Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
// __ _ _______ __ _ _____ ______ _______ __ _ _______ _ _
|
|
|
|
// | \ | |_____| | \ | | | |_____] |______ | \ | | |_____|
|
|
|
|
// | \_| | | | \_| |_____| |_____] |______ | \_| |_____ | |
|
|
|
|
//
|
|
|
|
// Microbenchmark framework for C++11/14/17/20
|
|
|
|
// https://github.com/martinus/nanobench
|
|
|
|
//
|
|
|
|
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
|
|
|
|
// SPDX-License-Identifier: MIT
|
2021-05-27 01:29:48 -04:00
|
|
|
// Copyright (c) 2019-2021 Martin Ankerl <martin.ankerl@gmail.com>
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
//
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
|
|
// in the Software without restriction, including without limitation the rights
|
|
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
|
|
// furnished to do so, subject to the following conditions:
|
|
|
|
//
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
|
|
// copies or substantial portions of the Software.
|
|
|
|
//
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
// SOFTWARE.
|
|
|
|
|
|
|
|
#ifndef ANKERL_NANOBENCH_H_INCLUDED
|
|
|
|
#define ANKERL_NANOBENCH_H_INCLUDED
|
|
|
|
|
|
|
|
// see https://semver.org/
|
|
|
|
#define ANKERL_NANOBENCH_VERSION_MAJOR 4 // incompatible API changes
|
2021-05-27 01:29:48 -04:00
|
|
|
#define ANKERL_NANOBENCH_VERSION_MINOR 3 // backwards-compatible changes
|
2021-09-17 06:58:57 -03:00
|
|
|
#define ANKERL_NANOBENCH_VERSION_PATCH 6 // backwards-compatible bug fixes
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// public facing api - as minimal as possible
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include <chrono> // high_resolution_clock
|
|
|
|
#include <cstring> // memcpy
|
|
|
|
#include <iosfwd> // for std::ostream* custom output target in Config
|
|
|
|
#include <string> // all names
|
|
|
|
#include <vector> // holds all results
|
|
|
|
|
|
|
|
#define ANKERL_NANOBENCH(x) ANKERL_NANOBENCH_PRIVATE_##x()
|
|
|
|
|
|
|
|
#define ANKERL_NANOBENCH_PRIVATE_CXX() __cplusplus
|
|
|
|
#define ANKERL_NANOBENCH_PRIVATE_CXX98() 199711L
|
|
|
|
#define ANKERL_NANOBENCH_PRIVATE_CXX11() 201103L
|
|
|
|
#define ANKERL_NANOBENCH_PRIVATE_CXX14() 201402L
|
|
|
|
#define ANKERL_NANOBENCH_PRIVATE_CXX17() 201703L
|
|
|
|
|
|
|
|
#if ANKERL_NANOBENCH(CXX) >= ANKERL_NANOBENCH(CXX17)
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_NODISCARD() [[nodiscard]]
|
|
|
|
#else
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_NODISCARD()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__clang__)
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_PUSH() \
|
|
|
|
_Pragma("clang diagnostic push") _Pragma("clang diagnostic ignored \"-Wpadded\"")
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_POP() _Pragma("clang diagnostic pop")
|
|
|
|
#else
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_PUSH()
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_POP()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__GNUC__)
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_PUSH() _Pragma("GCC diagnostic push") _Pragma("GCC diagnostic ignored \"-Weffc++\"")
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_POP() _Pragma("GCC diagnostic pop")
|
|
|
|
#else
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_PUSH()
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_POP()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(ANKERL_NANOBENCH_LOG_ENABLED)
|
|
|
|
# include <iostream>
|
2021-05-27 01:29:48 -04:00
|
|
|
# define ANKERL_NANOBENCH_LOG(x) \
|
|
|
|
do { \
|
|
|
|
std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl; \
|
|
|
|
} while (0)
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
#else
|
2021-05-27 01:29:48 -04:00
|
|
|
# define ANKERL_NANOBENCH_LOG(x) \
|
|
|
|
do { \
|
|
|
|
} while (0)
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
#endif
|
|
|
|
|
2021-09-17 06:58:57 -03:00
|
|
|
#define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 0
|
|
|
|
#if defined(__linux__) && !defined(ANKERL_NANOBENCH_DISABLE_PERF_COUNTERS)
|
|
|
|
# include <linux/version.h>
|
|
|
|
# if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
|
|
|
|
// PERF_COUNT_HW_REF_CPU_CYCLES only available since kernel 3.3
|
|
|
|
// PERF_FLAG_FD_CLOEXEC since kernel 3.14
|
|
|
|
# undef ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 1
|
|
|
|
# endif
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__clang__)
|
|
|
|
# define ANKERL_NANOBENCH_NO_SANITIZE(...) __attribute__((no_sanitize(__VA_ARGS__)))
|
|
|
|
#else
|
|
|
|
# define ANKERL_NANOBENCH_NO_SANITIZE(...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_NOINLINE() __declspec(noinline)
|
|
|
|
#else
|
|
|
|
# define ANKERL_NANOBENCH_PRIVATE_NOINLINE() __attribute__((noinline))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// workaround missing "is_trivially_copyable" in g++ < 5.0
|
|
|
|
// See https://stackoverflow.com/a/31798726/48181
|
|
|
|
#if defined(__GNUC__) && __GNUC__ < 5
|
|
|
|
# define ANKERL_NANOBENCH_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
|
|
|
|
#else
|
|
|
|
# define ANKERL_NANOBENCH_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// declarations ///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
namespace ankerl {
|
|
|
|
namespace nanobench {
|
|
|
|
|
|
|
|
using Clock = std::conditional<std::chrono::high_resolution_clock::is_steady, std::chrono::high_resolution_clock,
|
|
|
|
std::chrono::steady_clock>::type;
|
|
|
|
class Bench;
|
|
|
|
struct Config;
|
|
|
|
class Result;
|
|
|
|
class Rng;
|
|
|
|
class BigO;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Renders output from a mustache-like template and benchmark results.
|
|
|
|
*
|
|
|
|
* The templating facility here is heavily inspired by [mustache - logic-less templates](https://mustache.github.io/).
|
|
|
|
* It adds a few more features that are necessary to get all of the captured data out of nanobench. Please read the
|
|
|
|
* excellent [mustache manual](https://mustache.github.io/mustache.5.html) to see what this is all about.
|
|
|
|
*
|
|
|
|
* nanobench output has two nested layers, *result* and *measurement*. Here is a hierarchy of the allowed tags:
|
|
|
|
*
|
|
|
|
* * `{{#result}}` Marks the begin of the result layer. Whatever comes after this will be instantiated as often as
|
|
|
|
* a benchmark result is available. Within it, you can use these tags:
|
|
|
|
*
|
|
|
|
* * `{{title}}` See Bench::title().
|
|
|
|
*
|
|
|
|
* * `{{name}}` Benchmark name, usually directly provided with Bench::run(), but can also be set with Bench::name().
|
|
|
|
*
|
|
|
|
* * `{{unit}}` Unit, e.g. `byte`. Defaults to `op`, see Bench::title().
|
|
|
|
*
|
|
|
|
* * `{{batch}}` Batch size, see Bench::batch().
|
|
|
|
*
|
|
|
|
* * `{{complexityN}}` Value used for asymptotic complexity calculation. See Bench::complexityN().
|
|
|
|
*
|
|
|
|
* * `{{epochs}}` Number of epochs, see Bench::epochs().
|
|
|
|
*
|
|
|
|
* * `{{clockResolution}}` Accuracy of the clock, i.e. what's the smallest time possible to measure with the clock.
|
|
|
|
* For modern systems, this can be around 20 ns. This value is automatically determined by nanobench at the first
|
|
|
|
* benchmark that is run, and used as a static variable throughout the application's runtime.
|
|
|
|
*
|
|
|
|
* * `{{clockResolutionMultiple}}` Configuration multiplier for `clockResolution`. See Bench::clockResolutionMultiple().
|
|
|
|
* This is the target runtime for each measurement (epoch). That means the more accurate your clock is, the faster
|
|
|
|
* will be the benchmark. Basing the measurement's runtime on the clock resolution is the main reason why nanobench is so fast.
|
|
|
|
*
|
|
|
|
* * `{{maxEpochTime}}` Configuration for a maximum time each measurement (epoch) is allowed to take. Note that at least
|
|
|
|
* a single iteration will be performed, even when that takes longer than maxEpochTime. See Bench::maxEpochTime().
|
|
|
|
*
|
|
|
|
* * `{{minEpochTime}}` Minimum epoch time, usually not set. See Bench::minEpochTime().
|
|
|
|
*
|
|
|
|
* * `{{minEpochIterations}}` See Bench::minEpochIterations().
|
|
|
|
*
|
|
|
|
* * `{{epochIterations}}` See Bench::epochIterations().
|
|
|
|
*
|
|
|
|
* * `{{warmup}}` Number of iterations used before measuring starts. See Bench::warmup().
|
|
|
|
*
|
|
|
|
* * `{{relative}}` True or false, depending on the setting you have used. See Bench::relative().
|
|
|
|
*
|
|
|
|
* Apart from these tags, it is also possible to use some mathematical operations on the measurement data. The operations
|
|
|
|
* are of the form `{{command(name)}}`. Currently `name` can be one of `elapsed`, `iterations`. If performance counters
|
|
|
|
* are available (currently only on current Linux systems), you also have `pagefaults`, `cpucycles`,
|
|
|
|
* `contextswitches`, `instructions`, `branchinstructions`, and `branchmisses`. All the measuers (except `iterations`) are
|
|
|
|
* provided for a single iteration (so `elapsed` is the time a single iteration took). The following tags are available:
|
|
|
|
*
|
2021-05-27 01:29:48 -04:00
|
|
|
* * `{{median(<name>)}}` Calculate median of a measurement data set, e.g. `{{median(elapsed)}}`.
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
*
|
|
|
|
* * `{{average(<name>)}}` Average (mean) calculation.
|
|
|
|
*
|
|
|
|
* * `{{medianAbsolutePercentError(<name>)}}` Calculates MdAPE, the Median Absolute Percentage Error. The MdAPE is an excellent
|
|
|
|
* metric for the variation of measurements. It is more robust to outliers than the
|
|
|
|
* [Mean absolute percentage error (M-APE)](https://en.wikipedia.org/wiki/Mean_absolute_percentage_error).
|
|
|
|
* @f[
|
2021-05-27 01:29:48 -04:00
|
|
|
* \mathrm{MdAPE}(e) = \mathrm{med}\{| \frac{e_i - \mathrm{med}\{e\}}{e_i}| \}
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
* @f]
|
2021-05-27 01:29:48 -04:00
|
|
|
* E.g. for *elapsed*: First, @f$ \mathrm{med}\{e\} @f$ calculates the median by sorting and then taking the middle element
|
|
|
|
* of all *elapsed* measurements. This is used to calculate the absolute percentage
|
|
|
|
* error to this median for each measurement, as in @f$ | \frac{e_i - \mathrm{med}\{e\}}{e_i}| @f$. All these results
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
* are sorted, and the middle value is chosen as the median absolute percent error.
|
|
|
|
*
|
|
|
|
* This measurement is a bit hard to interpret, but it is very robust against outliers. E.g. a value of 5% means that half of the
|
|
|
|
* measurements deviate less than 5% from the median, and the other deviate more than 5% from the median.
|
|
|
|
*
|
|
|
|
* * `{{sum(<name>)}}` Sums of all the measurements. E.g. `{{sum(iterations)}}` will give you the total number of iterations
|
|
|
|
* measured in this benchmark.
|
|
|
|
*
|
|
|
|
* * `{{minimum(<name>)}}` Minimum of all measurements.
|
|
|
|
*
|
|
|
|
* * `{{maximum(<name>)}}` Maximum of all measurements.
|
|
|
|
*
|
|
|
|
* * `{{sumProduct(<first>, <second>)}}` Calculates the sum of the products of corresponding measures:
|
|
|
|
* @f[
|
|
|
|
* \mathrm{sumProduct}(a,b) = \sum_{i=1}^{n}a_i\cdot b_i
|
|
|
|
* @f]
|
|
|
|
* E.g. to calculate total runtime of the benchmark, you multiply iterations with elapsed time for each measurement, and
|
|
|
|
* sum these results up:
|
|
|
|
* `{{sumProduct(iterations, elapsed)}}`.
|
|
|
|
*
|
|
|
|
* * `{{#measurement}}` To access individual measurement results, open the begin tag for measurements.
|
|
|
|
*
|
2021-05-27 01:29:48 -04:00
|
|
|
* * `{{elapsed}}` Average elapsed wall clock time per iteration, in seconds.
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
*
|
|
|
|
* * `{{iterations}}` Number of iterations in the measurement. The number of iterations will fluctuate due
|
|
|
|
* to some applied randomness, to enhance accuracy.
|
|
|
|
*
|
|
|
|
* * `{{pagefaults}}` Average number of pagefaults per iteration.
|
|
|
|
*
|
|
|
|
* * `{{cpucycles}}` Average number of CPU cycles processed per iteration.
|
|
|
|
*
|
|
|
|
* * `{{contextswitches}}` Average number of context switches per iteration.
|
|
|
|
*
|
|
|
|
* * `{{instructions}}` Average number of retired instructions per iteration.
|
|
|
|
*
|
|
|
|
* * `{{branchinstructions}}` Average number of branches executed per iteration.
|
|
|
|
*
|
|
|
|
* * `{{branchmisses}}` Average number of branches that were missed per iteration.
|
|
|
|
*
|
|
|
|
* * `{{/measurement}}` Ends the measurement tag.
|
|
|
|
*
|
|
|
|
* * `{{/result}}` Marks the end of the result layer. This is the end marker for the template part that will be instantiated
|
|
|
|
* for each benchmark result.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* For the layer tags *result* and *measurement* you additionally can use these special markers:
|
|
|
|
*
|
|
|
|
* * ``{{#-first}}`` - Begin marker of a template that will be instantiated *only for the first* entry in the layer. Use is only
|
|
|
|
* allowed between the begin and end marker of the layer allowed. So between ``{{#result}}`` and ``{{/result}}``, or between
|
|
|
|
* ``{{#measurement}}`` and ``{{/measurement}}``. Finish the template with ``{{/-first}}``.
|
|
|
|
*
|
|
|
|
* * ``{{^-first}}`` - Begin marker of a template that will be instantiated *for each except the first* entry in the layer. This,
|
|
|
|
* this is basically the inversion of ``{{#-first}}``. Use is only allowed between the begin and end marker of the layer allowed.
|
|
|
|
* So between ``{{#result}}`` and ``{{/result}}``, or between ``{{#measurement}}`` and ``{{/measurement}}``.
|
|
|
|
*
|
|
|
|
* * ``{{/-first}}`` - End marker for either ``{{#-first}}`` or ``{{^-first}}``.
|
|
|
|
*
|
|
|
|
* * ``{{#-last}}`` - Begin marker of a template that will be instantiated *only for the last* entry in the layer. Use is only
|
|
|
|
* allowed between the begin and end marker of the layer allowed. So between ``{{#result}}`` and ``{{/result}}``, or between
|
|
|
|
* ``{{#measurement}}`` and ``{{/measurement}}``. Finish the template with ``{{/-last}}``.
|
|
|
|
*
|
|
|
|
* * ``{{^-last}}`` - Begin marker of a template that will be instantiated *for each except the last* entry in the layer. This,
|
|
|
|
* this is basically the inversion of ``{{#-last}}``. Use is only allowed between the begin and end marker of the layer allowed.
|
|
|
|
* So between ``{{#result}}`` and ``{{/result}}``, or between ``{{#measurement}}`` and ``{{/measurement}}``.
|
|
|
|
*
|
|
|
|
* * ``{{/-last}}`` - End marker for either ``{{#-last}}`` or ``{{^-last}}``.
|
|
|
|
*
|
|
|
|
@verbatim embed:rst
|
|
|
|
|
|
|
|
For an overview of all the possible data you can get out of nanobench, please see the tutorial at :ref:`tutorial-template-json`.
|
|
|
|
|
|
|
|
The templates that ship with nanobench are:
|
|
|
|
|
|
|
|
* :cpp:func:`templates::csv() <ankerl::nanobench::templates::csv()>`
|
|
|
|
* :cpp:func:`templates::json() <ankerl::nanobench::templates::json()>`
|
|
|
|
* :cpp:func:`templates::htmlBoxplot() <ankerl::nanobench::templates::htmlBoxplot()>`
|
2021-05-27 01:29:48 -04:00
|
|
|
* :cpp:func:`templates::pyperf() <ankerl::nanobench::templates::pyperf()>`
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
@endverbatim
|
|
|
|
*
|
|
|
|
* @param mustacheTemplate The template.
|
|
|
|
* @param bench Benchmark, containing all the results.
|
|
|
|
* @param out Output for the generated output.
|
|
|
|
*/
|
|
|
|
void render(char const* mustacheTemplate, Bench const& bench, std::ostream& out);
|
2021-05-27 01:29:48 -04:00
|
|
|
void render(std::string const& mustacheTemplate, Bench const& bench, std::ostream& out);
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Same as render(char const* mustacheTemplate, Bench const& bench, std::ostream& out), but for when
|
|
|
|
* you only have results available.
|
|
|
|
*
|
|
|
|
* @param mustacheTemplate The template.
|
|
|
|
* @param results All the results to be used for rendering.
|
|
|
|
* @param out Output for the generated output.
|
|
|
|
*/
|
|
|
|
void render(char const* mustacheTemplate, std::vector<Result> const& results, std::ostream& out);
|
2021-05-27 01:29:48 -04:00
|
|
|
void render(std::string const& mustacheTemplate, std::vector<Result> const& results, std::ostream& out);
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
// Contains mustache-like templates
|
|
|
|
namespace templates {
|
|
|
|
|
|
|
|
/*!
|
|
|
|
@brief CSV data for the benchmark results.
|
|
|
|
|
|
|
|
Generates a comma-separated values dataset. First line is the header, each following line is a summary of each benchmark run.
|
|
|
|
|
|
|
|
@verbatim embed:rst
|
|
|
|
See the tutorial at :ref:`tutorial-template-csv` for an example.
|
|
|
|
@endverbatim
|
|
|
|
*/
|
|
|
|
char const* csv() noexcept;
|
|
|
|
|
|
|
|
/*!
|
|
|
|
@brief HTML output that uses plotly to generate an interactive boxplot chart. See the tutorial for an example output.
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
The output uses only the elapsed wall clock time, and displays each epoch as a single dot.
