bitcoin/src/test/util/setup_common.cpp

264 lines
15 KiB
C++
Raw Normal View History

// Copyright (c) 2011-2020 The Bitcoin Core developers
2014-12-13 01:09:33 -03:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <test/util/setup_common.h>
2017-10-05 17:40:43 -03:00
#include <banman.h>
#include <chainparams.h>
#include <consensus/consensus.h>
#include <consensus/params.h>
#include <consensus/validation.h>
#include <crypto/sha256.h>
2019-06-20 09:34:45 -04:00
#include <init.h>
#include <interfaces/chain.h>
#include <miner.h>
#include <net.h>
#include <net_processing.h>
#include <noui.h>
#include <policy/fees.h>
#include <pow.h>
#include <rpc/blockchain.h>
#include <rpc/register.h>
#include <rpc/server.h>
#include <scheduler.h>
#include <script/sigcache.h>
#include <streams.h>
#include <txdb.h>
#include <util/memory.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <util/time.h>
#include <util/translation.h>
#include <util/url.h>
#include <util/vector.h>
#include <validation.h>
#include <validationinterface.h>
#include <walletinitinterface.h>
#include <functional>
const std::function<std::string(const char*)> G_TRANSLATION_FUN = nullptr;
UrlDecodeFn* const URL_DECODE = nullptr;
FastRandomContext g_insecure_rand_ctx;
/** Random context to get unique temp data dirs. Separate from g_insecure_rand_ctx, which can be seeded from a const env var */
static FastRandomContext g_insecure_rand_ctx_temp_path;
/** Return the unsigned from the environment var if available, otherwise 0 */
static uint256 GetUintFromEnv(const std::string& env_name)
{
const char* num = std::getenv(env_name.c_str());
if (!num) return {};
return uint256S(num);
}
void Seed(FastRandomContext& ctx)
{
// Should be enough to get the seed once for the process
static uint256 seed{};
static const std::string RANDOM_CTX_SEED{"RANDOM_CTX_SEED"};
if (seed.IsNull()) seed = GetUintFromEnv(RANDOM_CTX_SEED);
if (seed.IsNull()) seed = GetRandHash();
LogPrintf("%s: Setting random seed for current tests to %s=%s\n", __func__, RANDOM_CTX_SEED, seed.GetHex());
ctx = FastRandomContext(seed);
}
std::ostream& operator<<(std::ostream& os, const uint256& num)
{
os << num.ToString();
return os;
}
BasicTestingSetup::BasicTestingSetup(const std::string& chainName, const std::vector<const char*>& extra_args)
: m_path_root{fs::temp_directory_path() / "test_common_" PACKAGE_NAME / g_insecure_rand_ctx_temp_path.rand256().ToString()}
{
const std::vector<const char*> arguments = Cat(
{
"dummy",
"-printtoconsole=0",
"-logtimemicros",
"-logthreadnames",
"-debug",
"-debugexclude=libevent",
"-debugexclude=leveldb",
},
extra_args);
util::ThreadRename("test");
fs::create_directories(m_path_root);
gArgs.ForceSetArg("-datadir", m_path_root.string());
ClearDatadirCache();
{
SetupServerArgs(m_node);
std::string error;
const bool success{m_node.args->ParseParameters(arguments.size(), arguments.data(), error)};
assert(success);
assert(error.empty());
}
2019-06-20 09:34:45 -04:00
SelectParams(chainName);
SeedInsecureRand();
if (G_TEST_LOG_FUN) LogInstance().PushBackCallback(G_TEST_LOG_FUN);
InitLogging(*m_node.args);
AppInitParameterInteraction(*m_node.args);
2019-06-20 09:34:45 -04:00
LogInstance().StartLogging();
SHA256AutoDetect();
ECC_Start();
SetupEnvironment();
SetupNetworking();
InitSignatureCache();
InitScriptExecutionCache();
m_node.chain = interfaces::MakeChain(m_node);
g_wallet_init_interface.Construct(m_node);
fCheckBlockIndex = true;
static bool noui_connected = false;
if (!noui_connected) {
noui_connect();
noui_connected = true;
}
}
BasicTestingSetup::~BasicTestingSetup()
{
2019-06-20 09:34:45 -04:00
LogInstance().DisconnectTestLogger();
fs::remove_all(m_path_root);
gArgs.ClearArgs();
ECC_Stop();
}
