bitcoin/src/span.h

252 lines
11 KiB
C
Raw Normal View History

// Copyright (c) 2018-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SPAN_H
#define BITCOIN_SPAN_H
#include <type_traits>
#include <cstddef>
#include <algorithm>
#include <assert.h>
#ifdef DEBUG
#define CONSTEXPR_IF_NOT_DEBUG
#define ASSERT_IF_DEBUG(x) assert((x))
#else
#define CONSTEXPR_IF_NOT_DEBUG constexpr
#define ASSERT_IF_DEBUG(x)
#endif
#if defined(__clang__)
#if __has_attribute(lifetimebound)
#define SPAN_ATTR_LIFETIMEBOUND [[clang::lifetimebound]]
#else
#define SPAN_ATTR_LIFETIMEBOUND
#endif
#else
#define SPAN_ATTR_LIFETIMEBOUND
#endif
/** A Span is an object that can refer to a contiguous sequence of objects.
*
* It implements a subset of C++20's std::span.
2020-06-23 22:04:46 -04:00
*
* Things to be aware of when writing code that deals with Spans:
*
* - Similar to references themselves, Spans are subject to reference lifetime
* issues. The user is responsible for making sure the objects pointed to by
* a Span live as long as the Span is used. For example:
*
* std::vector<int> vec{1,2,3,4};
* Span<int> sp(vec);
* vec.push_back(5);
* printf("%i\n", sp.front()); // UB!
*
* may exhibit undefined behavior, as increasing the size of a vector may
* invalidate references.
*
* - One particular pitfall is that Spans can be constructed from temporaries,
* but this is unsafe when the Span is stored in a variable, outliving the
* temporary. For example, this will compile, but exhibits undefined behavior:
*
* Span<const int> sp(std::vector<int>{1, 2, 3});
* printf("%i\n", sp.front()); // UB!
*
* The lifetime of the vector ends when the statement it is created in ends.
* Thus the Span is left with a dangling reference, and using it is undefined.
*
* - Due to Span's automatic creation from range-like objects (arrays, and data
* types that expose a data() and size() member function), functions that
* accept a Span as input parameter can be called with any compatible
* range-like object. For example, this works:
*
* void Foo(Span<const int> arg);
*
* Foo(std::vector<int>{1, 2, 3}); // Works
*
* This is very useful in cases where a function truly does not care about the
* container, and only about having exactly a range of elements. However it
* may also be surprising to see automatic conversions in this case.
*
* When a function accepts a Span with a mutable element type, it will not
* accept temporaries; only variables or other references. For example:
*
* void FooMut(Span<int> arg);
*
* FooMut(std::vector<int>{1, 2, 3}); // Does not compile
* std::vector<int> baz{1, 2, 3};
* FooMut(baz); // Works
*
* This is similar to how functions that take (non-const) lvalue references
* as input cannot accept temporaries. This does not work either:
*
* void FooVec(std::vector<int>& arg);
* FooVec(std::vector<int>{1, 2, 3}); // Does not compile
*
* The idea is that if a function accepts a mutable reference, a meaningful
* result will be present in that variable after the call. Passing a temporary
* is useless in that context.
*/
template<typename C>
class Span
{
C* m_data;
std::size_t m_size;
template <class T>
struct is_Span_int : public std::false_type {};
template <class T>
struct is_Span_int<Span<T>> : public std::true_type {};
template <class T>
struct is_Span : public is_Span_int<typename std::remove_cv<T>::type>{};
public:
constexpr Span() noexcept : m_data(nullptr), m_size(0) {}
/** Construct a span from a begin pointer and a size.
*
* This implements a subset of the iterator-based std::span constructor in C++20,
* which is hard to implement without std::address_of.
*/
template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
constexpr Span(T* begin, std::size_t size) noexcept : m_data(begin), m_size(size) {}
/** Construct a span from a begin and end pointer.
*
* This implements a subset of the iterator-based std::span constructor in C++20,
* which is hard to implement without std::address_of.
*/
template <typename T, typename std::enable_if<std::is_convertible<T (*)[], C (*)[]>::value, int>::type = 0>
CONSTEXPR_IF_NOT_DEBUG Span(T* begin, T* end) noexcept : m_data(begin), m_size(end - begin)
{
ASSERT_IF_DEBUG(end >= begin);
}
/** Implicit conversion of spans between compatible types.
*
* Specifically, if a pointer to an array of type O can be implicitly converted to a pointer to an array of type
* C, then permit implicit conversion of Span<O> to Span<C>. This matches the behavior of the corresponding
* C++20 std::span constructor.
*
* For example this means that a Span<T> can be converted into a Span<const T>.
*/
template <typename O, typename std::enable_if<std::is_convertible<O (*)[], C (*)[]>::value, int>::type = 0>
constexpr Span(const Span<O>& other) noexcept : m_data(other.m_data), m_size(other.m_size) {}
/** Default copy constructor. */
constexpr Span(const Span&) noexcept = default;
/** Default assignment operator. */
Span& operator=(const Span& other) noexcept = default;
/** Construct a Span from an array. This matches the corresponding C++20 std::span constructor. */
template <int N>
constexpr Span(C (&a)[N]) noexcept : m_data(a), m_size(N) {}
/** Construct a Span for objects with .data() and .size() (std::string, std::array, std::vector, ...).
*
* This implements a subset of the functionality provided by the C++20 std::span range-based constructor.
