bitcoin/qa/rpc-tests/prioritise_transaction.py

144 lines
5.8 KiB
Python
Raw Normal View History

2016-03-19 16:58:06 -03:00
#!/usr/bin/env python3
# Copyright (c) 2015-2016 The Bitcoin Core developers
2015-11-18 22:55:52 -03:00
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
# Test PrioritiseTransaction code
#
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.mininode import COIN, MAX_BLOCK_BASE_SIZE
2015-11-18 22:55:52 -03:00
class PrioritiseTransactionTest(BitcoinTestFramework):
def __init__(self):
super().__init__()
self.setup_clean_chain = True
self.num_nodes = 1
2015-11-18 22:55:52 -03:00
self.txouts = gen_return_txouts()
2015-11-18 22:55:52 -03:00
def setup_network(self):
self.nodes = []
self.is_network_split = False
self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-printpriority=1"]))
self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']
def run_test(self):
utxo_count = 90
utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], utxo_count)
2015-11-18 22:55:52 -03:00
base_fee = self.relayfee*100 # our transactions are smaller than 100kb
txids = []
# Create 3 batches of transactions at 3 different fee rate levels
range_size = utxo_count // 3
2016-03-19 16:58:06 -03:00
for i in range(3):
2015-11-18 22:55:52 -03:00
txids.append([])
start_range = i * range_size
end_range = start_range + range_size
txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[start_range:end_range], end_range - start_range, (i+1)*base_fee)
# Make sure that the size of each group of transactions exceeds
# MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
# more transactions.
mempool = self.nodes[0].getrawmempool(True)
sizes = [0, 0, 0]
2016-03-19 16:58:06 -03:00
for i in range(3):
for j in txids[i]:
assert(j in mempool)
sizes[i] += mempool[j]['size']
assert(sizes[i] > MAX_BLOCK_BASE_SIZE) # Fail => raise utxo_count
2015-11-18 22:55:52 -03:00
# add a fee delta to something in the cheapest bucket and make sure it gets mined
# also check that a different entry in the cheapest bucket is NOT mined (lower
# the priority to ensure its not mined due to priority)
self.nodes[0].prioritisetransaction(txids[0][0], 0, int(3*base_fee*COIN))
self.nodes[0].prioritisetransaction(txids[0][1], -1e15, 0)
self.nodes[0].generate(1)
mempool = self.nodes[0].getrawmempool()
2016-03-19 16:58:06 -03:00
print("Assert that prioritised transaction was mined")
2015-11-18 22:55:52 -03:00
assert(txids[0][0] not in mempool)
assert(txids[0][1] in mempool)
high_fee_tx = None
for x in txids[2]:
if x not in mempool:
high_fee_tx = x
# Something high-fee should have been mined!
assert(high_fee_tx != None)
# Add a prioritisation before a tx is in the mempool (de-prioritising a
# high-fee transaction so that it's now low fee).
2015-11-18 22:55:52 -03:00
self.nodes[0].prioritisetransaction(high_fee_tx, -1e15, -int(2*base_fee*COIN))
# Add everything back to mempool
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
# Check to make sure our high fee rate tx is back in the mempool
mempool = self.nodes[0].getrawmempool()
assert(high_fee_tx in mempool)
# Now verify the modified-high feerate transaction isn't mined before
# the other high fee transactions. Keep mining until our mempool has
# decreased by all the high fee size that we calculated above.
while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
self.nodes[0].generate(1)
2015-11-18 22:55:52 -03:00
# High fee transaction should not have been mined, but other high fee rate
# transactions should have been.
mempool = self.nodes[0].getrawmempool()
2016-03-19 16:58:06 -03:00
print("Assert that de-prioritised transaction is still in mempool")
2015-11-18 22:55:52 -03:00
assert(high_fee_tx in mempool)
for x in txids[2]:
if (x != high_fee_tx):
assert(x not in mempool)
# Create a free, low priority transaction. Should be rejected.
utxo_list = self.nodes[0].listunspent()
assert(len(utxo_list) > 0)
utxo = utxo_list[0]
inputs = []
outputs = {}
inputs.append({"txid" : utxo["txid"], "vout" : utxo["vout"]})
outputs[self.nodes[0].getnewaddress()] = utxo["amount"] - self.relayfee
raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
tx_hex = self.nodes[0].signrawtransaction(raw_tx)["hex"]
txid = self.nodes[0].sendrawtransaction(tx_hex)
# A tx that spends an in-mempool tx has 0 priority, so we can use it to
# test the effect of using prioritise transaction for mempool acceptance
inputs = []
inputs.append({"txid": txid, "vout": 0})
outputs = {}
outputs[self.nodes[0].getnewaddress()] = utxo["amount"] - self.relayfee
raw_tx2 = self.nodes[0].createrawtransaction(inputs, outputs)
tx2_hex = self.nodes[0].signrawtransaction(raw_tx2)["hex"]
tx2_id = self.nodes[0].decoderawtransaction(tx2_hex)["txid"]
try:
self.nodes[0].sendrawtransaction(tx2_hex)
except JSONRPCException as exp:
assert_equal(exp.error['code'], -26) # insufficient fee
assert(tx2_id not in self.nodes[0].getrawmempool())
else:
assert(False)
# This is a less than 1000-byte transaction, so just set the fee
# to be the minimum for a 1000 byte transaction and check that it is
# accepted.
self.nodes[0].prioritisetransaction(tx2_id, 0, int(self.relayfee*COIN))
2016-03-19 16:58:06 -03:00
print("Assert that prioritised free transaction is accepted to mempool")
assert_equal(self.nodes[0].sendrawtransaction(tx2_hex), tx2_id)
assert(tx2_id in self.nodes[0].getrawmempool())
2015-11-18 22:55:52 -03:00
if __name__ == '__main__':
PrioritiseTransactionTest().main()