test: Add new ChainTestingSetup and use it Previously, the validation_chainstatemanager_tests test suite instantiated its own duplicate ChainstateManager on which tests were performed. This wasn't a problem for the specific actions performed in that suite. However, the existence of this duplicate ChainstateManager and the fact that many of our validation static functions reach for g_chainman, ::Chain(state|)Active means we may end up acting on two different CChainStates should we write more extensive tests in the future. This change adds a new ChainTestingSetup which performs all initialization previously done by TestingSetup except: 1. RPC command registration 2. ChainState initialization 3. Genesis Activation 4. {Ban,Conn,Peer}Man initialization Means that we will no longer need to initialize a duplicate ChainstateManger in order to test the initialization codepaths of CChainState and ChainstateManager. Lastly, this change has the additional benefit of allowing for review-only assertions meant to show correctness to work in future work de-globalizing g_chainman. In the test chainstatemanager_rebalance_caches, an additional LoadGenesisBlock call is added as MaybeReblanaceCaches eventually calls FlushBlockFile, which tries to access vinfoBlockFile[nLastBlockFile], which is out of bounds when LoadGenesisBlock hasn't been called yet. ----- Note for the future: The class con/destructor inheritance structure we have for these TestingSetup classes is probably not the most suitable abstraction. In particular, for both TestingSetup and ChainTestingSetup, we need to stop the scheduler first before anything else. Otherwise classes depending on the scheduler may be referenced by the scheduler after said classes are freed. This means that there's no clear parallel between our teardown code and C++'s destructuring order for class hierarchies. Future work should strive to coalesce (as much as possible) test and non-test init codepaths and perhaps structure it in a more fail-proof way.
2020-10-13 17:55:20 -03:00
ChainTestingSetup::ChainTestingSetup(const std::string& chainName, const std::vector<const char*>& extra_args)
: BasicTestingSetup(chainName, extra_args)
{
// We have to run a scheduler thread to prevent ActivateBestChain
// from blocking due to queue overrun.
test: Add new ChainTestingSetup and use it Previously, the validation_chainstatemanager_tests test suite instantiated its own duplicate ChainstateManager on which tests were performed. This wasn't a problem for the specific actions performed in that suite. However, the existence of this duplicate ChainstateManager and the fact that many of our validation static functions reach for g_chainman, ::Chain(state|)Active means we may end up acting on two different CChainStates should we write more extensive tests in the future. This change adds a new ChainTestingSetup which performs all initialization previously done by TestingSetup except: 1. RPC command registration 2. ChainState initialization 3. Genesis Activation 4. {Ban,Conn,Peer}Man initialization Means that we will no longer need to initialize a duplicate ChainstateManger in order to test the initialization codepaths of CChainState and ChainstateManager. Lastly, this change has the additional benefit of allowing for review-only assertions meant to show correctness to work in future work de-globalizing g_chainman. In the test chainstatemanager_rebalance_caches, an additional LoadGenesisBlock call is added as MaybeReblanaceCaches eventually calls FlushBlockFile, which tries to access vinfoBlockFile[nLastBlockFile], which is out of bounds when LoadGenesisBlock hasn't been called yet. ----- Note for the future: The class con/destructor inheritance structure we have for these TestingSetup classes is probably not the most suitable abstraction. In particular, for both TestingSetup and ChainTestingSetup, we need to stop the scheduler first before anything else. Otherwise classes depending on the scheduler may be referenced by the scheduler after said classes are freed. This means that there's no clear parallel between our teardown code and C++'s destructuring order for class hierarchies. Future work should strive to coalesce (as much as possible) test and non-test init codepaths and perhaps structure it in a more fail-proof way.