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
@verbatim embed:rst
|
|
|
|
See the tutorial at :ref:`tutorial-template-html` for an example.
|
|
|
|
@endverbatim
|
|
|
|
|
|
|
|
@see ankerl::nanobench::render()
|
|
|
|
*/
|
|
|
|
char const* htmlBoxplot() noexcept;
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
/*!
|
|
|
|
@brief Output in pyperf compatible JSON format, which can be used for more analyzations.
|
|
|
|
@verbatim embed:rst
|
|
|
|
See the tutorial at :ref:`tutorial-template-pyperf` for an example how to further analyze the output.
|
|
|
|
@endverbatim
|
|
|
|
*/
|
|
|
|
char const* pyperf() noexcept;
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
/*!
|
|
|
|
@brief Template to generate JSON data.
|
|
|
|
|
|
|
|
The generated JSON data contains *all* data that has been generated. All times are as double values, in seconds. The output can get
|
|
|
|
quite large.
|
|
|
|
@verbatim embed:rst
|
|
|
|
See the tutorial at :ref:`tutorial-template-json` for an example.
|
|
|
|
@endverbatim
|
|
|
|
*/
|
|
|
|
char const* json() noexcept;
|
|
|
|
|
|
|
|
} // namespace templates
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct PerfCountSet;
|
|
|
|
|
|
|
|
class IterationLogic;
|
|
|
|
class PerformanceCounters;
|
|
|
|
|
|
|
|
#if ANKERL_NANOBENCH(PERF_COUNTERS)
|
|
|
|
class LinuxPerformanceCounters;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace nanobench
|
|
|
|
} // namespace ankerl
|
|
|
|
|
|
|
|
// definitions ////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
namespace ankerl {
|
|
|
|
namespace nanobench {
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct PerfCountSet {
|
|
|
|
T pageFaults{};
|
|
|
|
T cpuCycles{};
|
|
|
|
T contextSwitches{};
|
|
|
|
T instructions{};
|
|
|
|
T branchInstructions{};
|
|
|
|
T branchMisses{};
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
struct Config {
|
|
|
|
// actual benchmark config
|
|
|
|
std::string mBenchmarkTitle = "benchmark";
|
|
|
|
std::string mBenchmarkName = "noname";
|
|
|
|
std::string mUnit = "op";
|
|
|
|
double mBatch = 1.0;
|
|
|
|
double mComplexityN = -1.0;
|
|
|
|
size_t mNumEpochs = 11;
|
|
|
|
size_t mClockResolutionMultiple = static_cast<size_t>(1000);
|
|
|
|
std::chrono::nanoseconds mMaxEpochTime = std::chrono::milliseconds(100);
|
|
|
|
std::chrono::nanoseconds mMinEpochTime{};
|
|
|
|
uint64_t mMinEpochIterations{1};
|
|
|
|
uint64_t mEpochIterations{0}; // If not 0, run *exactly* these number of iterations per epoch.
|
|
|
|
uint64_t mWarmup = 0;
|
|
|
|
std::ostream* mOut = nullptr;
|
2021-05-27 01:29:48 -04:00
|
|
|
std::chrono::duration<double> mTimeUnit = std::chrono::nanoseconds{1};
|
|
|
|
std::string mTimeUnitName = "ns";
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
bool mShowPerformanceCounters = true;
|
|
|
|
bool mIsRelative = false;
|
|
|
|
|
|
|
|
Config();
|
|
|
|
~Config();
|
|
|
|
Config& operator=(Config const&);
|
|
|
|
Config& operator=(Config&&);
|
|
|
|
Config(Config const&);
|
|
|
|
Config(Config&&) noexcept;
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
// Result returned after a benchmark has finished. Can be used as a baseline for relative().
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
class Result {
|
|
|
|
public:
|
|
|
|
enum class Measure : size_t {
|
|
|
|
elapsed,
|
|
|
|
iterations,
|
|
|
|
pagefaults,
|
|
|
|
cpucycles,
|
|
|
|
contextswitches,
|
|
|
|
instructions,
|
|
|
|
branchinstructions,
|
|
|
|
branchmisses,
|
|
|
|
_size
|
|
|
|
};
|
|
|
|
|
|
|
|
explicit Result(Config const& benchmarkConfig);
|
|
|
|
|
|
|
|
~Result();
|
|
|
|
Result& operator=(Result const&);
|
|
|
|
Result& operator=(Result&&);
|
|
|
|
Result(Result const&);
|
|
|
|
Result(Result&&) noexcept;
|
|
|
|
|
|
|
|
// adds new measurement results
|
|
|
|
// all values are scaled by iters (except iters...)
|
|
|
|
void add(Clock::duration totalElapsed, uint64_t iters, detail::PerformanceCounters const& pc);
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) Config const& config() const noexcept;
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double median(Measure m) const;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double medianAbsolutePercentError(Measure m) const;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double average(Measure m) const;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double sum(Measure m) const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double sumProduct(Measure m1, Measure m2) const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double minimum(Measure m) const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double maximum(Measure m) const noexcept;
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) bool has(Measure m) const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double get(size_t idx, Measure m) const;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) bool empty() const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) size_t size() const noexcept;
|
|
|
|
|
|
|
|
// Finds string, if not found, returns _size.
|
|
|
|
static Measure fromString(std::string const& str);
|
|
|
|
|
|
|
|
private:
|
|
|
|
Config mConfig{};
|
|
|
|
std::vector<std::vector<double>> mNameToMeasurements{};
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* An extremely fast random generator. Currently, this implements *RomuDuoJr*, developed by Mark Overton. Source:
|
|
|
|
* http://www.romu-random.org/
|
|
|
|
*
|
|
|
|
* RomuDuoJr is extremely fast and provides reasonable good randomness. Not enough for large jobs, but definitely
|
|
|
|
* good enough for a benchmarking framework.
|
|
|
|
*
|
|
|
|
* * Estimated capacity: @f$ 2^{51} @f$ bytes
|
|
|
|
* * Register pressure: 4
|
|
|
|
* * State size: 128 bits
|
|
|
|
*
|
|
|
|
* This random generator is a drop-in replacement for the generators supplied by ``<random>``. It is not
|
|
|
|
* cryptographically secure. It's intended purpose is to be very fast so that benchmarks that make use
|
|
|
|
* of randomness are not distorted too much by the random generator.
|
|
|
|
*
|
|
|
|
* Rng also provides a few non-standard helpers, optimized for speed.
|
|
|
|
*/
|
|
|
|
class Rng final {
|
|
|
|
public:
|
|
|
|
/**
|
|
|
|
* @brief This RNG provides 64bit randomness.
|
|
|
|
*/
|
|
|
|
using result_type = uint64_t;
|
|
|
|
|
|
|
|
static constexpr uint64_t(min)();
|
|
|
|
static constexpr uint64_t(max)();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* As a safety precausion, we don't allow copying. Copying a PRNG would mean you would have two random generators that produce the
|
|
|
|
* same sequence, which is generally not what one wants. Instead create a new rng with the default constructor Rng(), which is
|
|
|
|
* automatically seeded from `std::random_device`. If you really need a copy, use copy().
|
|
|
|
*/
|
|
|
|
Rng(Rng const&) = delete;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Same as Rng(Rng const&), we don't allow assignment. If you need a new Rng create one with the default constructor Rng().
|
|
|
|
*/
|
|
|
|
Rng& operator=(Rng const&) = delete;
|
|
|
|
|
|
|
|
// moving is ok
|
|
|
|
Rng(Rng&&) noexcept = default;
|
|
|
|
Rng& operator=(Rng&&) noexcept = default;
|
|
|
|
~Rng() noexcept = default;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Creates a new Random generator with random seed.
|
|
|
|
*
|
|
|
|
* Instead of a default seed (as the random generators from the STD), this properly seeds the random generator from
|
|
|
|
* `std::random_device`. It guarantees correct seeding. Note that seeding can be relatively slow, depending on the source of
|
|
|
|
* randomness used. So it is best to create a Rng once and use it for all your randomness purposes.
|
|
|
|
*/
|
|
|
|
Rng();
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Creates a new Rng that is seeded with a specific seed. Each Rng created from the same seed will produce the same randomness
|
|
|
|
sequence. This can be useful for deterministic behavior.
|
|
|
|
|
|
|
|
@verbatim embed:rst
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
The random algorithm might change between nanobench releases. Whenever a faster and/or better random
|
|
|
|
generator becomes available, I will switch the implementation.
|
|
|
|
@endverbatim
|
|
|
|
|
|
|
|
As per the Romu paper, this seeds the Rng with splitMix64 algorithm and performs 10 initial rounds for further mixing up of the
|
|
|
|
internal state.
|
|
|
|
|
|
|
|
@param seed The 64bit seed. All values are allowed, even 0.
|
|
|
|
*/
|
|
|
|
explicit Rng(uint64_t seed) noexcept;
|
|
|
|
Rng(uint64_t x, uint64_t y) noexcept;
|
2021-05-27 01:29:48 -04:00
|
|
|
Rng(std::vector<uint64_t> const& data);
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Creates a copy of the Rng, thus the copy provides exactly the same random sequence as the original.
|
|
|
|
*/
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) Rng copy() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Produces a 64bit random value. This should be very fast, thus it is marked as inline. In my benchmark, this is ~46 times
|
|
|
|
* faster than `std::default_random_engine` for producing 64bit random values. It seems that the fastest std contender is
|
|
|
|
* `std::mt19937_64`. Still, this RNG is 2-3 times as fast.
|
|
|
|
*
|
|
|
|
* @return uint64_t The next 64 bit random value.
|
|
|
|
*/
|
|
|
|
inline uint64_t operator()() noexcept;
|
|
|
|
|
|
|
|
// This is slightly biased. See
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Generates a random number between 0 and range (excluding range).
|
|
|
|
*
|
|
|
|
* The algorithm only produces 32bit numbers, and is slightly biased. The effect is quite small unless your range is close to the
|
|
|
|
* maximum value of an integer. It is possible to correct the bias with rejection sampling (see
|
|
|
|
* [here](https://lemire.me/blog/2016/06/30/fast-random-shuffling/), but this is most likely irrelevant in practices for the
|
|
|
|
* purposes of this Rng.
|
|
|
|
*
|
|
|
|
* See Daniel Lemire's blog post [A fast alternative to the modulo
|
|
|
|
* reduction](https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/)
|
|
|
|
*
|
|
|
|
* @param range Upper exclusive range. E.g a value of 3 will generate random numbers 0, 1, 2.
|
|
|
|
* @return uint32_t Generated random values in range [0, range(.
|
|
|
|
*/
|
|
|
|
inline uint32_t bounded(uint32_t range) noexcept;
|
|
|
|
|
|
|
|
// random double in range [0, 1(
|
|
|
|
// see http://prng.di.unimi.it/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Provides a random uniform double value between 0 and 1. This uses the method described in [Generating uniform doubles in the
|
|
|
|
* unit interval](http://prng.di.unimi.it/), and is extremely fast.
|
|
|
|
*
|
|
|
|
* @return double Uniformly distributed double value in range [0,1(, excluding 1.
|
|
|
|
*/
|
|
|
|
inline double uniform01() noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Shuffles all entries in the given container. Although this has a slight bias due to the implementation of bounded(), this is
|
|
|
|
* preferable to `std::shuffle` because it is over 5 times faster. See Daniel Lemire's blog post [Fast random
|
|
|
|
* shuffling](https://lemire.me/blog/2016/06/30/fast-random-shuffling/).
|
|
|
|
*
|
|
|
|
* @param container The whole container will be shuffled.
|
|
|
|
*/
|
|
|
|
template <typename Container>
|
|
|
|
void shuffle(Container& container) noexcept;
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
/**
|
|
|
|
* Extracts the full state of the generator, e.g. for serialization. For this RNG this is just 2 values, but to stay API compatible
|
|
|
|
* with future implementations that potentially use more state, we use a vector.
|
|
|
|
*
|
|
|
|
* @return Vector containing the full state:
|
|
|
|
*/
|
|
|
|
std::vector<uint64_t> state() const;
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
private:
|
|
|
|
static constexpr uint64_t rotl(uint64_t x, unsigned k) noexcept;
|
|
|
|
|
|
|
|
uint64_t mX;
|
|
|
|
uint64_t mY;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Main entry point to nanobench's benchmarking facility.
|
|
|
|
*
|
|
|
|
* It holds configuration and results from one or more benchmark runs. Usually it is used in a single line, where the object is
|
|
|
|
* constructed, configured, and then a benchmark is run. E.g. like this:
|
|
|
|
*
|
|
|
|
* ankerl::nanobench::Bench().unit("byte").batch(1000).run("random fluctuations", [&] {
|
|
|
|
* // here be the benchmark code
|
|
|
|
* });
|
|
|
|
*
|
|
|
|
* In that example Bench() constructs the benchmark, it is then configured with unit() and batch(), and after configuration a
|
|
|
|
* benchmark is executed with run(). Once run() has finished, it prints the result to `std::cout`. It would also store the results
|
|
|
|
* in the Bench instance, but in this case the object is immediately destroyed so it's not available any more.
|
|
|
|
*/
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
class Bench {
|
|
|
|
public:
|
|
|
|
/**
|
|
|
|
* @brief Creates a new benchmark for configuration and running of benchmarks.
|
|
|
|
*/
|
|
|
|
Bench();
|
|
|
|
|
|
|
|
Bench(Bench&& other);
|
|
|
|
Bench& operator=(Bench&& other);
|
|
|
|
Bench(Bench const& other);
|
|
|
|
Bench& operator=(Bench const& other);
|
|
|
|
~Bench() noexcept;
|
|
|
|
|
|
|
|
/*!
|
|
|
|
@brief Repeatedly calls `op()` based on the configuration, and performs measurements.
|
|
|
|
|
|
|
|
This call is marked with `noinline` to prevent the compiler to optimize beyond different benchmarks. This can have quite a big
|
|
|
|
effect on benchmark accuracy.
|
|
|
|
|
|
|
|
@verbatim embed:rst
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
Each call to your lambda must have a side effect that the compiler can't possibly optimize it away. E.g. add a result to an
|
|
|
|
externally defined number (like `x` in the above example), and finally call `doNotOptimizeAway` on the variables the compiler
|
|
|
|
must not remove. You can also use :cpp:func:`ankerl::nanobench::doNotOptimizeAway` directly in the lambda, but be aware that
|
|
|
|
this has a small overhead.
|
|
|
|
|
|
|
|
@endverbatim
|
|
|
|
|
|
|
|
@tparam Op The code to benchmark.
|
|
|
|
*/
|
|
|
|
template <typename Op>
|
|
|
|
ANKERL_NANOBENCH(NOINLINE)
|
|
|
|
Bench& run(char const* benchmarkName, Op&& op);
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
ANKERL_NANOBENCH(NOINLINE)
|
|
|
|
Bench& run(std::string const& benchmarkName, Op&& op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Same as run(char const* benchmarkName, Op op), but instead uses the previously set name.
|
|
|
|
* @tparam Op The code to benchmark.
|
|
|
|
*/
|
|
|
|
template <typename Op>
|
|
|
|
ANKERL_NANOBENCH(NOINLINE)
|
|
|
|
Bench& run(Op&& op);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Title of the benchmark, will be shown in the table header. Changing the title will start a new markdown table.
|
|
|
|
*
|
|
|
|
* @param benchmarkTitle The title of the benchmark.
|
|
|
|
*/
|
|
|
|
Bench& title(char const* benchmarkTitle);
|
|
|
|
Bench& title(std::string const& benchmarkTitle);
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::string const& title() const noexcept;
|
|
|
|
|
|
|
|
/// Name of the benchmark, will be shown in the table row.
|
|
|
|
Bench& name(char const* benchmarkName);
|
|
|
|
Bench& name(std::string const& benchmarkName);
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::string const& name() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Sets the batch size.
|
|
|
|
*
|
|
|
|
* E.g. number of processed byte, or some other metric for the size of the processed data in each iteration. If you benchmark
|
|
|
|
* hashing of a 1000 byte long string and want byte/sec as a result, you can specify 1000 as the batch size.
|
|
|
|
*
|
|
|
|
* @tparam T Any input type is internally cast to `double`.
|
|
|
|
* @param b batch size
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
Bench& batch(T b) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double batch() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Sets the operation unit.
|
|
|
|
*
|
|
|
|
* Defaults to "op". Could be e.g. "byte" for string processing. This is used for the table header, e.g. to show `ns/byte`. Use
|
|
|
|
* singular (*byte*, not *bytes*). A change clears the currently collected results.
|
|
|
|
*
|
|
|
|
* @param unit The unit name.
|
|
|
|
*/
|
|
|
|
Bench& unit(char const* unit);
|
|
|
|
Bench& unit(std::string const& unit);
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::string const& unit() const noexcept;
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
/**
|
|
|
|
* @brief Sets the time unit to be used for the default output.
|
|
|
|
*
|
|
|
|
* Nanobench defaults to using ns (nanoseconds) as output in the markdown. For some benchmarks this is too coarse, so it is
|
|
|
|
* possible to configure this. E.g. use `timeUnit(1ms, "ms")` to show `ms/op` instead of `ns/op`.
|
|
|
|
*
|
|
|
|
* @param tu Time unit to display the results in, default is 1ns.
|
|
|
|
* @param tuName Name for the time unit, default is "ns"
|
|
|
|
*/
|
|
|
|
Bench& timeUnit(std::chrono::duration<double> const& tu, std::string const& tuName);
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::string const& timeUnitName() const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::chrono::duration<double> const& timeUnit() const noexcept;
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
/**
|
|
|
|
* @brief Set the output stream where the resulting markdown table will be printed to.
|
|
|
|
*
|
|
|
|
* The default is `&std::cout`. You can disable all output by setting `nullptr`.
|
|
|
|
*
|
|
|
|
* @param outstream Pointer to output stream, can be `nullptr`.
|
|
|
|
*/
|
|
|
|
Bench& output(std::ostream* outstream) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::ostream* output() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Modern processors have a very accurate clock, being able to measure as low as 20 nanoseconds. This is the main trick nanobech to
|
|
|
|
* be so fast: we find out how accurate the clock is, then run the benchmark only so often that the clock's accuracy is good enough
|
|
|
|
* for accurate measurements.
|
|
|
|
*
|
|
|
|
* The default is to run one epoch for 1000 times the clock resolution. So for 20ns resolution and 11 epochs, this gives a total
|
|
|
|
* runtime of
|
|
|
|
*
|
|
|
|
* @f[
|
|
|
|
* 20ns * 1000 * 11 \approx 0.2ms
|
|
|
|
* @f]
|
|
|
|
*
|
|
|
|
* To be precise, nanobench adds a 0-20% random noise to each evaluation. This is to prevent any aliasing effects, and further
|
|
|
|
* improves accuracy.
|
|
|
|
*
|
|
|
|
* Total runtime will be higher though: Some initial time is needed to find out the target number of iterations for each epoch, and
|
|
|
|
* there is some overhead involved to start & stop timers and calculate resulting statistics and writing the output.
|
|
|
|
*
|
|
|
|
* @param multiple Target number of times of clock resolution. Usually 1000 is a good compromise between runtime and accuracy.
|
|
|
|
*/
|
|
|
|
Bench& clockResolutionMultiple(size_t multiple) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) size_t clockResolutionMultiple() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Controls number of epochs, the number of measurements to perform.
|
|
|
|
*
|
|
|
|
* The reported result will be the median of evaluation of each epoch. The higher you choose this, the more
|
|
|
|
* deterministic the result be and outliers will be more easily removed. Also the `err%` will be more accurate the higher this
|
|
|
|
* number is. Note that the `err%` will not necessarily decrease when number of epochs is increased. But it will be a more accurate
|
|
|
|
* representation of the benchmarked code's runtime stability.
