidr += NetmaskBits(netmask[i]);
}
suffix = strprintf("/%u", cidr);
break;
}
case NET_ONION:
case NET_I2P:
case NET_CJDNS:
case NET_INTERNAL:
case NET_UNROUTABLE:
case NET_MAX:
break;
}
return network.ToString() + suffix;
}
bool CSubNet::IsValid() const
{
return valid;
}
bool CSubNet::SanityCheck() const
{
switch (network.m_net) {
case NET_IPV4:
case NET_IPV6:
break;
case NET_ONION:
case NET_I2P:
case NET_CJDNS:
return true;
case NET_INTERNAL:
case NET_UNROUTABLE:
case NET_MAX:
return false;
}
for (size_t x = 0; x < network.m_addr.size(); ++x) {
if (network.m_addr[x] & ~netmask[x]) return false;
}
return true;
}
bool operator==(const CSubNet& a, const CSubNet& b)
{
return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
}
bool operator<(const CSubNet& a, const CSubNet& b)
{
return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
}