2020-10-13 17:55:20 -03:00
m_node.scheduler = MakeUnique<CScheduler>();
threadGroup.create_thread([&] { TraceThread("scheduler", [&] { m_node.scheduler->serviceQueue(); }); });
GetMainSignals().RegisterBackgroundSignalScheduler(*m_node.scheduler);
pblocktree.reset(new CBlockTreeDB(1 << 20, true));
m_node.fee_estimator = std::make_unique<CBlockPolicyEstimator>();
m_node.mempool = std::make_unique<CTxMemPool>(m_node.fee_estimator.get(), 1);
m_node.chainman = &::g_chainman;
// Start script-checking threads. Set g_parallel_script_checks to true so they are used.
constexpr int script_check_threads = 2;
for (int i = 0; i < script_check_threads; ++i) {
threadGroup.create_thread([i]() { return ThreadScriptCheck(i); });
}
g_parallel_script_checks = true;
}
test: Add new ChainTestingSetup and use it Previously, the validation_chainstatemanager_tests test suite instantiated its own duplicate ChainstateManager on which tests were performed. This wasn't a problem for the specific actions performed in that suite. However, the existence of this duplicate ChainstateManager and the fact that many of our validation static functions reach for g_chainman, ::Chain(state|)Active means we may end up acting on two different CChainStates should we write more extensive tests in the future. This change adds a new ChainTestingSetup which performs all initialization previously done by TestingSetup except: 1. RPC command registration 2. ChainState initialization 3. Genesis Activation 4. {Ban,Conn,Peer}Man initialization Means that we will no longer need to initialize a duplicate ChainstateManger in order to test the initialization codepaths of CChainState and ChainstateManager. Lastly, this change has the additional benefit of allowing for review-only assertions meant to show correctness to work in future work de-globalizing g_chainman. In the test chainstatemanager_rebalance_caches, an additional LoadGenesisBlock call is added as MaybeReblanaceCaches eventually calls FlushBlockFile, which tries to access vinfoBlockFile[nLastBlockFile], which is out of bounds when LoadGenesisBlock hasn't been called yet. ----- Note for the future: The class con/destructor inheritance structure we have for these TestingSetup classes is probably not the most suitable abstraction. In particular, for both TestingSetup and ChainTestingSetup, we need to stop the scheduler first before anything else. Otherwise classes depending on the scheduler may be referenced by the scheduler after said classes are freed. This means that there's no clear parallel between our teardown code and C++'s destructuring order for class hierarchies. Future work should strive to coalesce (as much as possible) test and non-test init codepaths and perhaps structure it in a more fail-proof way.
2020-10-13 17:55:20 -03:00
ChainTestingSetup::~ChainTestingSetup()
{
if (m_node.scheduler) m_node.scheduler->stop();
threadGroup.interrupt_all();
threadGroup.join_all();
GetMainSignals().FlushBackgroundCallbacks();
GetMainSignals().UnregisterBackgroundSignalScheduler();
m_node.connman.reset();
m_node.banman.reset();
2020-04-08 19:47:56 -04:00
m_node.args = nullptr;
UnloadBlockIndex(m_node.mempool.get(), *m_node.chainman);
2020-07-19 14:30:46 -04:00
m_node.mempool.reset();
m_node.scheduler.reset();
m_node.chainman->Reset();
m_node.chainman = nullptr;
pblocktree.reset();
}
test: Add new ChainTestingSetup and use it Previously, the validation_chainstatemanager_tests test suite instantiated its own duplicate ChainstateManager on which tests were performed. This wasn't a problem for the specific actions performed in that suite. However, the existence of this duplicate ChainstateManager and the fact that many of our validation static functions reach for g_chainman, ::Chain(state|)Active means we may end up acting on two different CChainStates should we write more extensive tests in the future. This change adds a new ChainTestingSetup which performs all initialization previously done by TestingSetup except: 1. RPC command registration 2. ChainState initialization 3. Genesis Activation 4. {Ban,Conn,Peer}Man initialization Means that we will no longer need to initialize a duplicate ChainstateManger in order to test the initialization codepaths of CChainState and ChainstateManager. Lastly, this change has the additional benefit of allowing for review-only assertions meant to show correctness to work in future work de-globalizing g_chainman. In the test chainstatemanager_rebalance_caches, an additional LoadGenesisBlock call is added as MaybeReblanaceCaches eventually calls FlushBlockFile, which tries to access vinfoBlockFile[nLastBlockFile], which is out of bounds when LoadGenesisBlock hasn't been called yet. ----- Note for the future: The class con/destructor inheritance structure we have for these TestingSetup classes is probably not the most suitable abstraction. In particular, for both TestingSetup and ChainTestingSetup, we need to stop the scheduler first before anything else. Otherwise classes depending on the scheduler may be referenced by the scheduler after said classes are freed. This means that there's no clear parallel between our teardown code and C++'s destructuring order for class hierarchies. Future work should strive to coalesce (as much as possible) test and non-test init codepaths and perhaps structure it in a more fail-proof way.