|
|
|
|
*
|
|
|
|
* Choose the value wisely. In practice, 11 has been shown to be a reasonable choice between runtime performance and accuracy.
|
|
|
|
* This setting goes hand in hand with minEpocIterations() (or minEpochTime()). If you are more interested in *median* runtime, you
|
|
|
|
* might want to increase epochs(). If you are more interested in *mean* runtime, you might want to increase minEpochIterations()
|
|
|
|
* instead.
|
|
|
|
*
|
|
|
|
* @param numEpochs Number of epochs.
|
|
|
|
*/
|
|
|
|
Bench& epochs(size_t numEpochs) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) size_t epochs() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Upper limit for the runtime of each epoch.
|
|
|
|
*
|
|
|
|
* As a safety precausion if the clock is not very accurate, we can set an upper limit for the maximum evaluation time per
|
|
|
|
* epoch. Default is 100ms. At least a single evaluation of the benchmark is performed.
|
|
|
|
*
|
|
|
|
* @see minEpochTime(), minEpochIterations()
|
|
|
|
*
|
|
|
|
* @param t Maximum target runtime for a single epoch.
|
|
|
|
*/
|
|
|
|
Bench& maxEpochTime(std::chrono::nanoseconds t) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::chrono::nanoseconds maxEpochTime() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Minimum time each epoch should take.
|
|
|
|
*
|
|
|
|
* Default is zero, so we are fully relying on clockResolutionMultiple(). In most cases this is exactly what you want. If you see
|
|
|
|
* that the evaluation is unreliable with a high `err%`, you can increase either minEpochTime() or minEpochIterations().
|
|
|
|
*
|
|
|
|
* @see maxEpochTime(), minEpochIterations()
|
|
|
|
*
|
|
|
|
* @param t Minimum time each epoch should take.
|
|
|
|
*/
|
|
|
|
Bench& minEpochTime(std::chrono::nanoseconds t) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::chrono::nanoseconds minEpochTime() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Sets the minimum number of iterations each epoch should take.
|
|
|
|
*
|
|
|
|
* Default is 1, and we rely on clockResolutionMultiple(). If the `err%` is high and you want a more smooth result, you might want
|
|
|
|
* to increase the minimum number or iterations, or increase the minEpochTime().
|
|
|
|
*
|
|
|
|
* @see minEpochTime(), maxEpochTime(), minEpochIterations()
|
|
|
|
*
|
|
|
|
* @param numIters Minimum number of iterations per epoch.
|
|
|
|
*/
|
|
|
|
Bench& minEpochIterations(uint64_t numIters) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) uint64_t minEpochIterations() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sets exactly the number of iterations for each epoch. Ignores all other epoch limits. This forces nanobench to use exactly
|
|
|
|
* the given number of iterations for each epoch, not more and not less. Default is 0 (disabled).
|
|
|
|
*
|
|
|
|
* @param numIters Exact number of iterations to use. Set to 0 to disable.
|
|
|
|
*/
|
|
|
|
Bench& epochIterations(uint64_t numIters) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) uint64_t epochIterations() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Sets a number of iterations that are initially performed without any measurements.
|
|
|
|
*
|
|
|
|
* Some benchmarks need a few evaluations to warm up caches / database / whatever access. Normally this should not be needed, since
|
|
|
|
* we show the median result so initial outliers will be filtered away automatically. If the warmup effect is large though, you
|
|
|
|
* might want to set it. Default is 0.
|
|
|
|
*
|
|
|
|
* @param numWarmupIters Number of warmup iterations.
|
|
|
|
*/
|
|
|
|
Bench& warmup(uint64_t numWarmupIters) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) uint64_t warmup() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Marks the next run as the baseline.
|
|
|
|
*
|
|
|
|
* Call `relative(true)` to mark the run as the baseline. Successive runs will be compared to this run. It is calculated by
|
|
|
|
*
|
|
|
|
* @f[
|
|
|
|
* 100\% * \frac{baseline}{runtime}
|
|
|
|
* @f]
|
|
|
|
*
|
|
|
|
* * 100% means it is exactly as fast as the baseline
|
|
|
|
* * >100% means it is faster than the baseline. E.g. 200% means the current run is twice as fast as the baseline.
|
|
|
|
* * <100% means it is slower than the baseline. E.g. 50% means it is twice as slow as the baseline.
|
|
|
|
*
|
|
|
|
* See the tutorial section "Comparing Results" for example usage.
|
|
|
|
*
|
|
|
|
* @param isRelativeEnabled True to enable processing
|
|
|
|
*/
|
|
|
|
Bench& relative(bool isRelativeEnabled) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) bool relative() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Enables/disables performance counters.
|
|
|
|
*
|
|
|
|
* On Linux nanobench has a powerful feature to use performance counters. This enables counting of retired instructions, count
|
|
|
|
* number of branches, missed branches, etc. On default this is enabled, but you can disable it if you don't need that feature.
|
|
|
|
*
|
|
|
|
* @param showPerformanceCounters True to enable, false to disable.
|
|
|
|
*/
|
|
|
|
Bench& performanceCounters(bool showPerformanceCounters) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) bool performanceCounters() const noexcept;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Retrieves all benchmark results collected by the bench object so far.
|
|
|
|
*
|
|
|
|
* Each call to run() generates a Result that is stored within the Bench instance. This is mostly for advanced users who want to
|
|
|
|
* see all the nitty gritty detials.
|
|
|
|
*
|
|
|
|
* @return All results collected so far.
|
|
|
|
*/
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::vector<Result> const& results() const noexcept;
|
|
|
|
|
|
|
|
/*!
|
|
|
|
@verbatim embed:rst
|
|
|
|
|
|
|
|
Convenience shortcut to :cpp:func:`ankerl::nanobench::doNotOptimizeAway`.
|
|
|
|
|
|
|
|
@endverbatim
|
|
|
|
*/
|
|
|
|
template <typename Arg>
|
|
|
|
Bench& doNotOptimizeAway(Arg&& arg);
|
|
|
|
|
|
|
|
/*!
|
|
|
|
@verbatim embed:rst
|
|
|
|
|
|
|
|
Sets N for asymptotic complexity calculation, so it becomes possible to calculate `Big O
|
|
|
|
<https://en.wikipedia.org/wiki/Big_O_notation>`_ from multiple benchmark evaluations.
|
|
|
|
|
|
|
|
Use :cpp:func:`ankerl::nanobench::Bench::complexityBigO` when the evaluation has finished. See the tutorial
|
|
|
|
:ref:`asymptotic-complexity` for details.
|
|
|
|
|
|
|
|
@endverbatim
|
|
|
|
|
|
|
|
@tparam T Any type is cast to `double`.
|
|
|
|
@param b Length of N for the next benchmark run, so it is possible to calculate `bigO`.
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
Bench& complexityN(T b) noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double complexityN() const noexcept;
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Calculates [Big O](https://en.wikipedia.org/wiki/Big_O_notation>) of the results with all preconfigured complexity functions.
|
|
|
|
Currently these complexity functions are fitted into the benchmark results:
|
|
|
|
|
|
|
|
@f$ \mathcal{O}(1) @f$,
|
|
|
|
@f$ \mathcal{O}(n) @f$,
|
|
|
|
@f$ \mathcal{O}(\log{}n) @f$,
|
|
|
|
@f$ \mathcal{O}(n\log{}n) @f$,
|
|
|
|
@f$ \mathcal{O}(n^2) @f$,
|
|
|
|
@f$ \mathcal{O}(n^3) @f$.
|
|
|
|
|
|
|
|
If we e.g. evaluate the complexity of `std::sort`, this is the result of `std::cout << bench.complexityBigO()`:
|
|
|
|
|
|
|
|
```
|
|
|
|
| coefficient | err% | complexity
|
|
|
|
|--------------:|-------:|------------
|
|
|
|
| 5.08935e-09 | 2.6% | O(n log n)
|
|
|
|
| 6.10608e-08 | 8.0% | O(n)
|
|
|
|
| 1.29307e-11 | 47.2% | O(n^2)
|
|
|
|
| 2.48677e-15 | 69.6% | O(n^3)
|
|
|
|
| 9.88133e-06 | 132.3% | O(log n)
|
|
|
|
| 5.98793e-05 | 162.5% | O(1)
|
|
|
|
```
|
|
|
|
|
|
|
|
So in this case @f$ \mathcal{O}(n\log{}n) @f$ provides the best approximation.
|
|
|
|
|
|
|
|
@verbatim embed:rst
|
|
|
|
See the tutorial :ref:`asymptotic-complexity` for details.
|
|
|
|
@endverbatim
|
|
|
|
@return Evaluation results, which can be printed or otherwise inspected.
|
|
|
|
*/
|
|
|
|
std::vector<BigO> complexityBigO() const;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Calculates bigO for a custom function.
|
|
|
|
*
|
|
|
|
* E.g. to calculate the mean squared error for @f$ \mathcal{O}(\log{}\log{}n) @f$, which is not part of the default set of
|
|
|
|
* complexityBigO(), you can do this:
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* auto logLogN = bench.complexityBigO("O(log log n)", [](double n) {
|
|
|
|
* return std::log2(std::log2(n));
|
|
|
|
* });
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* The resulting mean squared error can be printed with `std::cout << logLogN`. E.g. it prints something like this:
|
|
|
|
*
|
|
|
|
* ```text
|
|
|
|
* 2.46985e-05 * O(log log n), rms=1.48121
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* @tparam Op Type of mapping operation.
|
|
|
|
* @param name Name for the function, e.g. "O(log log n)"
|
|
|
|
* @param op Op's operator() maps a `double` with the desired complexity function, e.g. `log2(log2(n))`.
|
|
|
|
* @return BigO Error calculation, which is streamable to std::cout.
|
|
|
|
*/
|
|
|
|
template <typename Op>
|
|
|
|
BigO complexityBigO(char const* name, Op op) const;
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
BigO complexityBigO(std::string const& name, Op op) const;
|
|
|
|
|
|
|
|
/*!
|
|
|
|
@verbatim embed:rst
|
|
|
|
|
|
|
|
Convenience shortcut to :cpp:func:`ankerl::nanobench::render`.
|
|
|
|
|
|
|
|
@endverbatim
|
|
|
|
*/
|
|
|
|
Bench& render(char const* templateContent, std::ostream& os);
|
2021-05-27 01:29:48 -04:00
|
|
|
Bench& render(std::string const& templateContent, std::ostream& os);
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
Bench& config(Config const& benchmarkConfig);
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) Config const& config() const noexcept;
|
|
|
|
|
|
|
|
private:
|
|
|
|
Config mConfig{};
|
|
|
|
std::vector<Result> mResults{};
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Makes sure none of the given arguments are optimized away by the compiler.
|
|
|
|
*
|
|
|
|
* @tparam Arg Type of the argument that shouldn't be optimized away.
|
|
|
|
* @param arg The input that we mark as being used, even though we don't do anything with it.
|
|
|
|
*/
|
|
|
|
template <typename Arg>
|
|
|
|
void doNotOptimizeAway(Arg&& arg);
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
void doNotOptimizeAwaySink(void const*);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void doNotOptimizeAway(T const& val);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
// These assembly magic is directly from what Google Benchmark is doing. I have previously used what facebook's folly was doing, but
|
|
|
|
// this seemd to have compilation problems in some cases. Google Benchmark seemed to be the most well tested anyways.
|
|
|
|
// see https://github.com/google/benchmark/blob/master/include/benchmark/benchmark.h#L307
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
template <typename T>
|
2021-05-27 01:29:48 -04:00
|
|
|
void doNotOptimizeAway(T const& val) {
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
// NOLINTNEXTLINE(hicpp-no-assembler)
|
2021-05-27 01:29:48 -04:00
|
|
|
asm volatile("" : : "r,m"(val) : "memory");
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
2021-05-27 01:29:48 -04:00
|
|
|
void doNotOptimizeAway(T& val) {
|
|
|
|
# if defined(__clang__)
|
|
|
|
// NOLINTNEXTLINE(hicpp-no-assembler)
|
|
|
|
asm volatile("" : "+r,m"(val) : : "memory");
|
|
|
|
# else
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
// NOLINTNEXTLINE(hicpp-no-assembler)
|
2021-05-27 01:29:48 -04:00
|
|
|
asm volatile("" : "+m,r"(val) : : "memory");
|
|
|
|
# endif
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// internally used, but visible because run() is templated.
|
|
|
|
// Not movable/copy-able, so we simply use a pointer instead of unique_ptr. This saves us from
|
|
|
|
// having to include <memory>, and the template instantiation overhead of unique_ptr which is unfortunately quite significant.
|
|
|
|
ANKERL_NANOBENCH(IGNORE_EFFCPP_PUSH)
|
|
|
|
class IterationLogic {
|
|
|
|
public:
|
|
|
|
explicit IterationLogic(Bench const& config) noexcept;
|
|
|
|
~IterationLogic();
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) uint64_t numIters() const noexcept;
|
|
|
|
void add(std::chrono::nanoseconds elapsed, PerformanceCounters const& pc) noexcept;
|
|
|
|
void moveResultTo(std::vector<Result>& results) noexcept;
|
|
|
|
|
|
|
|
private:
|
|
|
|
struct Impl;
|
|
|
|
Impl* mPimpl;
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_EFFCPP_POP)
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
class PerformanceCounters {
|
|
|
|
public:
|
|
|
|
PerformanceCounters(PerformanceCounters const&) = delete;
|
|
|
|
PerformanceCounters& operator=(PerformanceCounters const&) = delete;
|
|
|
|
|
|
|
|
PerformanceCounters();
|
|
|
|
~PerformanceCounters();
|
|
|
|
|
|
|
|
void beginMeasure();
|
|
|
|
void endMeasure();
|
|
|
|
void updateResults(uint64_t numIters);
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<uint64_t> const& val() const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<bool> const& has() const noexcept;
|
|
|
|
|
|
|
|
private:
|
|
|
|
#if ANKERL_NANOBENCH(PERF_COUNTERS)
|
|
|
|
LinuxPerformanceCounters* mPc = nullptr;
|
|
|
|
#endif
|
|
|
|
PerfCountSet<uint64_t> mVal{};
|
|
|
|
PerfCountSet<bool> mHas{};
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
// Gets the singleton
|
|
|
|
PerformanceCounters& performanceCounters();
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
class BigO {
|
|
|
|
public:
|
|
|
|
using RangeMeasure = std::vector<std::pair<double, double>>;
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
static RangeMeasure mapRangeMeasure(RangeMeasure data, Op op) {
|
|
|
|
for (auto& rangeMeasure : data) {
|
|
|
|
rangeMeasure.first = op(rangeMeasure.first);
|
|
|
|
}
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static RangeMeasure collectRangeMeasure(std::vector<Result> const& results);
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
BigO(char const* bigOName, RangeMeasure const& rangeMeasure, Op rangeToN)
|
|
|
|
: BigO(bigOName, mapRangeMeasure(rangeMeasure, rangeToN)) {}
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
BigO(std::string const& bigOName, RangeMeasure const& rangeMeasure, Op rangeToN)
|
|
|
|
: BigO(bigOName, mapRangeMeasure(rangeMeasure, rangeToN)) {}
|
|
|
|
|
|
|
|
BigO(char const* bigOName, RangeMeasure const& scaledRangeMeasure);
|
|
|
|
BigO(std::string const& bigOName, RangeMeasure const& scaledRangeMeasure);
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::string const& name() const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double constant() const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) double normalizedRootMeanSquare() const noexcept;
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) bool operator<(BigO const& other) const noexcept;
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::string mName{};
|
|
|
|
double mConstant{};
|
|
|
|
double mNormalizedRootMeanSquare{};
|
|
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, BigO const& bigO);
|
|
|
|
std::ostream& operator<<(std::ostream& os, std::vector<ankerl::nanobench::BigO> const& bigOs);
|
|
|
|
|
|
|
|
} // namespace nanobench
|
|
|
|
} // namespace ankerl
|
|
|
|
|
|
|
|
// implementation /////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
namespace ankerl {
|
|
|
|
namespace nanobench {
|
|
|
|
|
|
|
|
constexpr uint64_t(Rng::min)() {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr uint64_t(Rng::max)() {
|
|
|
|
return (std::numeric_limits<uint64_t>::max)();
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
uint64_t Rng::operator()() noexcept {
|
|
|
|
auto x = mX;
|
|
|
|
|
|
|
|
mX = UINT64_C(15241094284759029579) * mY;
|
|
|
|
mY = rotl(mY - x, 27);
|
|
|
|
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
uint32_t Rng::bounded(uint32_t range) noexcept {
|
|
|
|
uint64_t r32 = static_cast<uint32_t>(operator()());
|
|
|
|
auto multiresult = r32 * range;
|
|
|
|
return static_cast<uint32_t>(multiresult >> 32U);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Rng::uniform01() noexcept {
|
|
|
|
auto i = (UINT64_C(0x3ff) << 52U) | (operator()() >> 12U);
|
|
|
|
// can't use union in c++ here for type puning, it's undefined behavior.
|
|
|
|
// std::memcpy is optimized anyways.
|
|
|
|
double d;
|
|
|
|
std::memcpy(&d, &i, sizeof(double));
|
|
|
|
return d - 1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Container>
|
|
|
|
void Rng::shuffle(Container& container) noexcept {
|
|
|
|
auto size = static_cast<uint32_t>(container.size());
|
|
|
|
for (auto i = size; i > 1U; --i) {
|
|
|
|
using std::swap;
|
|
|
|
auto p = bounded(i); // number in [0, i)
|
|
|
|
swap(container[i - 1], container[p]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
constexpr uint64_t Rng::rotl(uint64_t x, unsigned k) noexcept {
|
|
|
|
return (x << k) | (x >> (64U - k));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer")
|
|
|
|
Bench& Bench::run(Op&& op) {
|
|
|
|
// It is important that this method is kept short so the compiler can do better optimizations/ inlining of op()
|
|
|
|
detail::IterationLogic iterationLogic(*this);
|
|
|
|
auto& pc = detail::performanceCounters();
|
|
|
|
|
|
|
|
while (auto n = iterationLogic.numIters()) {
|
|
|
|
pc.beginMeasure();
|
|
|
|
Clock::time_point before = Clock::now();
|
|
|
|
while (n-- > 0) {
|
|
|
|
op();
|
|
|
|
}
|
|
|
|
Clock::time_point after = Clock::now();
|
|
|
|
pc.endMeasure();
|
|
|
|
pc.updateResults(iterationLogic.numIters());
|
|
|
|
iterationLogic.add(after - before, pc);
|
|
|
|
}
|
|
|
|
iterationLogic.moveResultTo(mResults);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Performs all evaluations.
|
|
|
|
template <typename Op>
|
|
|
|
Bench& Bench::run(char const* benchmarkName, Op&& op) {
|
|
|
|
name(benchmarkName);
|
|
|
|
return run(std::forward<Op>(op));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
Bench& Bench::run(std::string const& benchmarkName, Op&& op) {
|
|
|
|
name(benchmarkName);
|
|
|
|
return run(std::forward<Op>(op));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
BigO Bench::complexityBigO(char const* benchmarkName, Op op) const {
|
|
|
|
return BigO(benchmarkName, BigO::collectRangeMeasure(mResults), op);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Op>
|
|
|
|
BigO Bench::complexityBigO(std::string const& benchmarkName, Op op) const {
|
|
|
|
return BigO(benchmarkName, BigO::collectRangeMeasure(mResults), op);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the batch size, e.g. number of processed bytes, or some other metric for the size of the processed data in each iteration.