*
* To prevent surprises, only Spans for constant value types are supported when passing in temporaries.
* Note that this restriction does not exist when converting arrays or other Spans (see above).
*/
template <typename V>
constexpr Span(V& other SPAN_ATTR_LIFETIMEBOUND,
typename std::enable_if<!is_Span<V>::value &&
std::is_convertible<typename std::remove_pointer<decltype(std::declval<V&>().data())>::type (*)[], C (*)[]>::value &&
std::is_convertible<decltype(std::declval<V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
: m_data(other.data()), m_size(other.size()){}
template <typename V>
constexpr Span(const V& other SPAN_ATTR_LIFETIMEBOUND,
typename std::enable_if<!is_Span<V>::value &&
std::is_convertible<typename std::remove_pointer<decltype(std::declval<const V&>().data())>::type (*)[], C (*)[]>::value &&
std::is_convertible<decltype(std::declval<const V&>().size()), std::size_t>::value, std::nullptr_t>::type = nullptr)
: m_data(other.data()), m_size(other.size()){}
constexpr C* data() const noexcept { return m_data; }
constexpr C* begin() const noexcept { return m_data; }
constexpr C* end() const noexcept { return m_data + m_size; }
CONSTEXPR_IF_NOT_DEBUG C& front() const noexcept
{
ASSERT_IF_DEBUG(size() > 0);
return m_data[0];
}
CONSTEXPR_IF_NOT_DEBUG C& back() const noexcept
{
ASSERT_IF_DEBUG(size() > 0);
return m_data[m_size - 1];
}
constexpr std::size_t size() const noexcept { return m_size; }
constexpr bool empty() const noexcept { return size() == 0; }
CONSTEXPR_IF_NOT_DEBUG C& operator[](std::size_t pos) const noexcept
{
ASSERT_IF_DEBUG(size() > pos);
return m_data[pos];
}
CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset) const noexcept
{
ASSERT_IF_DEBUG(size() >= offset);
return Span<C>(m_data + offset, m_size - offset);
}
CONSTEXPR_IF_NOT_DEBUG Span<C> subspan(std::size_t offset, std::size_t count) const noexcept
{
ASSERT_IF_DEBUG(size() >= offset + count);
return Span<C>(m_data + offset, count);
}
CONSTEXPR_IF_NOT_DEBUG Span<C> first(std::size_t count) const noexcept
{
ASSERT_IF_DEBUG(size() >= count);
return Span<C>(m_data, count);
}
CONSTEXPR_IF_NOT_DEBUG Span<C> last(std::size_t count) const noexcept
{
ASSERT_IF_DEBUG(size() >= count);
return Span<C>(m_data + m_size - count, count);
}
friend constexpr bool operator==(const Span& a, const Span& b) noexcept { return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin()); }
friend constexpr bool operator!=(const Span& a, const Span& b) noexcept { return !(a == b); }
friend constexpr bool operator<(const Span& a, const Span& b) noexcept { return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); }
friend constexpr bool operator<=(const Span& a, const Span& b) noexcept { return !(b < a); }
friend constexpr bool operator>(const Span& a, const Span& b) noexcept { return (b < a); }
friend constexpr bool operator>=(const Span& a, const Span& b) noexcept { return !(a < b); }
template <typename O> friend class Span;
};
// MakeSpan helps constructing a Span of the right type automatically.
/** MakeSpan for arrays: */
template <typename A, int N> Span<A> constexpr MakeSpan(A (&a)[N]) { return Span<A>(a, N); }
/** MakeSpan for temporaries / rvalue references, only supporting const output. */
template <typename V> constexpr auto MakeSpan(V&& v SPAN_ATTR_LIFETIMEBOUND) -> typename std::enable_if<!std::is_lvalue_reference<V>::value, Span<const typename std::remove_pointer<decltype(v.data())>::type>>::type { return std::forward<V>(v); }
/** MakeSpan for (lvalue) references, supporting mutable output. */
template <typename V> constexpr auto MakeSpan(V& v SPAN_ATTR_LIFETIMEBOUND) -> Span<typename std::remove_pointer<decltype(v.data())>::type> { return v; }
/** Pop the last element off a span, and return a reference to that element. */
template <typename T>
T& SpanPopBack(Span<T>& span)
{
size_t size = span.size();
ASSERT_IF_DEBUG(size > 0);
T& back = span[size - 1];
span = Span<T>(span.data(), size - 1);
return back;
}
// Helper functions to safely cast to unsigned char pointers.
inline unsigned char* UCharCast(char* c) { return (unsigned char*)c; }
inline unsigned char* UCharCast(unsigned char* c) { return c; }
inline const unsigned char* UCharCast(const char* c) { return (unsigned char*)c; }
inline const unsigned char* UCharCast(const unsigned char* c) { return c; }
// Helper function to safely convert a Span to a Span<[const] unsigned char>.
template <typename T> constexpr auto UCharSpanCast(Span<T> s) -> Span<typename std::remove_pointer<decltype(UCharCast(s.data()))>::type> { return {UCharCast(s.data()), s.size()}; }
/** Like MakeSpan, but for (const) unsigned char member types only. Only works for (un)signed char containers. */
template <typename V> constexpr auto MakeUCharSpan(V&& v) -> decltype(UCharSpanCast(MakeSpan(std::forward<V>(v)))) { return UCharSpanCast(MakeSpan(std::forward<V>(v))); }
#endif