2020-10-13 17:55:20 -03:00
TestingSetup::TestingSetup(const std::string& chainName, const std::vector<const char*>& extra_args)
: ChainTestingSetup(chainName, extra_args)
{
const CChainParams& chainparams = Params();
// Ideally we'd move all the RPC tests to the functional testing framework
// instead of unit tests, but for now we need these here.
RegisterAllCoreRPCCommands(tableRPC);
m_node.chainman->InitializeChainstate(*m_node.mempool);
::ChainstateActive().InitCoinsDB(
/* cache_size_bytes */ 1 << 23, /* in_memory */ true, /* should_wipe */ false);
assert(!::ChainstateActive().CanFlushToDisk());
::ChainstateActive().InitCoinsCache(1 << 23);
assert(::ChainstateActive().CanFlushToDisk());
if (!LoadGenesisBlock(chainparams)) {
throw std::runtime_error("LoadGenesisBlock failed.");
}
BlockValidationState state;
if (!ActivateBestChain(state, chainparams)) {
throw std::runtime_error(strprintf("ActivateBestChain failed. (%s)", state.ToString()));
}
m_node.banman = MakeUnique<BanMan>(GetDataDir() / "banlist.dat", nullptr, DEFAULT_MISBEHAVING_BANTIME);
m_node.connman = MakeUnique<CConnman>(0x1337, 0x1337); // Deterministic randomness for tests.
m_node.peerman = std::make_unique<PeerManager>(chainparams, *m_node.connman, m_node.banman.get(),
*m_node.scheduler, *m_node.chainman, *m_node.mempool,
false);
test: Add new ChainTestingSetup and use it Previously, the validation_chainstatemanager_tests test suite instantiated its own duplicate ChainstateManager on which tests were performed. This wasn't a problem for the specific actions performed in that suite. However, the existence of this duplicate ChainstateManager and the fact that many of our validation static functions reach for g_chainman, ::Chain(state|)Active means we may end up acting on two different CChainStates should we write more extensive tests in the future. This change adds a new ChainTestingSetup which performs all initialization previously done by TestingSetup except: 1. RPC command registration 2. ChainState initialization 3. Genesis Activation 4. {Ban,Conn,Peer}Man initialization Means that we will no longer need to initialize a duplicate ChainstateManger in order to test the initialization codepaths of CChainState and ChainstateManager. Lastly, this change has the additional benefit of allowing for review-only assertions meant to show correctness to work in future work de-globalizing g_chainman. In the test chainstatemanager_rebalance_caches, an additional LoadGenesisBlock call is added as MaybeReblanaceCaches eventually calls FlushBlockFile, which tries to access vinfoBlockFile[nLastBlockFile], which is out of bounds when LoadGenesisBlock hasn't been called yet. ----- Note for the future: The class con/destructor inheritance structure we have for these TestingSetup classes is probably not the most suitable abstraction. In particular, for both TestingSetup and ChainTestingSetup, we need to stop the scheduler first before anything else. Otherwise classes depending on the scheduler may be referenced by the scheduler after said classes are freed. This means that there's no clear parallel between our teardown code and C++'s destructuring order for class hierarchies. Future work should strive to coalesce (as much as possible) test and non-test init codepaths and perhaps structure it in a more fail-proof way.