|
|
|
|
// Any argument is cast to double.
|
|
|
|
template <typename T>
|
|
|
|
Bench& Bench::batch(T b) noexcept {
|
|
|
|
mConfig.mBatch = static_cast<double>(b);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets the computation complexity of the next run. Any argument is cast to double.
|
|
|
|
template <typename T>
|
|
|
|
Bench& Bench::complexityN(T n) noexcept {
|
|
|
|
mConfig.mComplexityN = static_cast<double>(n);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convenience: makes sure none of the given arguments are optimized away by the compiler.
|
|
|
|
template <typename Arg>
|
|
|
|
Bench& Bench::doNotOptimizeAway(Arg&& arg) {
|
|
|
|
detail::doNotOptimizeAway(std::forward<Arg>(arg));
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Makes sure none of the given arguments are optimized away by the compiler.
|
|
|
|
template <typename Arg>
|
|
|
|
void doNotOptimizeAway(Arg&& arg) {
|
|
|
|
detail::doNotOptimizeAway(std::forward<Arg>(arg));
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
template <typename T>
|
|
|
|
void doNotOptimizeAway(T const& val) {
|
|
|
|
doNotOptimizeAwaySink(&val);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace nanobench
|
|
|
|
} // namespace ankerl
|
|
|
|
|
|
|
|
#if defined(ANKERL_NANOBENCH_IMPLEMENT)
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// implementation part - only visible in .cpp
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
# include <algorithm> // sort, reverse
|
|
|
|
# include <atomic> // compare_exchange_strong in loop overhead
|
|
|
|
# include <cstdlib> // getenv
|
|
|
|
# include <cstring> // strstr, strncmp
|
|
|
|
# include <fstream> // ifstream to parse proc files
|
|
|
|
# include <iomanip> // setw, setprecision
|
|
|
|
# include <iostream> // cout
|
|
|
|
# include <numeric> // accumulate
|
|
|
|
# include <random> // random_device
|
|
|
|
# include <sstream> // to_s in Number
|
|
|
|
# include <stdexcept> // throw for rendering templates
|
|
|
|
# include <tuple> // std::tie
|
|
|
|
# if defined(__linux__)
|
|
|
|
# include <unistd.h> //sysconf
|
|
|
|
# endif
|
|
|
|
# if ANKERL_NANOBENCH(PERF_COUNTERS)
|
|
|
|
# include <map> // map
|
|
|
|
|
|
|
|
# include <linux/perf_event.h>
|
|
|
|
# include <sys/ioctl.h>
|
|
|
|
# include <sys/syscall.h>
|
|
|
|
# include <unistd.h>
|
|
|
|
# endif
|
|
|
|
|
|
|
|
// declarations ///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
namespace ankerl {
|
|
|
|
namespace nanobench {
|
|
|
|
|
|
|
|
// helper stuff that is only intended to be used internally
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
struct TableInfo;
|
|
|
|
|
|
|
|
// formatting utilities
|
|
|
|
namespace fmt {
|
|
|
|
|
|
|
|
class NumSep;
|
|
|
|
class StreamStateRestorer;
|
|
|
|
class Number;
|
|
|
|
class MarkDownColumn;
|
|
|
|
class MarkDownCode;
|
|
|
|
|
|
|
|
} // namespace fmt
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace nanobench
|
|
|
|
} // namespace ankerl
|
|
|
|
|
|
|
|
// definitions ////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
namespace ankerl {
|
|
|
|
namespace nanobench {
|
|
|
|
|
|
|
|
uint64_t splitMix64(uint64_t& state) noexcept;
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
// helpers to get double values
|
|
|
|
template <typename T>
|
|
|
|
inline double d(T t) noexcept {
|
|
|
|
return static_cast<double>(t);
|
|
|
|
}
|
|
|
|
inline double d(Clock::duration duration) noexcept {
|
|
|
|
return std::chrono::duration_cast<std::chrono::duration<double>>(duration).count();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calculates clock resolution once, and remembers the result
|
|
|
|
inline Clock::duration clockResolution() noexcept;
|
|
|
|
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
namespace templates {
|
|
|
|
|
|
|
|
char const* csv() noexcept {
|
|
|
|
return R"DELIM("title";"name";"unit";"batch";"elapsed";"error %";"instructions";"branches";"branch misses";"total"
|
|
|
|
{{#result}}"{{title}}";"{{name}}";"{{unit}}";{{batch}};{{median(elapsed)}};{{medianAbsolutePercentError(elapsed)}};{{median(instructions)}};{{median(branchinstructions)}};{{median(branchmisses)}};{{sumProduct(iterations, elapsed)}}
|
|
|
|
{{/result}})DELIM";
|
|
|
|
}
|
|
|
|
|
|
|
|
char const* htmlBoxplot() noexcept {
|
|
|
|
return R"DELIM(<html>
|
|
|
|
|
|
|
|
<head>
|
|
|
|
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
|
|
|
|
</head>
|
|
|
|
|
|
|
|
<body>
|
|
|
|
<div id="myDiv"></div>
|
|
|
|
<script>
|
|
|
|
var data = [
|
|
|
|
{{#result}}{
|
|
|
|
name: '{{name}}',
|
|
|
|
y: [{{#measurement}}{{elapsed}}{{^-last}}, {{/last}}{{/measurement}}],
|
|
|
|
},
|
|
|
|
{{/result}}
|
|
|
|
];
|
|
|
|
var title = '{{title}}';
|
|
|
|
|
|
|
|
data = data.map(a => Object.assign(a, { boxpoints: 'all', pointpos: 0, type: 'box' }));
|
|
|
|
var layout = { title: { text: title }, showlegend: false, yaxis: { title: 'time per unit', rangemode: 'tozero', autorange: true } }; Plotly.newPlot('myDiv', data, layout, {responsive: true});
|
|
|
|
</script>
|
|
|
|
</body>
|
|
|
|
|
|
|
|
</html>)DELIM";
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
char const* pyperf() noexcept {
|
|
|
|
return R"DELIM({
|
|
|
|
"benchmarks": [
|
|
|
|
{
|
|
|
|
"runs": [
|
|
|
|
{
|
|
|
|
"values": [
|
|
|
|
{{#measurement}} {{elapsed}}{{^-last}},
|
|
|
|
{{/last}}{{/measurement}}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"loops": {{sum(iterations)}},
|
|
|
|
"inner_loops": {{batch}},
|
|
|
|
"name": "{{title}}",
|
|
|
|
"unit": "second"
|
|
|
|
},
|
|
|
|
"version": "1.0"
|
|
|
|
})DELIM";
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
char const* json() noexcept {
|
|
|
|
return R"DELIM({
|
|
|
|
"results": [
|
|
|
|
{{#result}} {
|
|
|
|
"title": "{{title}}",
|
|
|
|
"name": "{{name}}",
|
|
|
|
"unit": "{{unit}}",
|
|
|
|
"batch": {{batch}},
|
|
|
|
"complexityN": {{complexityN}},
|
|
|
|
"epochs": {{epochs}},
|
|
|
|
"clockResolution": {{clockResolution}},
|
|
|
|
"clockResolutionMultiple": {{clockResolutionMultiple}},
|
|
|
|
"maxEpochTime": {{maxEpochTime}},
|
|
|
|
"minEpochTime": {{minEpochTime}},
|
|
|
|
"minEpochIterations": {{minEpochIterations}},
|
|
|
|
"epochIterations": {{epochIterations}},
|
|
|
|
"warmup": {{warmup}},
|
|
|
|
"relative": {{relative}},
|
|
|
|
"median(elapsed)": {{median(elapsed)}},
|
|
|
|
"medianAbsolutePercentError(elapsed)": {{medianAbsolutePercentError(elapsed)}},
|
|
|
|
"median(instructions)": {{median(instructions)}},
|
|
|
|
"medianAbsolutePercentError(instructions)": {{medianAbsolutePercentError(instructions)}},
|
|
|
|
"median(cpucycles)": {{median(cpucycles)}},
|
|
|
|
"median(contextswitches)": {{median(contextswitches)}},
|
|
|
|
"median(pagefaults)": {{median(pagefaults)}},
|
|
|
|
"median(branchinstructions)": {{median(branchinstructions)}},
|
|
|
|
"median(branchmisses)": {{median(branchmisses)}},
|
|
|
|
"totalTime": {{sumProduct(iterations, elapsed)}},
|
|
|
|
"measurements": [
|
|
|
|
{{#measurement}} {
|
|
|
|
"iterations": {{iterations}},
|
|
|
|
"elapsed": {{elapsed}},
|
|
|
|
"pagefaults": {{pagefaults}},
|
|
|
|
"cpucycles": {{cpucycles}},
|
|
|
|
"contextswitches": {{contextswitches}},
|
|
|
|
"instructions": {{instructions}},
|
|
|
|
"branchinstructions": {{branchinstructions}},
|
|
|
|
"branchmisses": {{branchmisses}}
|
|
|
|
}{{^-last}},{{/-last}}
|
|
|
|
{{/measurement}} ]
|
|
|
|
}{{^-last}},{{/-last}}
|
|
|
|
{{/result}} ]
|
|
|
|
})DELIM";
|
|
|
|
}
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
struct Node {
|
|
|
|
enum class Type { tag, content, section, inverted_section };
|
|
|
|
|
|
|
|
char const* begin;
|
|
|
|
char const* end;
|
|
|
|
std::vector<Node> children;
|
|
|
|
Type type;
|
|
|
|
|
|
|
|
template <size_t N>
|
|
|
|
// NOLINTNEXTLINE(hicpp-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
|
|
|
|
bool operator==(char const (&str)[N]) const noexcept {
|
|
|
|
return static_cast<size_t>(std::distance(begin, end) + 1) == N && 0 == strncmp(str, begin, N - 1);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
static std::vector<Node> parseMustacheTemplate(char const** tpl) {
|
|
|
|
std::vector<Node> nodes;
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
auto begin = std::strstr(*tpl, "{{");
|
|
|
|
auto end = begin;
|
|
|
|
if (begin != nullptr) {
|
|
|
|
begin += 2;
|
|
|
|
end = std::strstr(begin, "}}");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (begin == nullptr || end == nullptr) {
|
|
|
|
// nothing found, finish node
|
|
|
|
nodes.emplace_back(Node{*tpl, *tpl + std::strlen(*tpl), std::vector<Node>{}, Node::Type::content});
|
|
|
|
return nodes;
|
|
|
|
}
|
|
|
|
|
|
|
|
nodes.emplace_back(Node{*tpl, begin - 2, std::vector<Node>{}, Node::Type::content});
|
|
|
|
|
|
|
|
// we found a tag
|
|
|
|
*tpl = end + 2;
|
|
|
|
switch (*begin) {
|
|
|
|
case '/':
|
|
|
|
// finished! bail out
|
|
|
|
return nodes;
|
|
|
|
|
|
|
|
case '#':
|
|
|
|
nodes.emplace_back(Node{begin + 1, end, parseMustacheTemplate(tpl), Node::Type::section});
|
|
|
|
break;
|
|
|
|
|
|
|
|
case '^':
|
|
|
|
nodes.emplace_back(Node{begin + 1, end, parseMustacheTemplate(tpl), Node::Type::inverted_section});
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
nodes.emplace_back(Node{begin, end, std::vector<Node>{}, Node::Type::tag});
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool generateFirstLast(Node const& n, size_t idx, size_t size, std::ostream& out) {
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
bool matchFirst = n == "-first";
|
|
|
|
bool matchLast = n == "-last";
|
|
|
|
if (!matchFirst && !matchLast) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool doWrite = false;
|
|
|
|
if (n.type == Node::Type::section) {
|
|
|
|
doWrite = (matchFirst && idx == 0) || (matchLast && idx == size - 1);
|
|
|
|
} else if (n.type == Node::Type::inverted_section) {
|
|
|
|
doWrite = (matchFirst && idx != 0) || (matchLast && idx != size - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (doWrite) {
|
|
|
|
for (auto const& child : n.children) {
|
|
|
|
if (child.type == Node::Type::content) {
|
|
|
|
out.write(child.begin, std::distance(child.begin, child.end));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool matchCmdArgs(std::string const& str, std::vector<std::string>& matchResult) {
|
|
|
|
matchResult.clear();
|
|
|
|
auto idxOpen = str.find('(');
|
|
|
|
auto idxClose = str.find(')', idxOpen);
|
|
|
|
if (idxClose == std::string::npos) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
matchResult.emplace_back(str.substr(0, idxOpen));
|
|
|
|
|
|
|
|
// split by comma
|
|
|
|
matchResult.emplace_back(std::string{});
|
|
|
|
for (size_t i = idxOpen + 1; i != idxClose; ++i) {
|
|
|
|
if (str[i] == ' ' || str[i] == '\t') {
|
|
|
|
// skip whitespace
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (str[i] == ',') {
|
|
|
|
// got a comma => new string
|
|
|
|
matchResult.emplace_back(std::string{});
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// no whitespace no comma, append
|
|
|
|
matchResult.back() += str[i];
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool generateConfigTag(Node const& n, Config const& config, std::ostream& out) {
|
|
|
|
using detail::d;
|
|
|
|
|
|
|
|
if (n == "title") {
|
|
|
|
out << config.mBenchmarkTitle;
|
|
|
|
return true;
|
|
|
|
} else if (n == "name") {
|
|
|
|
out << config.mBenchmarkName;
|
|
|
|
return true;
|
|
|
|
} else if (n == "unit") {
|
|
|
|
out << config.mUnit;
|
|
|
|
return true;
|
|
|
|
} else if (n == "batch") {
|
|
|
|
out << config.mBatch;
|
|
|
|
return true;
|
|
|
|
} else if (n == "complexityN") {
|
|
|
|
out << config.mComplexityN;
|
|
|
|
return true;
|
|
|
|
} else if (n == "epochs") {
|
|
|
|
out << config.mNumEpochs;
|
|
|
|
return true;
|
|
|
|
} else if (n == "clockResolution") {
|
|
|
|
out << d(detail::clockResolution());
|
|
|
|
return true;
|
|
|
|
} else if (n == "clockResolutionMultiple") {
|
|
|
|
out << config.mClockResolutionMultiple;
|
|
|
|
return true;
|
|
|
|
} else if (n == "maxEpochTime") {
|
|
|
|
out << d(config.mMaxEpochTime);
|
|
|
|
return true;
|
|
|
|
} else if (n == "minEpochTime") {
|
|
|
|
out << d(config.mMinEpochTime);
|
|
|
|
return true;
|
|
|
|
} else if (n == "minEpochIterations") {
|
|
|
|
out << config.mMinEpochIterations;
|
|
|
|
return true;
|
|
|
|
} else if (n == "epochIterations") {
|
|
|
|
out << config.mEpochIterations;
|
|
|
|
return true;
|
|
|
|
} else if (n == "warmup") {
|
|
|
|
out << config.mWarmup;
|
|
|
|
return true;
|
|
|
|
} else if (n == "relative") {
|
|
|
|
out << config.mIsRelative;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::ostream& generateResultTag(Node const& n, Result const& r, std::ostream& out) {
|
|
|
|
if (generateConfigTag(n, r.config(), out)) {
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
// match e.g. "median(elapsed)"
|
|
|
|
// g++ 4.8 doesn't implement std::regex :(
|
|
|
|
// static std::regex const regOpArg1("^([a-zA-Z]+)\\(([a-zA-Z]*)\\)$");
|
|
|
|
// std::cmatch matchResult;
|
|
|
|
// if (std::regex_match(n.begin, n.end, matchResult, regOpArg1)) {
|
|
|
|
std::vector<std::string> matchResult;
|
|
|
|
if (matchCmdArgs(std::string(n.begin, n.end), matchResult)) {
|
|
|
|
if (matchResult.size() == 2) {
|
|
|
|
auto m = Result::fromString(matchResult[1]);
|
|
|
|
if (m == Result::Measure::_size) {
|
|
|
|
return out << 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (matchResult[0] == "median") {
|
|
|
|
return out << r.median(m);
|
|
|
|
}
|
|
|
|
if (matchResult[0] == "average") {
|
|
|
|
return out << r.average(m);
|
|
|
|
}
|
|
|
|
if (matchResult[0] == "medianAbsolutePercentError") {
|
|
|
|
return out << r.medianAbsolutePercentError(m);
|
|
|
|
}
|
|
|
|
if (matchResult[0] == "sum") {
|
|
|
|
return out << r.sum(m);
|
|
|
|
}
|
|
|
|
if (matchResult[0] == "minimum") {
|
|
|
|
return out << r.minimum(m);
|
|
|
|
}
|
|
|
|
if (matchResult[0] == "maximum") {
|
|
|
|
return out << r.maximum(m);
|
|
|
|
}
|
|
|
|
} else if (matchResult.size() == 3) {
|
|
|
|
auto m1 = Result::fromString(matchResult[1]);
|
|
|
|
auto m2 = Result::fromString(matchResult[2]);
|
|
|
|
if (m1 == Result::Measure::_size || m2 == Result::Measure::_size) {
|
|
|
|
return out << 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (matchResult[0] == "sumProduct") {
|
|
|
|
return out << r.sumProduct(m1, m2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// match e.g. "sumProduct(elapsed, iterations)"
|
|
|
|
// static std::regex const regOpArg2("^([a-zA-Z]+)\\(([a-zA-Z]*)\\s*,\\s+([a-zA-Z]*)\\)$");
|
|
|
|
|
|
|
|
// nothing matches :(
|
|
|
|
throw std::runtime_error("command '" + std::string(n.begin, n.end) + "' not understood");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void generateResultMeasurement(std::vector<Node> const& nodes, size_t idx, Result const& r, std::ostream& out) {
|
|
|
|
for (auto const& n : nodes) {
|
|
|
|
if (!generateFirstLast(n, idx, r.size(), out)) {
|
|
|
|
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
|
|
|
|
switch (n.type) {
|
|
|
|
case Node::Type::content:
|
|
|
|
out.write(n.begin, std::distance(n.begin, n.end));
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Node::Type::inverted_section:
|
|
|
|
throw std::runtime_error("got a inverted section inside measurement");
|
|
|
|
|
|
|
|
case Node::Type::section:
|
|
|
|
throw std::runtime_error("got a section inside measurement");
|
|
|
|
|
|
|
|
case Node::Type::tag: {
|
|
|
|
auto m = Result::fromString(std::string(n.begin, n.end));
|
|
|
|
if (m == Result::Measure::_size || !r.has(m)) {
|
|
|
|
out << 0.0;
|
|
|
|
} else {
|
|
|
|
out << r.get(idx, m);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void generateResult(std::vector<Node> const& nodes, size_t idx, std::vector<Result> const& results, std::ostream& out) {
|
|
|
|
auto const& r = results[idx];
|
|
|
|
for (auto const& n : nodes) {
|
|
|
|
if (!generateFirstLast(n, idx, results.size(), out)) {
|
|
|
|
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
|
|
|
|
switch (n.type) {
|
|
|
|
case Node::Type::content:
|
|
|
|
out.write(n.begin, std::distance(n.begin, n.end));
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Node::Type::inverted_section:
|
|
|
|
throw std::runtime_error("got a inverted section inside result");
|
|
|
|
|
|
|
|
case Node::Type::section:
|
|
|
|
if (n == "measurement") {
|
|
|
|
for (size_t i = 0; i < r.size(); ++i) {
|
|
|
|
generateResultMeasurement(n.children, i, r, out);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
throw std::runtime_error("got a section inside result");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Node::Type::tag:
|
|
|
|
generateResultTag(n, r, out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace templates
|
|
|
|
|
|
|
|
// helper stuff that only intended to be used internally
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
char const* getEnv(char const* name);
|
|
|
|
bool isEndlessRunning(std::string const& name);
|
2021-05-27 01:29:48 -04:00
|
|
|
bool isWarningsEnabled();
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
T parseFile(std::string const& filename);
|
|
|
|
|
|
|
|
void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector<std::string>& recommendations);
|
|
|
|
void printStabilityInformationOnce(std::ostream* os);
|
|
|
|
|
|
|
|
// remembers the last table settings used. When it changes, a new table header is automatically written for the new entry.
