bitcoin/src/wallet/sqlite.cpp

439 lines
15 KiB
C++
Raw Normal View History

// Copyright (c) 2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <wallet/sqlite.h>
#include <logging.h>
#include <sync.h>
#include <util/memory.h>
#include <util/strencodings.h>
2020-05-26 20:53:30 -04:00
#include <util/system.h>
#include <util/translation.h>
#include <wallet/db.h>
2020-05-26 20:53:05 -04:00
#include <sqlite3.h>
#include <stdint.h>
static const char* const DATABASE_FILENAME = "wallet.dat";
static Mutex g_sqlite_mutex;
static int g_sqlite_count GUARDED_BY(g_sqlite_mutex) = 0;
static void ErrorLogCallback(void* arg, int code, const char* msg)
{
// From sqlite3_config() documentation for the SQLITE_CONFIG_LOG option:
// "The void pointer that is the second argument to SQLITE_CONFIG_LOG is passed through as
// the first parameter to the application-defined logger function whenever that function is
// invoked."
// Assert that this is the case:
assert(arg == nullptr);
LogPrintf("SQLite Error. Code: %d. Message: %s\n", code, msg);
}
SQLiteDatabase::SQLiteDatabase(const fs::path& dir_path, const fs::path& file_path, bool mock)
: WalletDatabase(), m_mock(mock), m_dir_path(dir_path.string()), m_file_path(file_path.string())
{
{
LOCK(g_sqlite_mutex);
LogPrintf("Using SQLite Version %s\n", SQLiteDatabaseVersion());
LogPrintf("Using wallet %s\n", m_dir_path);
if (++g_sqlite_count == 1) {
// Setup logging
int ret = sqlite3_config(SQLITE_CONFIG_LOG, ErrorLogCallback, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup error log: %s\n", sqlite3_errstr(ret)));
}
}
int ret = sqlite3_initialize(); // This is a no-op if sqlite3 is already initialized
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to initialize SQLite: %s\n", sqlite3_errstr(ret)));
}
}
try {
Open();
} catch (const std::runtime_error&) {
// If open fails, cleanup this object and rethrow the exception
Cleanup();
throw;
}
}
2020-05-26 20:53:41 -04:00
void SQLiteBatch::SetupSQLStatements()
{
int res;
if (!m_read_stmt) {
if ((res = sqlite3_prepare_v2(m_database.m_db, "SELECT value FROM main WHERE key = ?", -1, &m_read_stmt, nullptr)) != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res)));
}
}
if (!m_insert_stmt) {
if ((res = sqlite3_prepare_v2(m_database.m_db, "INSERT INTO main VALUES(?, ?)", -1, &m_insert_stmt, nullptr)) != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res)));
}
}
if (!m_overwrite_stmt) {
if ((res = sqlite3_prepare_v2(m_database.m_db, "INSERT or REPLACE into main values(?, ?)", -1, &m_overwrite_stmt, nullptr)) != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res)));
}
}
if (!m_delete_stmt) {
if ((res = sqlite3_prepare_v2(m_database.m_db, "DELETE FROM main WHERE key = ?", -1, &m_delete_stmt, nullptr)) != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements: %s\n", sqlite3_errstr(res)));
}
}
if (!m_cursor_stmt) {
if ((res = sqlite3_prepare_v2(m_database.m_db, "SELECT key, value FROM main", -1, &m_cursor_stmt, nullptr)) != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to setup SQL statements : %s\n", sqlite3_errstr(res)));
}
}
}
SQLiteDatabase::~SQLiteDatabase()
{
Cleanup();
}
void SQLiteDatabase::Cleanup() noexcept
{
Close();
LOCK(g_sqlite_mutex);
if (--g_sqlite_count == 0) {
int ret = sqlite3_shutdown();
if (ret != SQLITE_OK) {
LogPrintf("SQLiteDatabase: Failed to shutdown SQLite: %s\n", sqlite3_errstr(ret));
}
}
}
void SQLiteDatabase::Open()
{
2020-05-26 20:53:30 -04:00
int flags = SQLITE_OPEN_FULLMUTEX | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE;
if (m_mock) {
flags |= SQLITE_OPEN_MEMORY; // In memory database for mock db
}
if (m_db == nullptr) {
TryCreateDirectories(m_dir_path);
int ret = sqlite3_open_v2(m_file_path.c_str(), &m_db, flags, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to open database: %s\n", sqlite3_errstr(ret)));
}
}
if (sqlite3_db_readonly(m_db, "main") != 0) {
throw std::runtime_error("SQLiteDatabase: Database opened in readonly mode but read-write permissions are needed");
}
// Acquire an exclusive lock on the database
// First change the locking mode to exclusive
int ret = sqlite3_exec(m_db, "PRAGMA locking_mode = exclusive", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Unable to change database locking mode to exclusive: %s\n", sqlite3_errstr(ret)));
}
// Now begin a transaction to acquire the exclusive lock. This lock won't be released until we close because of the exclusive locking mode.