2020-10-13 17:55:20 -03:00
{
CConnman::Options options;
options.m_msgproc = m_node.peerman.get();
m_node.connman->Init(options);
}
}
TestChain100Setup::TestChain100Setup()
{
// Generate a 100-block chain:
coinbaseKey.MakeNewKey(true);
CScript scriptPubKey = CScript() << ToByteVector(coinbaseKey.GetPubKey()) << OP_CHECKSIG;
for (int i = 0; i < COINBASE_MATURITY; i++) {
std::vector<CMutableTransaction> noTxns;
CBlock b = CreateAndProcessBlock(noTxns, scriptPubKey);
2018-04-11 14:51:28 -03:00
m_coinbase_txns.push_back(b.vtx[0]);
}
}
CBlock TestChain100Setup::CreateAndProcessBlock(const std::vector<CMutableTransaction>& txns, const CScript& scriptPubKey)
{
const CChainParams& chainparams = Params();
CTxMemPool empty_pool;
CBlock block = BlockAssembler(empty_pool, chainparams).CreateNewBlock(scriptPubKey)->block;
Assert(block.vtx.size() == 1);
for (const CMutableTransaction& tx : txns) {
block.vtx.push_back(MakeTransactionRef(tx));
}
RegenerateCommitments(block);
while (!CheckProofOfWork(block.GetHash(), block.nBits, chainparams.GetConsensus())) ++block.nNonce;
std::shared_ptr<const CBlock> shared_pblock = std::make_shared<const CBlock>(block);
Assert(m_node.chainman)->ProcessNewBlock(chainparams, shared_pblock, true, nullptr);
return block;
}
TestChain100Setup::~TestChain100Setup()
{
gArgs.ForceSetArg("-segwitheight", "0");
}
CTxMemPoolEntry TestMemPoolEntryHelper::FromTx(const CMutableTransaction& tx)
{
2018-04-11 14:51:28 -03:00
return FromTx(MakeTransactionRef(tx));
}
2018-04-11 14:51:28 -03:00
CTxMemPoolEntry TestMemPoolEntryHelper::FromTx(const CTransactionRef& tx)
{
return CTxMemPoolEntry(tx, nFee, nTime, nHeight,
spendsCoinbase, sigOpCost, lp);
}
/**
* @returns a real block (0000000000013b8ab2cd513b0261a14096412195a72a0c4827d229dcc7e0f7af)
* with 9 txs.
*/
CBlock getBlock13b8a()
{
CBlock block;
CDataStream stream(ParseHex("0100000090f0a9f110702f808219ebea1173056042a714bad51b916cb6800000000000005275289558f51c9966699404ae2294730c3c9f9bda53523ce50e9b95e558da2fdb261b4d4c86041b1ab1bf930901000000010000000000000000000000000000000000000000000000000000000000000000ffffffff07044c86041b0146ffffffff0100f2052a01000000434104e18f7afbe4721580e81e8414fc8c24d7cfacf254bb5c7b949450c3e997c2dc1242487a8169507b631eb3771f2b425483fb13102c4eb5d858eef260fe70fbfae0ac00000000010000000196608ccbafa16abada902780da4dc35dafd7af05fa0da08cf833575f8cf9e836000000004a493046022100dab24889213caf43ae6adc41cf1c9396c08240c199f5225acf45416330fd7dbd022100fe37900e0644bf574493a07fc5edba06dbc07c311b947520c2d514bc5725dcb401ffffffff0100f2052a010000001976a914f15d1921f52e4007b146dfa60f369ed2fc393ce288ac000000000100000001fb766c1288458c2bafcfec81e48b24d98ec706de6b8af7c4e3c29419bfacb56d000000008c493046022100f268ba165ce0ad2e6d93f089cfcd3785de5c963bb5ea6b8c1b23f1ce3e517b9f022100da7c0f21adc6c401887f2bfd1922f11d76159cbc597fbd756a23dcbb00f4d7290141042b4e8625a96127826915a5b109852636ad0da753c9e1d5606a50480cd0c40f1f8b8d898235e571fe9357d9ec842bc4bba1827daaf4de06d71844d0057707966