|
|
|
|
uint64_t& singletonHeaderHash() noexcept;
|
|
|
|
|
|
|
|
// determines resolution of the given clock. This is done by measuring multiple times and returning the minimum time difference.
|
|
|
|
Clock::duration calcClockResolution(size_t numEvaluations) noexcept;
|
|
|
|
|
|
|
|
// formatting utilities
|
|
|
|
namespace fmt {
|
|
|
|
|
|
|
|
// adds thousands separator to numbers
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
class NumSep : public std::numpunct<char> {
|
|
|
|
public:
|
|
|
|
explicit NumSep(char sep);
|
|
|
|
char do_thousands_sep() const override;
|
|
|
|
std::string do_grouping() const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
char mSep;
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
// RAII to save & restore a stream's state
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
class StreamStateRestorer {
|
|
|
|
public:
|
|
|
|
explicit StreamStateRestorer(std::ostream& s);
|
|
|
|
~StreamStateRestorer();
|
|
|
|
|
|
|
|
// sets back all stream info that we remembered at construction
|
|
|
|
void restore();
|
|
|
|
|
|
|
|
// don't allow copying / moving
|
|
|
|
StreamStateRestorer(StreamStateRestorer const&) = delete;
|
|
|
|
StreamStateRestorer& operator=(StreamStateRestorer const&) = delete;
|
|
|
|
StreamStateRestorer(StreamStateRestorer&&) = delete;
|
|
|
|
StreamStateRestorer& operator=(StreamStateRestorer&&) = delete;
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::ostream& mStream;
|
|
|
|
std::locale mLocale;
|
|
|
|
std::streamsize const mPrecision;
|
|
|
|
std::streamsize const mWidth;
|
|
|
|
std::ostream::char_type const mFill;
|
|
|
|
std::ostream::fmtflags const mFmtFlags;
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
// Number formatter
|
|
|
|
class Number {
|
|
|
|
public:
|
|
|
|
Number(int width, int precision, double value);
|
|
|
|
Number(int width, int precision, int64_t value);
|
|
|
|
std::string to_s() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
friend std::ostream& operator<<(std::ostream& os, Number const& n);
|
|
|
|
std::ostream& write(std::ostream& os) const;
|
|
|
|
|
|
|
|
int mWidth;
|
|
|
|
int mPrecision;
|
|
|
|
double mValue;
|
|
|
|
};
|
|
|
|
|
|
|
|
// helper replacement for std::to_string of signed/unsigned numbers so we are locale independent
|
|
|
|
std::string to_s(uint64_t s);
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, Number const& n);
|
|
|
|
|
|
|
|
class MarkDownColumn {
|
|
|
|
public:
|
|
|
|
MarkDownColumn(int w, int prec, std::string const& tit, std::string const& suff, double val);
|
|
|
|
std::string title() const;
|
|
|
|
std::string separator() const;
|
|
|
|
std::string invalid() const;
|
|
|
|
std::string value() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
int mWidth;
|
|
|
|
int mPrecision;
|
|
|
|
std::string mTitle;
|
|
|
|
std::string mSuffix;
|
|
|
|
double mValue;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Formats any text as markdown code, escaping backticks.
|
|
|
|
class MarkDownCode {
|
|
|
|
public:
|
|
|
|
explicit MarkDownCode(std::string const& what);
|
|
|
|
|
|
|
|
private:
|
|
|
|
friend std::ostream& operator<<(std::ostream& os, MarkDownCode const& mdCode);
|
|
|
|
std::ostream& write(std::ostream& os) const;
|
|
|
|
|
|
|
|
std::string mWhat{};
|
|
|
|
};
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, MarkDownCode const& mdCode);
|
|
|
|
|
|
|
|
} // namespace fmt
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace nanobench
|
|
|
|
} // namespace ankerl
|
|
|
|
|
|
|
|
// implementation /////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
namespace ankerl {
|
|
|
|
namespace nanobench {
|
|
|
|
|
|
|
|
void render(char const* mustacheTemplate, std::vector<Result> const& results, std::ostream& out) {
|
|
|
|
detail::fmt::StreamStateRestorer restorer(out);
|
|
|
|
|
|
|
|
out.precision(std::numeric_limits<double>::digits10);
|
|
|
|
auto nodes = templates::parseMustacheTemplate(&mustacheTemplate);
|
|
|
|
|
|
|
|
for (auto const& n : nodes) {
|
|
|
|
ANKERL_NANOBENCH_LOG("n.type=" << static_cast<int>(n.type));
|
|
|
|
switch (n.type) {
|
|
|
|
case templates::Node::Type::content:
|
|
|
|
out.write(n.begin, std::distance(n.begin, n.end));
|
|
|
|
break;
|
|
|
|
|
|
|
|
case templates::Node::Type::inverted_section:
|
|
|
|
throw std::runtime_error("unknown list '" + std::string(n.begin, n.end) + "'");
|
|
|
|
|
|
|
|
case templates::Node::Type::section:
|
|
|
|
if (n == "result") {
|
|
|
|
const size_t nbResults = results.size();
|
|
|
|
for (size_t i = 0; i < nbResults; ++i) {
|
|
|
|
generateResult(n.children, i, results, out);
|
|
|
|
}
|
2021-05-27 01:29:48 -04:00
|
|
|
} else if (n == "measurement") {
|
|
|
|
if (results.size() != 1) {
|
|
|
|
throw std::runtime_error(
|
|
|
|
"render: can only use section 'measurement' here if there is a single result, but there are " +
|
|
|
|
detail::fmt::to_s(results.size()));
|
|
|
|
}
|
|
|
|
// when we only have a single result, we can immediately go into its measurement.
|
|
|
|
auto const& r = results.front();
|
|
|
|
for (size_t i = 0; i < r.size(); ++i) {
|
|
|
|
generateResultMeasurement(n.children, i, r, out);
|
|
|
|
}
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
} else {
|
2021-05-27 01:29:48 -04:00
|
|
|
throw std::runtime_error("render: unknown section '" + std::string(n.begin, n.end) + "'");
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case templates::Node::Type::tag:
|
2021-05-27 01:29:48 -04:00
|
|
|
if (results.size() == 1) {
|
|
|
|
// result & config are both supported there
|
|
|
|
generateResultTag(n, results.front(), out);
|
|
|
|
} else {
|
|
|
|
// This just uses the last result's config.
|
|
|
|
if (!generateConfigTag(n, results.back().config(), out)) {
|
|
|
|
throw std::runtime_error("unknown tag '" + std::string(n.begin, n.end) + "'");
|
|
|
|
}
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
void render(std::string const& mustacheTemplate, std::vector<Result> const& results, std::ostream& out) {
|
|
|
|
render(mustacheTemplate.c_str(), results, out);
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
void render(char const* mustacheTemplate, const Bench& bench, std::ostream& out) {
|
|
|
|
render(mustacheTemplate, bench.results(), out);
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
void render(std::string const& mustacheTemplate, const Bench& bench, std::ostream& out) {
|
|
|
|
render(mustacheTemplate.c_str(), bench.results(), out);
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
PerformanceCounters& performanceCounters() {
|
|
|
|
# if defined(__clang__)
|
|
|
|
# pragma clang diagnostic push
|
|
|
|
# pragma clang diagnostic ignored "-Wexit-time-destructors"
|
|
|
|
# endif
|
|
|
|
static PerformanceCounters pc;
|
|
|
|
# if defined(__clang__)
|
|
|
|
# pragma clang diagnostic pop
|
|
|
|
# endif
|
|
|
|
return pc;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Windows version of doNotOptimizeAway
|
|
|
|
// see https://github.com/google/benchmark/blob/master/include/benchmark/benchmark.h#L307
|
|
|
|
// see https://github.com/facebook/folly/blob/master/folly/Benchmark.h#L280
|
|
|
|
// see https://docs.microsoft.com/en-us/cpp/preprocessor/optimize
|
|
|
|
# if defined(_MSC_VER)
|
|
|
|
# pragma optimize("", off)
|
|
|
|
void doNotOptimizeAwaySink(void const*) {}
|
|
|
|
# pragma optimize("", on)
|
|
|
|
# endif
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
T parseFile(std::string const& filename) {
|
|
|
|
std::ifstream fin(filename);
|
|
|
|
T num{};
|
|
|
|
fin >> num;
|
|
|
|
return num;
|
|
|
|
}
|
|
|
|
|
|
|
|
char const* getEnv(char const* name) {
|
|
|
|
# if defined(_MSC_VER)
|
|
|
|
# pragma warning(push)
|
|
|
|
# pragma warning(disable : 4996) // getenv': This function or variable may be unsafe.
|
|
|
|
# endif
|
|
|
|
return std::getenv(name);
|
|
|
|
# if defined(_MSC_VER)
|
|
|
|
# pragma warning(pop)
|
|
|
|
# endif
|
|
|
|
}
|
|
|
|
|
|
|
|
bool isEndlessRunning(std::string const& name) {
|
|
|
|
auto endless = getEnv("NANOBENCH_ENDLESS");
|
|
|
|
return nullptr != endless && endless == name;
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
// True when environment variable NANOBENCH_SUPPRESS_WARNINGS is either not set at all, or set to "0"
|
|
|
|
bool isWarningsEnabled() {
|
|
|
|
auto suppression = getEnv("NANOBENCH_SUPPRESS_WARNINGS");
|
|
|
|
return nullptr == suppression || suppression == std::string("0");
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector<std::string>& recommendations) {
|
|
|
|
warnings.clear();
|
|
|
|
recommendations.clear();
|
|
|
|
|
|
|
|
bool recommendCheckFlags = false;
|
|
|
|
|
|
|
|
# if defined(DEBUG)
|
|
|
|
warnings.emplace_back("DEBUG defined");
|
|
|
|
recommendCheckFlags = true;
|
|
|
|
# endif
|
|
|
|
|
|
|
|
bool recommendPyPerf = false;
|
|
|
|
# if defined(__linux__)
|
|
|
|
auto nprocs = sysconf(_SC_NPROCESSORS_CONF);
|
|
|
|
if (nprocs <= 0) {
|
|
|
|
warnings.emplace_back("couldn't figure out number of processors - no governor, turbo check possible");
|
|
|
|
} else {
|
|
|
|
|
|
|
|
// check frequency scaling
|
|
|
|
for (long id = 0; id < nprocs; ++id) {
|
|
|
|
auto idStr = detail::fmt::to_s(static_cast<uint64_t>(id));
|
|
|
|
auto sysCpu = "/sys/devices/system/cpu/cpu" + idStr;
|
|
|
|
auto minFreq = parseFile<int64_t>(sysCpu + "/cpufreq/scaling_min_freq");
|
|
|
|
auto maxFreq = parseFile<int64_t>(sysCpu + "/cpufreq/scaling_max_freq");
|
|
|
|
if (minFreq != maxFreq) {
|
|
|
|
auto minMHz = static_cast<double>(minFreq) / 1000.0;
|
|
|
|
auto maxMHz = static_cast<double>(maxFreq) / 1000.0;
|
|
|
|
warnings.emplace_back("CPU frequency scaling enabled: CPU " + idStr + " between " +
|
|
|
|
detail::fmt::Number(1, 1, minMHz).to_s() + " and " + detail::fmt::Number(1, 1, maxMHz).to_s() +
|
|
|
|
" MHz");
|
|
|
|
recommendPyPerf = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto currentGovernor = parseFile<std::string>("/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor");
|
|
|
|
if ("performance" != currentGovernor) {
|
|
|
|
warnings.emplace_back("CPU governor is '" + currentGovernor + "' but should be 'performance'");
|
|
|
|
recommendPyPerf = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (0 == parseFile<int>("/sys/devices/system/cpu/intel_pstate/no_turbo")) {
|
|
|
|
warnings.emplace_back("Turbo is enabled, CPU frequency will fluctuate");
|
|
|
|
recommendPyPerf = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
# endif
|
|
|
|
|
|
|
|
if (recommendCheckFlags) {
|
|
|
|
recommendations.emplace_back("Make sure you compile for Release");
|
|
|
|
}
|
|
|
|
if (recommendPyPerf) {
|
2021-05-27 01:29:48 -04:00
|
|
|
recommendations.emplace_back("Use 'pyperf system tune' before benchmarking. See https://github.com/psf/pyperf");
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void printStabilityInformationOnce(std::ostream* outStream) {
|
|
|
|
static bool shouldPrint = true;
|
2021-05-27 01:29:48 -04:00
|
|
|
if (shouldPrint && outStream && isWarningsEnabled()) {
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
auto& os = *outStream;
|
|
|
|
shouldPrint = false;
|
|
|
|
std::vector<std::string> warnings;
|
|
|
|
std::vector<std::string> recommendations;
|
|
|
|
gatherStabilityInformation(warnings, recommendations);
|
|
|
|
if (warnings.empty()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
os << "Warning, results might be unstable:" << std::endl;
|
|
|
|
for (auto const& w : warnings) {
|
|
|
|
os << "* " << w << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
os << std::endl << "Recommendations" << std::endl;
|
|
|
|
for (auto const& r : recommendations) {
|
|
|
|
os << "* " << r << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// remembers the last table settings used. When it changes, a new table header is automatically written for the new entry.
|
|
|
|
uint64_t& singletonHeaderHash() noexcept {
|
|
|
|
static uint64_t sHeaderHash{};
|
|
|
|
return sHeaderHash;
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
inline uint64_t hash_combine(uint64_t seed, uint64_t val) {
|
|
|
|
return seed ^ (val + UINT64_C(0x9e3779b9) + (seed << 6U) + (seed >> 2U));
|
|
|
|
}
|
|
|
|
|
|
|
|
// determines resolution of the given clock. This is done by measuring multiple times and returning the minimum time difference.
|
|
|
|
Clock::duration calcClockResolution(size_t numEvaluations) noexcept {
|
|
|
|
auto bestDuration = Clock::duration::max();
|
|
|
|
Clock::time_point tBegin;
|
|
|
|
Clock::time_point tEnd;
|
|
|
|
for (size_t i = 0; i < numEvaluations; ++i) {
|
|
|
|
tBegin = Clock::now();
|
|
|
|
do {
|
|
|
|
tEnd = Clock::now();
|
|
|
|
} while (tBegin == tEnd);
|
|
|
|
bestDuration = (std::min)(bestDuration, tEnd - tBegin);
|
|
|
|
}
|
|
|
|
return bestDuration;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calculates clock resolution once, and remembers the result
|
|
|
|
Clock::duration clockResolution() noexcept {
|
|
|
|
static Clock::duration sResolution = calcClockResolution(20);
|
|
|
|
return sResolution;
|
|
|
|
}
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
struct IterationLogic::Impl {
|
|
|
|
enum class State { warmup, upscaling_runtime, measuring, endless };
|
|
|
|
|
|
|
|
explicit Impl(Bench const& bench)
|
|
|
|
: mBench(bench)
|
|
|
|
, mResult(bench.config()) {
|
|
|
|
printStabilityInformationOnce(mBench.output());
|
|
|
|
|
|
|
|
// determine target runtime per epoch
|
|
|
|
mTargetRuntimePerEpoch = detail::clockResolution() * mBench.clockResolutionMultiple();
|
|
|
|
if (mTargetRuntimePerEpoch > mBench.maxEpochTime()) {
|
|
|
|
mTargetRuntimePerEpoch = mBench.maxEpochTime();
|
|
|
|
}
|
|
|
|
if (mTargetRuntimePerEpoch < mBench.minEpochTime()) {
|
|
|
|
mTargetRuntimePerEpoch = mBench.minEpochTime();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (isEndlessRunning(mBench.name())) {
|
|
|
|
std::cerr << "NANOBENCH_ENDLESS set: running '" << mBench.name() << "' endlessly" << std::endl;
|
|
|
|
mNumIters = (std::numeric_limits<uint64_t>::max)();
|
|
|
|
mState = State::endless;
|
|
|
|
} else if (0 != mBench.warmup()) {
|
|
|
|
mNumIters = mBench.warmup();
|
|
|
|
mState = State::warmup;
|
|
|
|
} else if (0 != mBench.epochIterations()) {
|
|
|
|
// exact number of iterations
|
|
|
|
mNumIters = mBench.epochIterations();
|
|
|
|
mState = State::measuring;
|
|
|
|
} else {
|
|
|
|
mNumIters = mBench.minEpochIterations();
|
|
|
|
mState = State::upscaling_runtime;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// directly calculates new iters based on elapsed&iters, and adds a 10% noise. Makes sure we don't underflow.