ret = sqlite3_exec(m_db, "BEGIN EXCLUSIVE TRANSACTION", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error("SQLiteDatabase: Unable to obtain an exclusive lock on the database, is it being used by another bitcoind?\n");
}
ret = sqlite3_exec(m_db, "COMMIT", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Unable to end exclusive lock transaction: %s\n", sqlite3_errstr(ret)));
}
// Enable fullfsync for the platforms that use it
ret = sqlite3_exec(m_db, "PRAGMA fullfsync = true", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to enable fullfsync: %s\n", sqlite3_errstr(ret)));
}
// Make the table for our key-value pairs
// First check that the main table exists
sqlite3_stmt* check_main_stmt{nullptr};
ret = sqlite3_prepare_v2(m_db, "SELECT name FROM sqlite_master WHERE type='table' AND name='main'", -1, &check_main_stmt, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to prepare statement to check table existence: %s\n", sqlite3_errstr(ret)));
}
ret = sqlite3_step(check_main_stmt);
if (sqlite3_finalize(check_main_stmt) != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to finalize statement checking table existence: %s\n", sqlite3_errstr(ret)));
}
bool table_exists;
if (ret == SQLITE_DONE) {
table_exists = false;
} else if (ret == SQLITE_ROW) {
table_exists = true;
} else {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to execute statement to check table existence: %s\n", sqlite3_errstr(ret)));
}
// Do the db setup things because the table doesn't exist only when we are creating a new wallet
if (!table_exists) {
ret = sqlite3_exec(m_db, "CREATE TABLE main(key BLOB PRIMARY KEY NOT NULL, value BLOB NOT NULL)", nullptr, nullptr, nullptr);
if (ret != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to create new database: %s\n", sqlite3_errstr(ret)));
}
}
}
bool SQLiteDatabase::Rewrite(const char* skip)
{
return false;
}
bool SQLiteDatabase::Backup(const std::string& dest) const
{
return false;
}
void SQLiteDatabase::Close()
{
2020-05-26 20:53:32 -04:00
int res = sqlite3_close(m_db);
if (res != SQLITE_OK) {
throw std::runtime_error(strprintf("SQLiteDatabase: Failed to close database: %s\n", sqlite3_errstr(res)));
}
m_db = nullptr;
}
std::unique_ptr<DatabaseBatch> SQLiteDatabase::MakeBatch(bool flush_on_close)
{
return nullptr;
}
SQLiteBatch::SQLiteBatch(SQLiteDatabase& database)
: m_database(database)
{
2020-05-26 20:53:30 -04:00
// Make sure we have a db handle
assert(m_database.m_db);
2020-05-26 20:53:41 -04:00
SetupSQLStatements();
}
void SQLiteBatch::Close()
{
2020-06-16 14:57:30 -04:00
// If m_db is in a transaction (i.e. not in autocommit mode), then abort the transaction in progress
if (m_database.m_db && sqlite3_get_autocommit(m_database.m_db) == 0) {
if (TxnAbort()) {
LogPrintf("SQLiteBatch: Batch closed unexpectedly without the transaction being explicitly committed or aborted\n");
} else {
LogPrintf("SQLiteBatch: Batch closed and failed to abort transaction\n");
