bitcoin/src/field_5x52_impl.h

199 lines
6 KiB
C
Raw Normal View History

2013-05-09 09:24:32 -04:00
// Copyright (c) 2013 Pieter Wuille
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
2014-01-18 00:52:33 -03:00
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
2013-03-30 17:49:09 -03:00
#include <assert.h>
2013-03-30 18:32:16 -03:00
#include <string.h>
#include "num.h"
#include "field.h"
2013-03-30 17:49:09 -03:00
2013-04-06 19:37:06 -03:00
#if defined(USE_FIELD_5X52_ASM)
#include "field_5x52_asm_impl.h"
2013-04-06 19:37:06 -03:00
#elif defined(USE_FIELD_5X52_INT128)
#include "field_5x52_int128_impl.h"
2013-04-06 19:37:06 -03:00
#else
#error "Please select field_5x52 implementation"
2013-03-30 17:49:09 -03:00
#endif
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
* output.
*/
2013-04-06 17:31:02 -03:00
void static secp256k1_fe_inner_start(void) {}
void static secp256k1_fe_inner_stop(void) {}
2013-03-30 18:32:16 -03:00
void static secp256k1_fe_normalize(secp256k1_fe_t *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
// Reduce t4 at the start so there will be at most a single carry from the first pass
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
// The first pass ensures the magnitude is 1, ...
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
// ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element)
assert(t4 >> 49 == 0);
// At most a single final reduction is needed; check if the value is >= the field characteristic
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL)
& ((t3 & t2 & t1) == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
// Apply the final reduction (for constant-time behaviour, we do it always)
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
// If t4 didn't carry to bit 48 already, then it should have after any final reduction
assert(t4 >> 48 == x);
// Mask off the possible multiple of 2^256 from the final reduction
t4 &= 0x0FFFFFFFFFFFFULL;
2013-03-30 18:32:16 -03:00
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
2013-03-30 17:49:09 -03:00
void static inline secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
2013-03-30 18:32:16 -03:00
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
2013-03-30 17:49:09 -03:00
#endif
}
2013-03-30 18:32:16 -03:00
// TODO: not constant time!
int static inline secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
2013-03-30 18:32:16 -03:00
#ifdef VERIFY
assert(a->normalized);
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 18:32:16 -03:00
return (a->n[0] == 0 && a->n[1] == 0 && a->n[2] == 0 && a->n[3] == 0 && a->n[4] == 0);
2013-03-30 17:49:09 -03:00
}
int static inline secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
2013-03-30 18:32:16 -03:00
#ifdef VERIFY
assert(a->normalized);
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 18:32:16 -03:00
return a->n[0] & 1;
2013-03-30 17:49:09 -03:00
}
2013-03-30 18:32:16 -03:00
// TODO: not constant time!
int static inline secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
2013-03-30 18:32:16 -03:00
#ifdef VERIFY
assert(a->normalized);
assert(b->normalized);
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 18:32:16 -03:00
return (a->n[0] == b->n[0] && a->n[1] == b->n[1] && a->n[2] == b->n[2] && a->n[3] == b->n[3] && a->n[4] == b->n[4]);
}
void static secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
2013-03-30 17:49:09 -03:00
for (int i=0; i<32; i++) {
for (int j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
2013-03-30 18:32:16 -03:00
r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
2013-03-30 17:49:09 -03:00
}
}
2013-03-30 18:32:16 -03:00
#ifdef VERIFY
r->magnitude = 1;
2013-04-01 02:52:58 -03:00
r->normalized = 1;
2013-03-30 18:32:16 -03:00
#endif
2013-03-30 17:49:09 -03:00
}
2013-03-30 18:32:16 -03:00
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
void static secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->normalized);
#endif
2013-03-30 17:49:09 -03:00
for (int i=0; i<32; i++) {
2013-03-30 18:32:16 -03:00
int c = 0;
2013-03-30 17:49:09 -03:00
for (int j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
2013-03-30 18:32:16 -03:00
c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
2013-03-30 17:49:09 -03:00
}
2013-03-30 18:32:16 -03:00
r[31-i] = c;
2013-03-30 17:49:09 -03:00
}
}
void static inline secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
2013-03-30 18:32:16 -03:00
#ifdef VERIFY
assert(a->magnitude <= m);
r->magnitude = m + 1;
r->normalized = 0;
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 18:32:16 -03:00
r->n[0] = 0xFFFFEFFFFFC2FULL * (m + 1) - a->n[0];
r->n[1] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[1];
r->n[2] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[2];
r->n[3] = 0xFFFFFFFFFFFFFULL * (m + 1) - a->n[3];
r->n[4] = 0x0FFFFFFFFFFFFULL * (m + 1) - a->n[4];
2013-03-30 17:49:09 -03:00
}
void static inline secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
2013-03-30 18:32:16 -03:00
#ifdef VERIFY
r->magnitude *= a;
2013-04-01 02:52:58 -03:00
r->normalized = 0;
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 18:32:16 -03:00
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
2013-03-30 17:49:09 -03:00
}
void static inline secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
2013-03-30 18:32:16 -03:00
#ifdef VERIFY
r->magnitude += a->magnitude;
r->normalized = 0;
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 18:32:16 -03:00
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
2013-03-30 17:49:09 -03:00
}
2013-03-30 18:32:16 -03:00
void static secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
#ifdef VERIFY
assert(a->magnitude <= 8);
assert(b->magnitude <= 8);
r->magnitude = 1;
r->normalized = 0;
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 23:37:15 -03:00
secp256k1_fe_mul_inner(a->n, b->n, r->n);
2013-03-30 17:49:09 -03:00
}
2013-03-30 18:32:16 -03:00
void static secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#ifdef VERIFY
assert(a->magnitude <= 8);
r->magnitude = 1;
r->normalized = 0;
2013-03-30 17:49:09 -03:00
#endif
2013-03-30 23:37:15 -03:00
secp256k1_fe_sqr_inner(a->n, r->n);
2013-03-30 17:49:09 -03:00
}
#endif