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) uint64_t calcBestNumIters(std::chrono::nanoseconds elapsed, uint64_t iters) noexcept {
|
|
|
|
auto doubleElapsed = d(elapsed);
|
|
|
|
auto doubleTargetRuntimePerEpoch = d(mTargetRuntimePerEpoch);
|
|
|
|
auto doubleNewIters = doubleTargetRuntimePerEpoch / doubleElapsed * d(iters);
|
|
|
|
|
|
|
|
auto doubleMinEpochIters = d(mBench.minEpochIterations());
|
|
|
|
if (doubleNewIters < doubleMinEpochIters) {
|
|
|
|
doubleNewIters = doubleMinEpochIters;
|
|
|
|
}
|
|
|
|
doubleNewIters *= 1.0 + 0.2 * mRng.uniform01();
|
|
|
|
|
|
|
|
// +0.5 for correct rounding when casting
|
|
|
|
// NOLINTNEXTLINE(bugprone-incorrect-roundings)
|
|
|
|
return static_cast<uint64_t>(doubleNewIters + 0.5);
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined") void upscale(std::chrono::nanoseconds elapsed) {
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
if (elapsed * 10 < mTargetRuntimePerEpoch) {
|
|
|
|
// we are far below the target runtime. Multiply iterations by 10 (with overflow check)
|
|
|
|
if (mNumIters * 10 < mNumIters) {
|
|
|
|
// overflow :-(
|
|
|
|
showResult("iterations overflow. Maybe your code got optimized away?");
|
|
|
|
mNumIters = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
mNumIters *= 10;
|
|
|
|
} else {
|
|
|
|
mNumIters = calcBestNumIters(elapsed, mNumIters);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void add(std::chrono::nanoseconds elapsed, PerformanceCounters const& pc) noexcept {
|
|
|
|
# if defined(ANKERL_NANOBENCH_LOG_ENABLED)
|
|
|
|
auto oldIters = mNumIters;
|
|
|
|
# endif
|
|
|
|
|
|
|
|
switch (mState) {
|
|
|
|
case State::warmup:
|
|
|
|
if (isCloseEnoughForMeasurements(elapsed)) {
|
|
|
|
// if elapsed is close enough, we can skip upscaling and go right to measurements
|
|
|
|
// still, we don't add the result to the measurements.
|
|
|
|
mState = State::measuring;
|
|
|
|
mNumIters = calcBestNumIters(elapsed, mNumIters);
|
|
|
|
} else {
|
|
|
|
// not close enough: switch to upscaling
|
|
|
|
mState = State::upscaling_runtime;
|
|
|
|
upscale(elapsed);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case State::upscaling_runtime:
|
|
|
|
if (isCloseEnoughForMeasurements(elapsed)) {
|
|
|
|
// if we are close enough, add measurement and switch to always measuring
|
|
|
|
mState = State::measuring;
|
|
|
|
mTotalElapsed += elapsed;
|
|
|
|
mTotalNumIters += mNumIters;
|
|
|
|
mResult.add(elapsed, mNumIters, pc);
|
|
|
|
mNumIters = calcBestNumIters(mTotalElapsed, mTotalNumIters);
|
|
|
|
} else {
|
|
|
|
upscale(elapsed);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case State::measuring:
|
|
|
|
// just add measurements - no questions asked. Even when runtime is low. But we can't ignore
|
|
|
|
// that fluctuation, or else we would bias the result
|
|
|
|
mTotalElapsed += elapsed;
|
|
|
|
mTotalNumIters += mNumIters;
|
|
|
|
mResult.add(elapsed, mNumIters, pc);
|
|
|
|
if (0 != mBench.epochIterations()) {
|
|
|
|
mNumIters = mBench.epochIterations();
|
|
|
|
} else {
|
|
|
|
mNumIters = calcBestNumIters(mTotalElapsed, mTotalNumIters);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case State::endless:
|
|
|
|
mNumIters = (std::numeric_limits<uint64_t>::max)();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (static_cast<uint64_t>(mResult.size()) == mBench.epochs()) {
|
|
|
|
// we got all the results that we need, finish it
|
|
|
|
showResult("");
|
|
|
|
mNumIters = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH_LOG(mBench.name() << ": " << detail::fmt::Number(20, 3, static_cast<double>(elapsed.count())) << " elapsed, "
|
|
|
|
<< detail::fmt::Number(20, 3, static_cast<double>(mTargetRuntimePerEpoch.count()))
|
|
|
|
<< " target. oldIters=" << oldIters << ", mNumIters=" << mNumIters
|
|
|
|
<< ", mState=" << static_cast<int>(mState));
|
|
|
|
}
|
|
|
|
|
|
|
|
void showResult(std::string const& errorMessage) const {
|
|
|
|
ANKERL_NANOBENCH_LOG(errorMessage);
|
|
|
|
|
|
|
|
if (mBench.output() != nullptr) {
|
|
|
|
// prepare column data ///////
|
|
|
|
std::vector<fmt::MarkDownColumn> columns;
|
|
|
|
|
|
|
|
auto rMedian = mResult.median(Result::Measure::elapsed);
|
|
|
|
|
|
|
|
if (mBench.relative()) {
|
|
|
|
double d = 100.0;
|
|
|
|
if (!mBench.results().empty()) {
|
|
|
|
d = rMedian <= 0.0 ? 0.0 : mBench.results().front().median(Result::Measure::elapsed) / rMedian * 100.0;
|
|
|
|
}
|
|
|
|
columns.emplace_back(11, 1, "relative", "%", d);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mBench.complexityN() > 0) {
|
|
|
|
columns.emplace_back(14, 0, "complexityN", "", mBench.complexityN());
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
columns.emplace_back(22, 2, mBench.timeUnitName() + "/" + mBench.unit(), "",
|
|
|
|
rMedian / (mBench.timeUnit().count() * mBench.batch()));
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
columns.emplace_back(22, 2, mBench.unit() + "/s", "", rMedian <= 0.0 ? 0.0 : mBench.batch() / rMedian);
|
|
|
|
|
|
|
|
double rErrorMedian = mResult.medianAbsolutePercentError(Result::Measure::elapsed);
|
|
|
|
columns.emplace_back(10, 1, "err%", "%", rErrorMedian * 100.0);
|
|
|
|
|
|
|
|
double rInsMedian = -1.0;
|
2021-09-17 06:58:57 -03:00
|
|
|
if (mBench.performanceCounters() && mResult.has(Result::Measure::instructions)) {
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
rInsMedian = mResult.median(Result::Measure::instructions);
|
|
|
|
columns.emplace_back(18, 2, "ins/" + mBench.unit(), "", rInsMedian / mBench.batch());
|
|
|
|
}
|
|
|
|
|
|
|
|
double rCycMedian = -1.0;
|
2021-09-17 06:58:57 -03:00
|
|
|
if (mBench.performanceCounters() && mResult.has(Result::Measure::cpucycles)) {
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
rCycMedian = mResult.median(Result::Measure::cpucycles);
|
|
|
|
columns.emplace_back(18, 2, "cyc/" + mBench.unit(), "", rCycMedian / mBench.batch());
|
|
|
|
}
|
|
|
|
if (rInsMedian > 0.0 && rCycMedian > 0.0) {
|
|
|
|
columns.emplace_back(9, 3, "IPC", "", rCycMedian <= 0.0 ? 0.0 : rInsMedian / rCycMedian);
|
|
|
|
}
|
2021-09-17 06:58:57 -03:00
|
|
|
if (mBench.performanceCounters() && mResult.has(Result::Measure::branchinstructions)) {
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
double rBraMedian = mResult.median(Result::Measure::branchinstructions);
|
|
|
|
columns.emplace_back(17, 2, "bra/" + mBench.unit(), "", rBraMedian / mBench.batch());
|
|
|
|
if (mResult.has(Result::Measure::branchmisses)) {
|
|
|
|
double p = 0.0;
|
|
|
|
if (rBraMedian >= 1e-9) {
|
|
|
|
p = 100.0 * mResult.median(Result::Measure::branchmisses) / rBraMedian;
|
|
|
|
}
|
|
|
|
columns.emplace_back(10, 1, "miss%", "%", p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
columns.emplace_back(12, 2, "total", "", mResult.sumProduct(Result::Measure::iterations, Result::Measure::elapsed));
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
// write everything
|
|
|
|
auto& os = *mBench.output();
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
// combine all elements that are relevant for printing the header
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
uint64_t hash = 0;
|
2021-05-27 01:29:48 -04:00
|
|
|
hash = hash_combine(std::hash<std::string>{}(mBench.unit()), hash);
|
|
|
|
hash = hash_combine(std::hash<std::string>{}(mBench.title()), hash);
|
|
|
|
hash = hash_combine(std::hash<std::string>{}(mBench.timeUnitName()), hash);
|
|
|
|
hash = hash_combine(std::hash<double>{}(mBench.timeUnit().count()), hash);
|
|
|
|
hash = hash_combine(std::hash<bool>{}(mBench.relative()), hash);
|
|
|
|
hash = hash_combine(std::hash<bool>{}(mBench.performanceCounters()), hash);
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
|
|
|
|
if (hash != singletonHeaderHash()) {
|
|
|
|
singletonHeaderHash() = hash;
|
|
|
|
|
|
|
|
// no result yet, print header
|
|
|
|
os << std::endl;
|
|
|
|
for (auto const& col : columns) {
|
|
|
|
os << col.title();
|
|
|
|
}
|
|
|
|
os << "| " << mBench.title() << std::endl;
|
|
|
|
|
|
|
|
for (auto const& col : columns) {
|
|
|
|
os << col.separator();
|
|
|
|
}
|
|
|
|
os << "|:" << std::string(mBench.title().size() + 1U, '-') << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!errorMessage.empty()) {
|
|
|
|
for (auto const& col : columns) {
|
|
|
|
os << col.invalid();
|
|
|
|
}
|
|
|
|
os << "| :boom: " << fmt::MarkDownCode(mBench.name()) << " (" << errorMessage << ')' << std::endl;
|
|
|
|
} else {
|
|
|
|
for (auto const& col : columns) {
|
|
|
|
os << col.value();
|
|
|
|
}
|
|
|
|
os << "| ";
|
2021-05-27 01:29:48 -04:00
|
|
|
auto showUnstable = isWarningsEnabled() && rErrorMedian >= 0.05;
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
if (showUnstable) {
|
|
|
|
os << ":wavy_dash: ";
|
|
|
|
}
|
|
|
|
os << fmt::MarkDownCode(mBench.name());
|
|
|
|
if (showUnstable) {
|
|
|
|
auto avgIters = static_cast<double>(mTotalNumIters) / static_cast<double>(mBench.epochs());
|
|
|
|
// NOLINTNEXTLINE(bugprone-incorrect-roundings)
|
|
|
|
auto suggestedIters = static_cast<uint64_t>(avgIters * 10 + 0.5);
|
|
|
|
|
|
|
|
os << " (Unstable with ~" << detail::fmt::Number(1, 1, avgIters)
|
|
|
|
<< " iters. Increase `minEpochIterations` to e.g. " << suggestedIters << ")";
|
|
|
|
}
|
|
|
|
os << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) bool isCloseEnoughForMeasurements(std::chrono::nanoseconds elapsed) const noexcept {
|
|
|
|
return elapsed * 3 >= mTargetRuntimePerEpoch * 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t mNumIters = 1;
|
|
|
|
Bench const& mBench;
|
|
|
|
std::chrono::nanoseconds mTargetRuntimePerEpoch{};
|
|
|
|
Result mResult;
|
|
|
|
Rng mRng{123};
|
|
|
|
std::chrono::nanoseconds mTotalElapsed{};
|
|
|
|
uint64_t mTotalNumIters = 0;
|
|
|
|
|
|
|
|
State mState = State::upscaling_runtime;
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
IterationLogic::IterationLogic(Bench const& bench) noexcept
|
|
|
|
: mPimpl(new Impl(bench)) {}
|
|
|
|
|
|
|
|
IterationLogic::~IterationLogic() {
|
|
|
|
if (mPimpl) {
|
|
|
|
delete mPimpl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t IterationLogic::numIters() const noexcept {
|
|
|
|
ANKERL_NANOBENCH_LOG(mPimpl->mBench.name() << ": mNumIters=" << mPimpl->mNumIters);
|
|
|
|
return mPimpl->mNumIters;
|
|
|
|
}
|
|
|
|
|
|
|
|
void IterationLogic::add(std::chrono::nanoseconds elapsed, PerformanceCounters const& pc) noexcept {
|
|
|
|
mPimpl->add(elapsed, pc);
|
|
|
|
}
|
|
|
|
|
|
|
|
void IterationLogic::moveResultTo(std::vector<Result>& results) noexcept {
|
|
|
|
results.emplace_back(std::move(mPimpl->mResult));
|
|
|
|
}
|
|
|
|
|
|
|
|
# if ANKERL_NANOBENCH(PERF_COUNTERS)
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_PUSH)
|
|
|
|
class LinuxPerformanceCounters {
|
|
|
|
public:
|
|
|
|
struct Target {
|
|
|
|
Target(uint64_t* targetValue_, bool correctMeasuringOverhead_, bool correctLoopOverhead_)
|
|
|
|
: targetValue(targetValue_)
|
|
|
|
, correctMeasuringOverhead(correctMeasuringOverhead_)
|
|
|
|
, correctLoopOverhead(correctLoopOverhead_) {}
|
|
|
|
|
|
|
|
uint64_t* targetValue{};
|
|
|
|
bool correctMeasuringOverhead{};
|
|
|
|
bool correctLoopOverhead{};
|
|
|
|
};
|
|
|
|
|
|
|
|
~LinuxPerformanceCounters();
|
|
|
|
|
|
|
|
// quick operation
|
|
|
|
inline void start() {}
|
|
|
|
|
|
|
|
inline void stop() {}
|
|
|
|
|
|
|
|
bool monitor(perf_sw_ids swId, Target target);
|
|
|
|
bool monitor(perf_hw_id hwId, Target target);
|
|
|
|
|
|
|
|
bool hasError() const noexcept {
|
|
|
|
return mHasError;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Just reading data is faster than enable & disabling.
|
|
|
|
// we subtract data ourselves.
|
|
|
|
inline void beginMeasure() {
|
|
|
|
if (mHasError) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// NOLINTNEXTLINE(hicpp-signed-bitwise)
|
|
|
|
mHasError = -1 == ioctl(mFd, PERF_EVENT_IOC_RESET, PERF_IOC_FLAG_GROUP);
|
|
|
|
if (mHasError) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// NOLINTNEXTLINE(hicpp-signed-bitwise)
|
|
|
|
mHasError = -1 == ioctl(mFd, PERF_EVENT_IOC_ENABLE, PERF_IOC_FLAG_GROUP);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void endMeasure() {
|
|
|
|
if (mHasError) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// NOLINTNEXTLINE(hicpp-signed-bitwise)
|
|
|
|
mHasError = (-1 == ioctl(mFd, PERF_EVENT_IOC_DISABLE, PERF_IOC_FLAG_GROUP));
|
|
|
|
if (mHasError) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto const numBytes = sizeof(uint64_t) * mCounters.size();
|
|
|
|
auto ret = read(mFd, mCounters.data(), numBytes);
|
|
|
|
mHasError = ret != static_cast<ssize_t>(numBytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
void updateResults(uint64_t numIters);
|
|
|
|
|
|
|
|
// rounded integer division
|
|
|
|
template <typename T>
|
|
|
|
static inline T divRounded(T a, T divisor) {
|
|
|
|
return (a + divisor / 2) / divisor;
|
|
|
|
}
|
|
|
|
|
2021-09-17 06:58:57 -03:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
|
|
|
static inline uint32_t mix(uint32_t x) noexcept {
|
|
|
|
x ^= x << 13;
|
|
|
|
x ^= x >> 17;
|
|
|
|
x ^= x << 5;
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
template <typename Op>
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
void calibrate(Op&& op) {
|
|
|
|
// clear current calibration data,
|
|
|
|
for (auto& v : mCalibratedOverhead) {
|
|
|
|
v = UINT64_C(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// create new calibration data
|
|
|
|
auto newCalibration = mCalibratedOverhead;
|
|
|
|
for (auto& v : newCalibration) {
|
|
|
|
v = (std::numeric_limits<uint64_t>::max)();
|
|
|
|
}
|
|
|
|
for (size_t iter = 0; iter < 100; ++iter) {
|
|
|
|
beginMeasure();
|
|
|
|
op();
|
|
|
|
endMeasure();
|
|
|
|
if (mHasError) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < newCalibration.size(); ++i) {
|
|
|
|
auto diff = mCounters[i];
|
|
|
|
if (newCalibration[i] > diff) {
|
|
|
|
newCalibration[i] = diff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mCalibratedOverhead = std::move(newCalibration);
|
|
|
|
|
|
|
|
{
|
|
|
|
// calibrate loop overhead. For branches & instructions this makes sense, not so much for everything else like cycles.
|
|
|
|
// marsaglia's xorshift: mov, sal/shr, xor. Times 3.
|
|
|
|
// This has the nice property that the compiler doesn't seem to be able to optimize multiple calls any further.
|
|
|
|
// see https://godbolt.org/z/49RVQ5
|
|
|
|
uint64_t const numIters = 100000U + (std::random_device{}() & 3);
|
|
|
|
uint64_t n = numIters;
|
|
|
|
uint32_t x = 1234567;
|
|
|
|
|
|
|
|
beginMeasure();
|
|
|
|
while (n-- > 0) {
|
2021-09-17 06:58:57 -03:00
|
|
|
x = mix(x);
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
}
|
|
|
|
endMeasure();
|
|
|
|
detail::doNotOptimizeAway(x);
|
|
|
|
auto measure1 = mCounters;
|
|
|
|
|
|
|
|
n = numIters;
|
|
|
|
beginMeasure();
|
|
|
|
while (n-- > 0) {
|
|
|
|
// we now run *twice* so we can easily calculate the overhead
|
2021-09-17 06:58:57 -03:00
|
|
|
x = mix(x);
|
|
|
|
x = mix(x);
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
}
|
|
|
|
endMeasure();
|
|
|
|
detail::doNotOptimizeAway(x);
|
|
|
|
auto measure2 = mCounters;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < mCounters.size(); ++i) {
|
|
|
|
// factor 2 because we have two instructions per loop
|
|
|
|
auto m1 = measure1[i] > mCalibratedOverhead[i] ? measure1[i] - mCalibratedOverhead[i] : 0;
|
|
|
|
auto m2 = measure2[i] > mCalibratedOverhead[i] ? measure2[i] - mCalibratedOverhead[i] : 0;
|
|
|
|
auto overhead = m1 * 2 > m2 ? m1 * 2 - m2 : 0;
|
|
|
|
|
|
|
|
mLoopOverhead[i] = divRounded(overhead, numIters);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
bool monitor(uint32_t type, uint64_t eventid, Target target);
|
|
|
|
|
|
|
|
std::map<uint64_t, Target> mIdToTarget{};
|
|
|
|
|
|
|
|
// start with minimum size of 3 for read_format
|
|
|
|
std::vector<uint64_t> mCounters{3};
|
|
|
|
std::vector<uint64_t> mCalibratedOverhead{3};
|
|
|
|
std::vector<uint64_t> mLoopOverhead{3};
|
|
|
|
|
|
|
|
uint64_t mTimeEnabledNanos = 0;
|
|
|
|
uint64_t mTimeRunningNanos = 0;
|
|
|
|
int mFd = -1;
|
|
|
|
bool mHasError = false;
|
|
|
|
};
|
|
|
|
ANKERL_NANOBENCH(IGNORE_PADDED_POP)
|
|
|
|
|
|
|
|
LinuxPerformanceCounters::~LinuxPerformanceCounters() {
|
|
|
|
if (-1 != mFd) {
|
|
|
|
close(mFd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LinuxPerformanceCounters::monitor(perf_sw_ids swId, LinuxPerformanceCounters::Target target) {
|
|
|
|
return monitor(PERF_TYPE_SOFTWARE, swId, target);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LinuxPerformanceCounters::monitor(perf_hw_id hwId, LinuxPerformanceCounters::Target target) {
|
|
|
|
return monitor(PERF_TYPE_HARDWARE, hwId, target);
|
|
|
|
}
|
|
|
|
|
|
|
|
// overflow is ok, it's checked
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
void LinuxPerformanceCounters::updateResults(uint64_t numIters) {
|
|
|
|
// clear old data
|
|
|
|
for (auto& id_value : mIdToTarget) {
|
|
|
|
*id_value.second.targetValue = UINT64_C(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mHasError) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mTimeEnabledNanos = mCounters[1] - mCalibratedOverhead[1];
|
|
|
|
mTimeRunningNanos = mCounters[2] - mCalibratedOverhead[2];
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < mCounters[0]; ++i) {
|
|
|
|
auto idx = static_cast<size_t>(3 + i * 2 + 0);
|
|
|
|
auto id = mCounters[idx + 1U];
|
|
|
|
|
|
|
|
auto it = mIdToTarget.find(id);
|
|
|
|
if (it != mIdToTarget.end()) {
|
|
|
|
|
|
|
|
auto& tgt = it->second;
|
|
|
|
*tgt.targetValue = mCounters[idx];
|
|
|
|
if (tgt.correctMeasuringOverhead) {
|
|
|
|
if (*tgt.targetValue >= mCalibratedOverhead[idx]) {
|
|
|
|
*tgt.targetValue -= mCalibratedOverhead[idx];
|
|
|
|
} else {
|
|
|
|
*tgt.targetValue = 0U;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (tgt.correctLoopOverhead) {
|
|
|
|
auto correctionVal = mLoopOverhead[idx] * numIters;
|
|
|
|
if (*tgt.targetValue >= correctionVal) {
|
|
|
|
*tgt.targetValue -= correctionVal;
|
|
|
|
} else {
|
|
|
|
*tgt.targetValue = 0U;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool LinuxPerformanceCounters::monitor(uint32_t type, uint64_t eventid, Target target) {
|
|
|
|
*target.targetValue = (std::numeric_limits<uint64_t>::max)();
|
|
|
|
if (mHasError) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto pea = perf_event_attr();
|
|
|
|
std::memset(&pea, 0, sizeof(perf_event_attr));
|
|
|
|
pea.type = type;
|
|
|
|
pea.size = sizeof(perf_event_attr);
|
|
|
|
pea.config = eventid;
|
|
|
|
pea.disabled = 1; // start counter as disabled
|
|
|
|
pea.exclude_kernel = 1;
|
|
|
|
pea.exclude_hv = 1;
|
|
|
|
|
|
|
|
// NOLINTNEXTLINE(hicpp-signed-bitwise)
|
|
|
|
pea.read_format = PERF_FORMAT_GROUP | PERF_FORMAT_ID | PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
|
|
|
|
|
|
|
|
const int pid = 0; // the current process
|
|
|
|
const int cpu = -1; // all CPUs
|
|
|
|
# if defined(PERF_FLAG_FD_CLOEXEC) // since Linux 3.14
|
|
|
|
const unsigned long flags = PERF_FLAG_FD_CLOEXEC;
|
|
|
|
# else
|
|
|
|
const unsigned long flags = 0;
|
|
|
|
# endif
|
|
|
|
|
|
|
|
auto fd = static_cast<int>(syscall(__NR_perf_event_open, &pea, pid, cpu, mFd, flags));
|
|
|
|
if (-1 == fd) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
if (-1 == mFd) {
|
|
|
|
// first call: set to fd, and use this from now on
|
|
|
|
mFd = fd;
|
|
|
|
}
|
|
|
|
uint64_t id = 0;
|
|
|
|
// NOLINTNEXTLINE(hicpp-signed-bitwise)
|
|
|
|
if (-1 == ioctl(fd, PERF_EVENT_IOC_ID, &id)) {
|
|
|
|
// couldn't get id
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// insert into map, rely on the fact that map's references are constant.