}
}
2020-05-26 20:53:41 -04:00
// Free all of the prepared statements
int ret = sqlite3_finalize(m_read_stmt);
if (ret != SQLITE_OK) {
LogPrintf("SQLiteBatch: Batch closed but could not finalize read statement: %s\n", sqlite3_errstr(ret));
}
ret = sqlite3_finalize(m_insert_stmt);
if (ret != SQLITE_OK) {
LogPrintf("SQLiteBatch: Batch closed but could not finalize insert statement: %s\n", sqlite3_errstr(ret));
}
ret = sqlite3_finalize(m_overwrite_stmt);
if (ret != SQLITE_OK) {
LogPrintf("SQLiteBatch: Batch closed but could not finalize overwrite statement: %s\n", sqlite3_errstr(ret));
}
ret = sqlite3_finalize(m_delete_stmt);
if (ret != SQLITE_OK) {
LogPrintf("SQLiteBatch: Batch closed but could not finalize delete statement: %s\n", sqlite3_errstr(ret));
}
ret = sqlite3_finalize(m_cursor_stmt);
if (ret != SQLITE_OK) {
LogPrintf("SQLiteBatch: Batch closed but could not finalize cursor statement: %s\n", sqlite3_errstr(ret));
}
m_read_stmt = nullptr;
m_insert_stmt = nullptr;
m_overwrite_stmt = nullptr;
m_delete_stmt = nullptr;
m_cursor_stmt = nullptr;
}
bool SQLiteBatch::ReadKey(CDataStream&& key, CDataStream& value)
{
if (!m_database.m_db) return false;
assert(m_read_stmt);
// Bind: leftmost parameter in statement is index 1
int res = sqlite3_bind_blob(m_read_stmt, 1, key.data(), key.size(), SQLITE_STATIC);
if (res != SQLITE_OK) {
LogPrintf("%s: Unable to bind statement: %s\n", __func__, sqlite3_errstr(res));
sqlite3_clear_bindings(m_read_stmt);
sqlite3_reset(m_read_stmt);
return false;
}
res = sqlite3_step(m_read_stmt);
if (res != SQLITE_ROW) {
if (res != SQLITE_DONE) {
// SQLITE_DONE means "not found", don't log an error in that case.
LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
}
sqlite3_clear_bindings(m_read_stmt);
sqlite3_reset(m_read_stmt);
return false;
}
// Leftmost column in result is index 0
const char* data = reinterpret_cast<const char*>(sqlite3_column_blob(m_read_stmt, 0));
int data_size = sqlite3_column_bytes(m_read_stmt, 0);
value.write(data, data_size);
sqlite3_clear_bindings(m_read_stmt);
sqlite3_reset(m_read_stmt);
return true;
}
bool SQLiteBatch::WriteKey(CDataStream&& key, CDataStream&& value, bool overwrite)
{
if (!m_database.m_db) return false;
assert(m_insert_stmt && m_overwrite_stmt);
sqlite3_stmt* stmt;
if (overwrite) {
stmt = m_overwrite_stmt;
} else {
stmt = m_insert_stmt;
}
// Bind: leftmost parameter in statement is index 1
// Insert index 1 is key, 2 is value
int res = sqlite3_bind_blob(stmt, 1, key.data(), key.size(), SQLITE_STATIC);
if (res != SQLITE_OK) {
LogPrintf("%s: Unable to bind key to statement: %s\n", __func__, sqlite3_errstr(res));
sqlite3_clear_bindings(stmt);
sqlite3_reset(stmt);
return false;
}
res = sqlite3_bind_blob(stmt, 2, value.data(), value.size(), SQLITE_STATIC);
if (res != SQLITE_OK) {
LogPrintf("%s: Unable to bind value to statement: %s\n", __func__, sqlite3_errstr(res));
sqlite3_clear_bindings(stmt);