affffffff0280969800000000001976a9146963907531db72d0ed1a0cfb471ccb63923446f388ac80d6e34c000000001976a914f0688ba1c0d1ce182c7af6741e02658c7d4dfcd388ac000000000100000002c40297f730dd7b5a99567eb8d27b78758f607507c52292d02d4031895b52f2ff010000008b483045022100f7edfd4b0aac404e5bab4fd3889e0c6c41aa8d0e6fa122316f68eddd0a65013902205b09cc8b2d56e1cd1f7f2fafd60a129ed94504c4ac7bdc67b56fe67512658b3e014104732012cb962afa90d31b25d8fb0e32c94e513ab7a17805c14ca4c3423e18b4fb5d0e676841733cb83abaf975845c9f6f2a8097b7d04f4908b18368d6fc2d68ecffffffffca5065ff9617cbcba45eb23726df6498a9b9cafed4f54cbab9d227b0035ddefb000000008a473044022068010362a13c7f9919fa832b2dee4e788f61f6f5d344a7c2a0da6ae740605658022006d1af525b9a14a35c003b78b72bd59738cd676f845d1ff3fc25049e01003614014104732012cb962afa90d31b25d8fb0e32c94e513ab7a17805c14ca4c3423e18b4fb5d0e676841733cb83abaf975845c9f6f2a8097b7d04f4908b18368d6fc2d68ecffffffff01001ec4110200000043410469ab4181eceb28985b9b4e895c13fa5e68d85761b7eee311db5addef76fa8621865134a221bd01f28ec9999ee3e021e60766e9d1f3458c115fb28650605f11c9ac000000000100000001cdaf2f758e91c514655e2dc50633d1e4c84989f8aa90a0dbc883f0d23ed5c2fa010000008b48304502207ab51be6f12a1962ba0aaaf24a20e0b69b27a94fac5adf45aa7d2d18ffd9236102210086ae728b370e5329eead9accd880d0cb070aea0c96255fae6c4f1ddcce1fd56e014104462e76fd4067b3a0aa42070082dcb0bf2f388b6495cf33d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15312ef1c0e8ebbb12dcd4ffffffff02404b4c00000000001976a9142b6ba7c9d796b75eef7942fc9288edd37c32f5c388ac002d3101000000001976a9141befba0cdc1ad56529371864d9f6cb042faa06b588ac000000000100000001b4a47603e71b61bc3326efd90111bf02d2f549b067f4c4a8fa183b57a0f800cb010000008a4730440220177c37f9a505c3f1a1f0ce2da777c339bd8339ffa02c7cb41f0a5804f473c9230220585b25a2ee80eb59292e52b987dad92acb0c64eced92ed9ee105ad153cdb12d001410443bd44f683467e549dae7d20d1d79cbdb6df985c6e9c029c8d0c6cb46cc1a4d3cf7923c5021b27f7a0b562ada113bc85d5fda5a1b41e87fe6e8802817cf69996ffffffff0280651406000000001976a9145505614859643ab7b547cd7f1f5e7e2a12322d3788ac00aa0271000000001976a914ea4720a7a52fc166c55ff2298e07baf70ae67e1b88ac00000000010000000586c62cd602d219bb60edb14a3e204de0705176f9022fe49a538054fb14abb49e010000008c493046022100f2bc2aba2534becbdf062eb993853a42bbbc282083d0daf9b4b585bd401aa8c9022100b1d7fd7ee0b95600db8535bbf331b19eed8d961f7a8e54159c53675d5f69df8c014104462e76fd4067b3a0aa42070082dcb0bf2f388b6495cf33d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15312ef1c0e8ebbb12dcd4ffffffff03ad0e58ccdac3df9dc28a218bcf6f1997b0a93306faaa4b3a28ae83447b2179010000008b483045022100be12b2937179da88599e27bb31c3525097a07cdb52422d165b3ca2f2020ffcf702200971b51f853a53d644ebae9ec8f3512e442b1bcb6c315a5b491d119d10624c83014104462e76fd4067b3a0aa42070082dcb0bf2f388b6495cf33d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15312ef1c0e8ebbb12dcd4ffffffff2acfcab629bbc8685792603762c921580030ba144af553d271716a95089e107b010000008b483045022100fa579a840ac258871365dd48cd7552f96c8eea69bd00d84f05b283a0da
stream >> block;
return block;
}