|
|
|
|
mIdToTarget.emplace(id, target);
|
|
|
|
|
|
|
|
// prepare readformat with the correct size (after the insert)
|
|
|
|
auto size = 3 + 2 * mIdToTarget.size();
|
|
|
|
mCounters.resize(size);
|
|
|
|
mCalibratedOverhead.resize(size);
|
|
|
|
mLoopOverhead.resize(size);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
PerformanceCounters::PerformanceCounters()
|
|
|
|
: mPc(new LinuxPerformanceCounters())
|
|
|
|
, mVal()
|
|
|
|
, mHas() {
|
|
|
|
|
|
|
|
mHas.pageFaults = mPc->monitor(PERF_COUNT_SW_PAGE_FAULTS, LinuxPerformanceCounters::Target(&mVal.pageFaults, true, false));
|
|
|
|
mHas.cpuCycles = mPc->monitor(PERF_COUNT_HW_REF_CPU_CYCLES, LinuxPerformanceCounters::Target(&mVal.cpuCycles, true, false));
|
|
|
|
mHas.contextSwitches =
|
|
|
|
mPc->monitor(PERF_COUNT_SW_CONTEXT_SWITCHES, LinuxPerformanceCounters::Target(&mVal.contextSwitches, true, false));
|
|
|
|
mHas.instructions = mPc->monitor(PERF_COUNT_HW_INSTRUCTIONS, LinuxPerformanceCounters::Target(&mVal.instructions, true, true));
|
|
|
|
mHas.branchInstructions =
|
|
|
|
mPc->monitor(PERF_COUNT_HW_BRANCH_INSTRUCTIONS, LinuxPerformanceCounters::Target(&mVal.branchInstructions, true, false));
|
|
|
|
mHas.branchMisses = mPc->monitor(PERF_COUNT_HW_BRANCH_MISSES, LinuxPerformanceCounters::Target(&mVal.branchMisses, true, false));
|
|
|
|
// mHas.branchMisses = false;
|
|
|
|
|
|
|
|
mPc->start();
|
|
|
|
mPc->calibrate([] {
|
|
|
|
auto before = ankerl::nanobench::Clock::now();
|
|
|
|
auto after = ankerl::nanobench::Clock::now();
|
|
|
|
(void)before;
|
|
|
|
(void)after;
|
|
|
|
});
|
|
|
|
|
|
|
|
if (mPc->hasError()) {
|
|
|
|
// something failed, don't monitor anything.
|
|
|
|
mHas = PerfCountSet<bool>{};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PerformanceCounters::~PerformanceCounters() {
|
|
|
|
if (nullptr != mPc) {
|
|
|
|
delete mPc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void PerformanceCounters::beginMeasure() {
|
|
|
|
mPc->beginMeasure();
|
|
|
|
}
|
|
|
|
|
|
|
|
void PerformanceCounters::endMeasure() {
|
|
|
|
mPc->endMeasure();
|
|
|
|
}
|
|
|
|
|
|
|
|
void PerformanceCounters::updateResults(uint64_t numIters) {
|
|
|
|
mPc->updateResults(numIters);
|
|
|
|
}
|
|
|
|
|
|
|
|
# else
|
|
|
|
|
|
|
|
PerformanceCounters::PerformanceCounters() = default;
|
|
|
|
PerformanceCounters::~PerformanceCounters() = default;
|
|
|
|
void PerformanceCounters::beginMeasure() {}
|
|
|
|
void PerformanceCounters::endMeasure() {}
|
|
|
|
void PerformanceCounters::updateResults(uint64_t) {}
|
|
|
|
|
|
|
|
# endif
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<uint64_t> const& PerformanceCounters::val() const noexcept {
|
|
|
|
return mVal;
|
|
|
|
}
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) PerfCountSet<bool> const& PerformanceCounters::has() const noexcept {
|
|
|
|
return mHas;
|
|
|
|
}
|
|
|
|
|
|
|
|
// formatting utilities
|
|
|
|
namespace fmt {
|
|
|
|
|
|
|
|
// adds thousands separator to numbers
|
|
|
|
NumSep::NumSep(char sep)
|
|
|
|
: mSep(sep) {}
|
|
|
|
|
|
|
|
char NumSep::do_thousands_sep() const {
|
|
|
|
return mSep;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string NumSep::do_grouping() const {
|
|
|
|
return "\003";
|
|
|
|
}
|
|
|
|
|
|
|
|
// RAII to save & restore a stream's state
|
|
|
|
StreamStateRestorer::StreamStateRestorer(std::ostream& s)
|
|
|
|
: mStream(s)
|
|
|
|
, mLocale(s.getloc())
|
|
|
|
, mPrecision(s.precision())
|
|
|
|
, mWidth(s.width())
|
|
|
|
, mFill(s.fill())
|
|
|
|
, mFmtFlags(s.flags()) {}
|
|
|
|
|
|
|
|
StreamStateRestorer::~StreamStateRestorer() {
|
|
|
|
restore();
|
|
|
|
}
|
|
|
|
|
|
|
|
// sets back all stream info that we remembered at construction
|
|
|
|
void StreamStateRestorer::restore() {
|
|
|
|
mStream.imbue(mLocale);
|
|
|
|
mStream.precision(mPrecision);
|
|
|
|
mStream.width(mWidth);
|
|
|
|
mStream.fill(mFill);
|
|
|
|
mStream.flags(mFmtFlags);
|
|
|
|
}
|
|
|
|
|
|
|
|
Number::Number(int width, int precision, int64_t value)
|
|
|
|
: mWidth(width)
|
|
|
|
, mPrecision(precision)
|
|
|
|
, mValue(static_cast<double>(value)) {}
|
|
|
|
|
|
|
|
Number::Number(int width, int precision, double value)
|
|
|
|
: mWidth(width)
|
|
|
|
, mPrecision(precision)
|
|
|
|
, mValue(value) {}
|
|
|
|
|
|
|
|
std::ostream& Number::write(std::ostream& os) const {
|
|
|
|
StreamStateRestorer restorer(os);
|
|
|
|
os.imbue(std::locale(os.getloc(), new NumSep(',')));
|
|
|
|
os << std::setw(mWidth) << std::setprecision(mPrecision) << std::fixed << mValue;
|
|
|
|
return os;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string Number::to_s() const {
|
|
|
|
std::stringstream ss;
|
|
|
|
write(ss);
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string to_s(uint64_t n) {
|
|
|
|
std::string str;
|
|
|
|
do {
|
|
|
|
str += static_cast<char>('0' + static_cast<char>(n % 10));
|
|
|
|
n /= 10;
|
|
|
|
} while (n != 0);
|
|
|
|
std::reverse(str.begin(), str.end());
|
|
|
|
return str;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, Number const& n) {
|
|
|
|
return n.write(os);
|
|
|
|
}
|
|
|
|
|
|
|
|
MarkDownColumn::MarkDownColumn(int w, int prec, std::string const& tit, std::string const& suff, double val)
|
|
|
|
: mWidth(w)
|
|
|
|
, mPrecision(prec)
|
|
|
|
, mTitle(tit)
|
|
|
|
, mSuffix(suff)
|
|
|
|
, mValue(val) {}
|
|
|
|
|
|
|
|
std::string MarkDownColumn::title() const {
|
|
|
|
std::stringstream ss;
|
|
|
|
ss << '|' << std::setw(mWidth - 2) << std::right << mTitle << ' ';
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MarkDownColumn::separator() const {
|
|
|
|
std::string sep(static_cast<size_t>(mWidth), '-');
|
|
|
|
sep.front() = '|';
|
|
|
|
sep.back() = ':';
|
|
|
|
return sep;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MarkDownColumn::invalid() const {
|
|
|
|
std::string sep(static_cast<size_t>(mWidth), ' ');
|
|
|
|
sep.front() = '|';
|
|
|
|
sep[sep.size() - 2] = '-';
|
|
|
|
return sep;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string MarkDownColumn::value() const {
|
|
|
|
std::stringstream ss;
|
|
|
|
auto width = mWidth - 2 - static_cast<int>(mSuffix.size());
|
|
|
|
ss << '|' << Number(width, mPrecision, mValue) << mSuffix << ' ';
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Formats any text as markdown code, escaping backticks.
|
|
|
|
MarkDownCode::MarkDownCode(std::string const& what) {
|
|
|
|
mWhat.reserve(what.size() + 2);
|
|
|
|
mWhat.push_back('`');
|
|
|
|
for (char c : what) {
|
|
|
|
mWhat.push_back(c);
|
|
|
|
if ('`' == c) {
|
|
|
|
mWhat.push_back('`');
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mWhat.push_back('`');
|
|
|
|
}
|
|
|
|
|
|
|
|
std::ostream& MarkDownCode::write(std::ostream& os) const {
|
|
|
|
return os << mWhat;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, MarkDownCode const& mdCode) {
|
|
|
|
return mdCode.write(os);
|
|
|
|
}
|
|
|
|
} // namespace fmt
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
// provide implementation here so it's only generated once
|
|
|
|
Config::Config() = default;
|
|
|
|
Config::~Config() = default;
|
|
|
|
Config& Config::operator=(Config const&) = default;
|
|
|
|
Config& Config::operator=(Config&&) = default;
|
|
|
|
Config::Config(Config const&) = default;
|
|
|
|
Config::Config(Config&&) noexcept = default;
|
|
|
|
|
|
|
|
// provide implementation here so it's only generated once
|
|
|
|
Result::~Result() = default;
|
|
|
|
Result& Result::operator=(Result const&) = default;
|
|
|
|
Result& Result::operator=(Result&&) = default;
|
|
|
|
Result::Result(Result const&) = default;
|
|
|
|
Result::Result(Result&&) noexcept = default;
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
template <typename T>
|
|
|
|
inline constexpr typename std::underlying_type<T>::type u(T val) noexcept {
|
|
|
|
return static_cast<typename std::underlying_type<T>::type>(val);
|
|
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
|
|
|
|
// Result returned after a benchmark has finished. Can be used as a baseline for relative().
|
|
|
|
Result::Result(Config const& benchmarkConfig)
|
|
|
|
: mConfig(benchmarkConfig)
|
|
|
|
, mNameToMeasurements{detail::u(Result::Measure::_size)} {}
|
|
|
|
|
|
|
|
void Result::add(Clock::duration totalElapsed, uint64_t iters, detail::PerformanceCounters const& pc) {
|
|
|
|
using detail::d;
|
|
|
|
using detail::u;
|
|
|
|
|
|
|
|
double dIters = d(iters);
|
|
|
|
mNameToMeasurements[u(Result::Measure::iterations)].push_back(dIters);
|
|
|
|
|
|
|
|
mNameToMeasurements[u(Result::Measure::elapsed)].push_back(d(totalElapsed) / dIters);
|
|
|
|
if (pc.has().pageFaults) {
|
|
|
|
mNameToMeasurements[u(Result::Measure::pagefaults)].push_back(d(pc.val().pageFaults) / dIters);
|
|
|
|
}
|
|
|
|
if (pc.has().cpuCycles) {
|
|
|
|
mNameToMeasurements[u(Result::Measure::cpucycles)].push_back(d(pc.val().cpuCycles) / dIters);
|
|
|
|
}
|
|
|
|
if (pc.has().contextSwitches) {
|
|
|
|
mNameToMeasurements[u(Result::Measure::contextswitches)].push_back(d(pc.val().contextSwitches) / dIters);
|
|
|
|
}
|
|
|
|
if (pc.has().instructions) {
|
|
|
|
mNameToMeasurements[u(Result::Measure::instructions)].push_back(d(pc.val().instructions) / dIters);
|
|
|
|
}
|
|
|
|
if (pc.has().branchInstructions) {
|
|
|
|
double branchInstructions = 0.0;
|
|
|
|
// correcting branches: remove branch introduced by the while (...) loop for each iteration.
|
|
|
|
if (pc.val().branchInstructions > iters + 1U) {
|
|
|
|
branchInstructions = d(pc.val().branchInstructions - (iters + 1U));
|
|
|
|
}
|
|
|
|
mNameToMeasurements[u(Result::Measure::branchinstructions)].push_back(branchInstructions / dIters);
|
|
|
|
|
|
|
|
if (pc.has().branchMisses) {
|
|
|
|
// correcting branch misses
|
|
|
|
double branchMisses = d(pc.val().branchMisses);
|
|
|
|
if (branchMisses > branchInstructions) {
|
|
|
|
// can't have branch misses when there were branches...
|
|
|
|
branchMisses = branchInstructions;
|
|
|
|
}
|
|
|
|
|
|
|
|
// assuming at least one missed branch for the loop
|
|
|
|
branchMisses -= 1.0;
|
|
|
|
if (branchMisses < 1.0) {
|
|
|
|
branchMisses = 1.0;
|
|
|
|
}
|
|
|
|
mNameToMeasurements[u(Result::Measure::branchmisses)].push_back(branchMisses / dIters);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Config const& Result::config() const noexcept {
|
|
|
|
return mConfig;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline double calcMedian(std::vector<double>& data) {
|
|
|
|
if (data.empty()) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
std::sort(data.begin(), data.end());
|
|
|
|
|
|
|
|
auto midIdx = data.size() / 2U;
|
|
|
|
if (1U == (data.size() & 1U)) {
|
|
|
|
return data[midIdx];
|
|
|
|
}
|
|
|
|
return (data[midIdx - 1U] + data[midIdx]) / 2U;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::median(Measure m) const {
|
|
|
|
// create a copy so we can sort
|
|
|
|
auto data = mNameToMeasurements[detail::u(m)];
|
|
|
|
return calcMedian(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::average(Measure m) const {
|
|
|
|
using detail::d;
|
|
|
|
auto const& data = mNameToMeasurements[detail::u(m)];
|
|
|
|
if (data.empty()) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// create a copy so we can sort
|
|
|
|
return sum(m) / d(data.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::medianAbsolutePercentError(Measure m) const {
|
|
|
|
// create copy
|
|
|
|
auto data = mNameToMeasurements[detail::u(m)];
|
|
|
|
|
|
|
|
// calculates MdAPE which is the median of percentage error
|
|
|
|
// see https://www.spiderfinancial.com/support/documentation/numxl/reference-manual/forecasting-performance/mdape
|
|
|
|
auto med = calcMedian(data);
|
|
|
|
|
|
|
|
// transform the data to absolute error
|
|
|
|
for (auto& x : data) {
|
|
|
|
x = (x - med) / x;
|
|
|
|
if (x < 0) {
|
|
|
|
x = -x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return calcMedian(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::sum(Measure m) const noexcept {
|
|
|
|
auto const& data = mNameToMeasurements[detail::u(m)];
|
|
|
|
return std::accumulate(data.begin(), data.end(), 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::sumProduct(Measure m1, Measure m2) const noexcept {
|
|
|
|
auto const& data1 = mNameToMeasurements[detail::u(m1)];
|
|
|
|
auto const& data2 = mNameToMeasurements[detail::u(m2)];
|
|
|
|
|
|
|
|
if (data1.size() != data2.size()) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
double result = 0.0;
|
|
|
|
for (size_t i = 0, s = data1.size(); i != s; ++i) {
|
|
|
|
result += data1[i] * data2[i];
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Result::has(Measure m) const noexcept {
|
|
|
|
return !mNameToMeasurements[detail::u(m)].empty();
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::get(size_t idx, Measure m) const {
|
|
|
|
auto const& data = mNameToMeasurements[detail::u(m)];
|
|
|
|
return data.at(idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Result::empty() const noexcept {
|
|
|
|
return 0U == size();
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t Result::size() const noexcept {
|
|
|
|
auto const& data = mNameToMeasurements[detail::u(Measure::elapsed)];
|
|
|
|
return data.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::minimum(Measure m) const noexcept {
|
|
|
|
auto const& data = mNameToMeasurements[detail::u(m)];
|
|
|
|
if (data.empty()) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// here its save to assume that at least one element is there
|
|
|
|
return *std::min_element(data.begin(), data.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
double Result::maximum(Measure m) const noexcept {
|
|
|
|
auto const& data = mNameToMeasurements[detail::u(m)];
|
|
|
|
if (data.empty()) {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// here its save to assume that at least one element is there
|
|
|
|
return *std::max_element(data.begin(), data.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
Result::Measure Result::fromString(std::string const& str) {
|
|
|
|
if (str == "elapsed") {
|
|
|
|
return Measure::elapsed;
|
|
|
|
} else if (str == "iterations") {
|
|
|
|
return Measure::iterations;
|
|
|
|
} else if (str == "pagefaults") {
|
|
|
|
return Measure::pagefaults;
|
|
|
|
} else if (str == "cpucycles") {
|
|
|
|
return Measure::cpucycles;
|
|
|
|
} else if (str == "contextswitches") {
|
|
|
|
return Measure::contextswitches;
|
|
|
|
} else if (str == "instructions") {
|
|
|
|
return Measure::instructions;
|
|
|
|
} else if (str == "branchinstructions") {
|
|
|
|
return Measure::branchinstructions;
|
|
|
|
} else if (str == "branchmisses") {
|
|
|
|
return Measure::branchmisses;
|
|
|
|
} else {
|
|
|
|
// not found, return _size
|
|
|
|
return Measure::_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Configuration of a microbenchmark.