sqlite3_reset(stmt);
return false;
}
// Execute
res = sqlite3_step(stmt);
sqlite3_clear_bindings(stmt);
sqlite3_reset(stmt);
if (res != SQLITE_DONE) {
LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
}
return res == SQLITE_DONE;
}
bool SQLiteBatch::EraseKey(CDataStream&& key)
{
if (!m_database.m_db) return false;
assert(m_delete_stmt);
// Bind: leftmost parameter in statement is index 1
int res = sqlite3_bind_blob(m_delete_stmt, 1, key.data(), key.size(), SQLITE_STATIC);
if (res != SQLITE_OK) {
LogPrintf("%s: Unable to bind statement: %s\n", __func__, sqlite3_errstr(res));
sqlite3_clear_bindings(m_delete_stmt);
sqlite3_reset(m_delete_stmt);
return false;
}
// Execute
res = sqlite3_step(m_delete_stmt);
sqlite3_clear_bindings(m_delete_stmt);
sqlite3_reset(m_delete_stmt);
if (res != SQLITE_DONE) {
LogPrintf("%s: Unable to execute statement: %s\n", __func__, sqlite3_errstr(res));
}
return res == SQLITE_DONE;
}
bool SQLiteBatch::HasKey(CDataStream&& key)
{
if (!m_database.m_db) return false;
assert(m_read_stmt);
// Bind: leftmost parameter in statement is index 1
bool ret = false;
int res = sqlite3_bind_blob(m_read_stmt, 1, key.data(), key.size(), SQLITE_STATIC);
if (res == SQLITE_OK) {
res = sqlite3_step(m_read_stmt);
if (res == SQLITE_ROW) {
ret = true;
}
}
sqlite3_clear_bindings(m_read_stmt);
sqlite3_reset(m_read_stmt);
return ret;
}
bool SQLiteBatch::StartCursor()
{
assert(!m_cursor_init);
if (!m_database.m_db) return false;
m_cursor_init = true;
return true;
}
bool SQLiteBatch::ReadAtCursor(CDataStream& key, CDataStream& value, bool& complete)
{
complete = false;
if (!m_cursor_init) return false;
int res = sqlite3_step(m_cursor_stmt);
if (res == SQLITE_DONE) {
complete = true;
return true;
}
if (res != SQLITE_ROW) {
LogPrintf("SQLiteBatch::ReadAtCursor: Unable to execute cursor step: %s\n", sqlite3_errstr(res));
return false;
}
// Leftmost column in result is index 0
const char* key_data = reinterpret_cast<const char*>(sqlite3_column_blob(m_cursor_stmt, 0));
int key_data_size = sqlite3_column_bytes(m_cursor_stmt, 0);
key.write(key_data, key_data_size);
const char* value_data = reinterpret_cast<const char*>(sqlite3_column_blob(m_cursor_stmt, 1));
int value_data_size = sqlite3_column_bytes(m_cursor_stmt, 1);
value.write(value_data, value_data_size);
return true;
}
void SQLiteBatch::CloseCursor()
{
sqlite3_reset(m_cursor_stmt);
m_cursor_init = false;
}
bool SQLiteBatch::TxnBegin()
{
return false;
}
bool SQLiteBatch::TxnCommit()
{
return false;
}
bool SQLiteBatch::TxnAbort()
{
return false;
}
bool ExistsSQLiteDatabase(const fs::path& path)
{
return false;
}
std::unique_ptr<SQLiteDatabase> MakeSQLiteDatabase(const fs::path& path, const DatabaseOptions& options, DatabaseStatus& status, bilingual_str& error)
{
return MakeUnique<SQLiteDatabase>(path, path / DATABASE_FILENAME);
}
2020-05-26 20:53:05 -04:00
std::string SQLiteDatabaseVersion()
{
return std::string(sqlite3_libversion());
}