|
|
|
|
Bench::Bench() {
|
|
|
|
mConfig.mOut = &std::cout;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench::Bench(Bench&&) = default;
|
|
|
|
Bench& Bench::operator=(Bench&&) = default;
|
|
|
|
Bench::Bench(Bench const&) = default;
|
|
|
|
Bench& Bench::operator=(Bench const&) = default;
|
|
|
|
Bench::~Bench() noexcept = default;
|
|
|
|
|
|
|
|
double Bench::batch() const noexcept {
|
|
|
|
return mConfig.mBatch;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Bench::complexityN() const noexcept {
|
|
|
|
return mConfig.mComplexityN;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set a baseline to compare it to. 100% it is exactly as fast as the baseline, >100% means it is faster than the baseline, <100%
|
|
|
|
// means it is slower than the baseline.
|
|
|
|
Bench& Bench::relative(bool isRelativeEnabled) noexcept {
|
|
|
|
mConfig.mIsRelative = isRelativeEnabled;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
bool Bench::relative() const noexcept {
|
|
|
|
return mConfig.mIsRelative;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::performanceCounters(bool showPerformanceCounters) noexcept {
|
|
|
|
mConfig.mShowPerformanceCounters = showPerformanceCounters;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
bool Bench::performanceCounters() const noexcept {
|
|
|
|
return mConfig.mShowPerformanceCounters;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Operation unit. Defaults to "op", could be e.g. "byte" for string processing.
|
|
|
|
// If u differs from currently set unit, the stored results will be cleared.
|
|
|
|
// Use singular (byte, not bytes).
|
|
|
|
Bench& Bench::unit(char const* u) {
|
|
|
|
if (u != mConfig.mUnit) {
|
|
|
|
mResults.clear();
|
|
|
|
}
|
|
|
|
mConfig.mUnit = u;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::unit(std::string const& u) {
|
|
|
|
return unit(u.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string const& Bench::unit() const noexcept {
|
|
|
|
return mConfig.mUnit;
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
Bench& Bench::timeUnit(std::chrono::duration<double> const& tu, std::string const& tuName) {
|
|
|
|
mConfig.mTimeUnit = tu;
|
|
|
|
mConfig.mTimeUnitName = tuName;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string const& Bench::timeUnitName() const noexcept {
|
|
|
|
return mConfig.mTimeUnitName;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::chrono::duration<double> const& Bench::timeUnit() const noexcept {
|
|
|
|
return mConfig.mTimeUnit;
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
// If benchmarkTitle differs from currently set title, the stored results will be cleared.
|
|
|
|
Bench& Bench::title(const char* benchmarkTitle) {
|
|
|
|
if (benchmarkTitle != mConfig.mBenchmarkTitle) {
|
|
|
|
mResults.clear();
|
|
|
|
}
|
|
|
|
mConfig.mBenchmarkTitle = benchmarkTitle;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
Bench& Bench::title(std::string const& benchmarkTitle) {
|
|
|
|
if (benchmarkTitle != mConfig.mBenchmarkTitle) {
|
|
|
|
mResults.clear();
|
|
|
|
}
|
|
|
|
mConfig.mBenchmarkTitle = benchmarkTitle;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string const& Bench::title() const noexcept {
|
|
|
|
return mConfig.mBenchmarkTitle;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::name(const char* benchmarkName) {
|
|
|
|
mConfig.mBenchmarkName = benchmarkName;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::name(std::string const& benchmarkName) {
|
|
|
|
mConfig.mBenchmarkName = benchmarkName;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string const& Bench::name() const noexcept {
|
|
|
|
return mConfig.mBenchmarkName;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Number of epochs to evaluate. The reported result will be the median of evaluation of each epoch.
|
|
|
|
Bench& Bench::epochs(size_t numEpochs) noexcept {
|
|
|
|
mConfig.mNumEpochs = numEpochs;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
size_t Bench::epochs() const noexcept {
|
|
|
|
return mConfig.mNumEpochs;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Desired evaluation time is a multiple of clock resolution. Default is to be 1000 times above this measurement precision.
|
|
|
|
Bench& Bench::clockResolutionMultiple(size_t multiple) noexcept {
|
|
|
|
mConfig.mClockResolutionMultiple = multiple;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
size_t Bench::clockResolutionMultiple() const noexcept {
|
|
|
|
return mConfig.mClockResolutionMultiple;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets the maximum time each epoch should take. Default is 100ms.
|
|
|
|
Bench& Bench::maxEpochTime(std::chrono::nanoseconds t) noexcept {
|
|
|
|
mConfig.mMaxEpochTime = t;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
std::chrono::nanoseconds Bench::maxEpochTime() const noexcept {
|
|
|
|
return mConfig.mMaxEpochTime;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets the maximum time each epoch should take. Default is 100ms.
|
|
|
|
Bench& Bench::minEpochTime(std::chrono::nanoseconds t) noexcept {
|
|
|
|
mConfig.mMinEpochTime = t;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
std::chrono::nanoseconds Bench::minEpochTime() const noexcept {
|
|
|
|
return mConfig.mMinEpochTime;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::minEpochIterations(uint64_t numIters) noexcept {
|
|
|
|
mConfig.mMinEpochIterations = (numIters == 0) ? 1 : numIters;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
uint64_t Bench::minEpochIterations() const noexcept {
|
|
|
|
return mConfig.mMinEpochIterations;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::epochIterations(uint64_t numIters) noexcept {
|
|
|
|
mConfig.mEpochIterations = numIters;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
uint64_t Bench::epochIterations() const noexcept {
|
|
|
|
return mConfig.mEpochIterations;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::warmup(uint64_t numWarmupIters) noexcept {
|
|
|
|
mConfig.mWarmup = numWarmupIters;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
uint64_t Bench::warmup() const noexcept {
|
|
|
|
return mConfig.mWarmup;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::config(Config const& benchmarkConfig) {
|
|
|
|
mConfig = benchmarkConfig;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
Config const& Bench::config() const noexcept {
|
|
|
|
return mConfig;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::output(std::ostream* outstream) noexcept {
|
|
|
|
mConfig.mOut = outstream;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
ANKERL_NANOBENCH(NODISCARD) std::ostream* Bench::output() const noexcept {
|
|
|
|
return mConfig.mOut;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Result> const& Bench::results() const noexcept {
|
|
|
|
return mResults;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bench& Bench::render(char const* templateContent, std::ostream& os) {
|
|
|
|
::ankerl::nanobench::render(templateContent, *this, os);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
Bench& Bench::render(std::string const& templateContent, std::ostream& os) {
|
|
|
|
::ankerl::nanobench::render(templateContent, *this, os);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
std::vector<BigO> Bench::complexityBigO() const {
|
|
|
|
std::vector<BigO> bigOs;
|
|
|
|
auto rangeMeasure = BigO::collectRangeMeasure(mResults);
|
|
|
|
bigOs.emplace_back("O(1)", rangeMeasure, [](double) {
|
|
|
|
return 1.0;
|
|
|
|
});
|
|
|
|
bigOs.emplace_back("O(n)", rangeMeasure, [](double n) {
|
|
|
|
return n;
|
|
|
|
});
|
|
|
|
bigOs.emplace_back("O(log n)", rangeMeasure, [](double n) {
|
|
|
|
return std::log2(n);
|
|
|
|
});
|
|
|
|
bigOs.emplace_back("O(n log n)", rangeMeasure, [](double n) {
|
|
|
|
return n * std::log2(n);
|
|
|
|
});
|
|
|
|
bigOs.emplace_back("O(n^2)", rangeMeasure, [](double n) {
|
|
|
|
return n * n;
|
|
|
|
});
|
|
|
|
bigOs.emplace_back("O(n^3)", rangeMeasure, [](double n) {
|
|
|
|
return n * n * n;
|
|
|
|
});
|
|
|
|
std::sort(bigOs.begin(), bigOs.end());
|
|
|
|
return bigOs;
|
|
|
|
}
|
|
|
|
|
|
|
|
Rng::Rng()
|
|
|
|
: mX(0)
|
|
|
|
, mY(0) {
|
|
|
|
std::random_device rd;
|
|
|
|
std::uniform_int_distribution<uint64_t> dist;
|
|
|
|
do {
|
|
|
|
mX = dist(rd);
|
|
|
|
mY = dist(rd);
|
|
|
|
} while (mX == 0 && mY == 0);
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
ANKERL_NANOBENCH_NO_SANITIZE("integer", "undefined")
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
uint64_t splitMix64(uint64_t& state) noexcept {
|
|
|
|
uint64_t z = (state += UINT64_C(0x9e3779b97f4a7c15));
|
|
|
|
z = (z ^ (z >> 30U)) * UINT64_C(0xbf58476d1ce4e5b9);
|
|
|
|
z = (z ^ (z >> 27U)) * UINT64_C(0x94d049bb133111eb);
|
|
|
|
return z ^ (z >> 31U);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Seeded as described in romu paper (update april 2020)
|
|
|
|
Rng::Rng(uint64_t seed) noexcept
|
|
|
|
: mX(splitMix64(seed))
|
|
|
|
, mY(splitMix64(seed)) {
|
|
|
|
for (size_t i = 0; i < 10; ++i) {
|
|
|
|
operator()();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// only internally used to copy the RNG.
|
|
|
|
Rng::Rng(uint64_t x, uint64_t y) noexcept
|
|
|
|
: mX(x)
|
|
|
|
, mY(y) {}
|
|
|
|
|
|
|
|
Rng Rng::copy() const noexcept {
|
|
|
|
return Rng{mX, mY};
|
|
|
|
}
|
|
|
|
|
2021-05-27 01:29:48 -04:00
|
|
|
Rng::Rng(std::vector<uint64_t> const& data)
|
|
|
|
: mX(0)
|
|
|
|
, mY(0) {
|
|
|
|
if (data.size() != 2) {
|
|
|
|
throw std::runtime_error("ankerl::nanobench::Rng::Rng: needed exactly 2 entries in data, but got " +
|
|
|
|
detail::fmt::to_s(data.size()));
|
|
|
|
}
|
|
|
|
mX = data[0];
|
|
|
|
mY = data[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<uint64_t> Rng::state() const {
|
|
|
|
std::vector<uint64_t> data(2);
|
|
|
|
data[0] = mX;
|
|
|
|
data[1] = mY;
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
|
Replace current benchmarking framework with nanobench
This replaces the current benchmarking framework with nanobench [1], an
MIT licensed single-header benchmarking library, of which I am the
autor. This has in my opinion several advantages, especially on Linux:
* fast: Running all benchmarks takes ~6 seconds instead of 4m13s on
an Intel i7-8700 CPU @ 3.20GHz.
* accurate: I ran e.g. the benchmark for SipHash_32b 10 times and
calculate standard deviation / mean = coefficient of variation:
* 0.57% CV for old benchmarking framework
* 0.20% CV for nanobench
So the benchmark results with nanobench seem to vary less than with
the old framework.
* It automatically determines runtime based on clock precision, no need
to specify number of evaluations.
* measure instructions, cycles, branches, instructions per cycle,
branch misses (only Linux, when performance counters are available)
* output in markdown table format.
* Warn about unstable environment (frequency scaling, turbo, ...)
* For better profiling, it is possible to set the environment variable
NANOBENCH_ENDLESS to force endless running of a particular benchmark
without the need to recompile. This makes it to e.g. run "perf top"
and look at hotspots.
Here is an example copy & pasted from the terminal output:
| ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160`
| 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1`
| 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256`
| 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024`
| 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b`
| 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512`
[1] https://github.com/martinus/nanobench
* Adds support for asymptotes
This adds support to calculate asymptotic complexity of a benchmark.
This is similar to #17375, but currently only one asymptote is
supported, and I have added support in the benchmark `ComplexMemPool`
as an example.
Usage is e.g. like this:
```
./bench_bitcoin -filter=ComplexMemPool -asymptote=25,50,100,200,400,600,800
```
This runs the benchmark `ComplexMemPool` several times but with
different complexityN settings. The benchmark can extract that number
and use it accordingly. Here, it's used for `childTxs`. The output is
this:
| complexityN | ns/op | op/s | err% | ins/op | cyc/op | IPC | total | benchmark
|------------:|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|----------:|:----------
| 25 | 1,064,241.00 | 939.64 | 1.4% | 3,960,279.00 | 2,829,708.00 | 1.400 | 0.01 | `ComplexMemPool`
| 50 | 1,579,530.00 | 633.10 | 1.0% | 6,231,810.00 | 4,412,674.00 | 1.412 | 0.02 | `ComplexMemPool`
| 100 | 4,022,774.00 | 248.58 | 0.6% | 16,544,406.00 | 11,889,535.00 | 1.392 | 0.04 | `ComplexMemPool`
| 200 | 15,390,986.00 | 64.97 | 0.2% | 63,904,254.00 | 47,731,705.00 | 1.339 | 0.17 | `ComplexMemPool`
| 400 | 69,394,711.00 | 14.41 | 0.1% | 272,602,461.00 | 219,014,691.00 | 1.245 | 0.76 | `ComplexMemPool`
| 600 | 168,977,165.00 | 5.92 | 0.1% | 639,108,082.00 | 535,316,887.00 | 1.194 | 1.86 | `ComplexMemPool`
| 800 | 310,109,077.00 | 3.22 | 0.1% |1,149,134,246.00 | 984,620,812.00 | 1.167 | 3.41 | `ComplexMemPool`
| coefficient | err% | complexity
|--------------:|-------:|------------
| 4.78486e-07 | 4.5% | O(n^2)
| 6.38557e-10 | 21.7% | O(n^3)
| 3.42338e-05 | 38.0% | O(n log n)
| 0.000313914 | 46.9% | O(n)
| 0.0129823 | 114.4% | O(log n)
| 0.0815055 | 133.8% | O(1)
The best fitting curve is O(n^2), so the algorithm seems to scale
quadratic with `childTxs` in the range 25 to 800.
2020-06-13 03:37:27 -04:00
|
|
|
BigO::RangeMeasure BigO::collectRangeMeasure(std::vector<Result> const& results) {
|
|
|
|
BigO::RangeMeasure rangeMeasure;
|
|
|
|
for (auto const& result : results) {
|
|
|
|
if (result.config().mComplexityN > 0.0) {
|
|
|
|
rangeMeasure.emplace_back(result.config().mComplexityN, result.median(Result::Measure::elapsed));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return rangeMeasure;
|
|
|
|
}
|
|
|
|
|
|
|
|
BigO::BigO(std::string const& bigOName, RangeMeasure const& rangeMeasure)
|
|
|
|
: mName(bigOName) {
|
|
|
|
|
|
|
|
// estimate the constant factor
|
|
|
|
double sumRangeMeasure = 0.0;
|
|
|
|
double sumRangeRange = 0.0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < rangeMeasure.size(); ++i) {
|
|
|
|
sumRangeMeasure += rangeMeasure[i].first * rangeMeasure[i].second;
|
|
|
|
sumRangeRange += rangeMeasure[i].first * rangeMeasure[i].first;
|
|
|
|
}
|
|
|
|
mConstant = sumRangeMeasure / sumRangeRange;
|
|
|
|
|
|
|
|
// calculate root mean square
|
|
|
|
double err = 0.0;
|
|
|
|
double sumMeasure = 0.0;
|
|
|
|
for (size_t i = 0; i < rangeMeasure.size(); ++i) {
|
|
|
|
auto diff = mConstant * rangeMeasure[i].first - rangeMeasure[i].second;
|
|
|
|
err += diff * diff;
|
|
|
|
|
|
|
|
sumMeasure += rangeMeasure[i].second;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto n = static_cast<double>(rangeMeasure.size());
|
|
|
|
auto mean = sumMeasure / n;
|
|
|
|
mNormalizedRootMeanSquare = std::sqrt(err / n) / mean;
|
|
|
|
}
|
|
|
|
|
|
|
|
BigO::BigO(const char* bigOName, RangeMeasure const& rangeMeasure)
|
|
|
|
: BigO(std::string(bigOName), rangeMeasure) {}
|
|
|
|
|
|
|
|
std::string const& BigO::name() const noexcept {
|
|
|
|
return mName;
|
|
|
|
}
|
|
|
|
|
|
|
|
double BigO::constant() const noexcept {
|
|
|
|
return mConstant;
|
|
|
|
}
|
|
|
|
|
|
|
|
double BigO::normalizedRootMeanSquare() const noexcept {
|
|
|
|
return mNormalizedRootMeanSquare;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BigO::operator<(BigO const& other) const noexcept {
|
|
|
|
return std::tie(mNormalizedRootMeanSquare, mName) < std::tie(other.mNormalizedRootMeanSquare, other.mName);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, BigO const& bigO) {
|
|
|
|
return os << bigO.constant() << " * " << bigO.name() << ", rms=" << bigO.normalizedRootMeanSquare();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, std::vector<ankerl::nanobench::BigO> const& bigOs) {
|
|
|
|
detail::fmt::StreamStateRestorer restorer(os);
|
|
|
|
os << std::endl << "| coefficient | err% | complexity" << std::endl << "|--------------:|-------:|------------" << std::endl;
|
|
|
|
for (auto const& bigO : bigOs) {
|
|
|
|
os << "|" << std::setw(14) << std::setprecision(7) << std::scientific << bigO.constant() << " ";
|
|
|
|
os << "|" << detail::fmt::Number(6, 1, bigO.normalizedRootMeanSquare() * 100.0) << "% ";
|
|
|
|
os << "| " << bigO.name();
|
|
|
|
os << std::endl;
|
|
|
|
}
|
|
|
|
return os;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace nanobench
|
|
|
|
} // namespace ankerl
|
|
|
|
|
|
|
|
#endif // ANKERL_NANOBENCH_IMPLEMENT
|
|
|
|
#endif // ANKERL_NANOBENCH_H_INCLUDED
|