bitcoin/src/net.h

1271 lines
46 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
2014-12-13 01:09:33 -03:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
#include <addrdb.h>
#include <addrman.h>
#include <amount.h>
#include <bloom.h>
#include <chainparams.h>
#include <compat.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <net_permissions.h>
#include <netaddress.h>
#include <optional.h>
#include <policy/feerate.h>
#include <protocol.h>
#include <random.h>
#include <span.h>
#include <streams.h>
#include <sync.h>
#include <threadinterrupt.h>
#include <uint256.h>
#include <util/check.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <deque>
#include <map>
#include <memory>
#include <thread>
#include <vector>
class CScheduler;
class CNode;
2017-10-05 17:40:43 -03:00
class BanMan;
struct bilingual_str;
/** Default for -whitelistrelay. */
static const bool DEFAULT_WHITELISTRELAY = true;
/** Default for -whitelistforcerelay. */
static const bool DEFAULT_WHITELISTFORCERELAY = false;
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
static const int TIMEOUT_INTERVAL = 20 * 60;
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
static const int FEELER_INTERVAL = 120;
/** Run the extra block-relay-only connection loop once every 5 minutes. **/
static const int EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 300;
/** The maximum number of addresses from our addrman to return in response to a getaddr message. */
static constexpr size_t MAX_ADDR_TO_SEND = 1000;
/** Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable). */
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 4 * 1000 * 1000;
/** Maximum length of the user agent string in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
/** Maximum number of automatic outgoing nodes over which we'll relay everything (blocks, tx, addrs, etc) */
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 01:39:26 -03:00
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** Maximum number of block-relay-only outgoing connections */
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
/** Maximum number of feeler connections */
static const int MAX_FEELER_CONNECTIONS = 1;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** The maximum number of peer connections to maintain. */
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
/** The default for -maxuploadtarget. 0 = Unlimited */
static constexpr uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
/** -peertimeout default */
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
/** Number of file descriptors required for message capture **/
static const int NUM_FDS_MESSAGE_CAPTURE = 1;
static const bool DEFAULT_FORCEDNSSEED = false;
static const bool DEFAULT_DNSSEED = true;
static const bool DEFAULT_FIXEDSEEDS = true;
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
typedef int64_t NodeId;
2016-05-06 15:50:24 -03:00
struct AddedNodeInfo
{
std::string strAddedNode;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
class CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg
{
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg&&) = default;
CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default;
// No copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg& msg) = delete;
CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete;
std::vector<unsigned char> data;
std::string m_type;
};
/** Different types of connections to a peer. This enum encapsulates the
* information we have available at the time of opening or accepting the
* connection. Aside from INBOUND, all types are initiated by us.
*
* If adding or removing types, please update CONNECTION_TYPE_DOC in
* src/rpc/net.cpp and src/qt/rpcconsole.cpp, as well as the descriptions in
* src/qt/guiutil.cpp and src/bitcoin-cli.cpp::NetinfoRequestHandler. */
enum class ConnectionType {
/**
* Inbound connections are those initiated by a peer. This is the only
* property we know at the time of connection, until P2P messages are
* exchanged.
*/
INBOUND,
/**
* These are the default connections that we use to connect with the
* network. There is no restriction on what is relayed; by default we relay
* blocks, addresses & transactions. We automatically attempt to open
* MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan.
*/
OUTBOUND_FULL_RELAY,
/**
* We open manual connections to addresses that users explicitly requested
* via the addnode RPC or the -addnode/-connect configuration options. Even if a
* manual connection is misbehaving, we do not automatically disconnect or
* add it to our discouragement filter.
*/
MANUAL,
/**
2020-09-15 04:29:20 -03:00
* Feeler connections are short-lived connections made to check that a node
* is alive. They can be useful for:
* - test-before-evict: if one of the peers is considered for eviction from
* our AddrMan because another peer is mapped to the same slot in the tried table,
* evict only if this longer-known peer is offline.
* - move node addresses from New to Tried table, so that we have more
* connectable addresses in our AddrMan.
* Note that in the literature ("Eclipse Attacks on Bitcoins Peer-to-Peer Network")
* only the latter feature is referred to as "feeler connections",
* although in our codebase feeler connections encompass test-before-evict as well.
* We make these connections approximately every FEELER_INTERVAL:
* first we resolve previously found collisions if they exist (test-before-evict),
* otherwise we connect to a node from the new table.
*/
FEELER,
/**
* We use block-relay-only connections to help prevent against partition
* attacks. By not relaying transactions or addresses, these connections
* are harder to detect by a third party, thus helping obfuscate the
* network topology. We automatically attempt to open
2020-06-05 02:38:09 -04:00
* MAX_BLOCK_RELAY_ONLY_ANCHORS using addresses from our anchors.dat. Then
* addresses from our AddrMan if MAX_BLOCK_RELAY_ONLY_CONNECTIONS
* isn't reached yet.
*/
BLOCK_RELAY,
/**
* AddrFetch connections are short lived connections used to solicit
* addresses from peers. These are initiated to addresses submitted via the
* -seednode command line argument, or under certain conditions when the
* AddrMan is empty.
*/
ADDR_FETCH,
};
/** Convert ConnectionType enum to a string value */
std::string ConnectionTypeAsString(ConnectionType conn_type);
void Discover();
uint16_t GetListenPort();
enum
{
LOCAL_NONE, // unknown
LOCAL_IF, // address a local interface listens on
LOCAL_BIND, // address explicit bound to
2020-02-22 20:34:13 -03:00
LOCAL_MAPPED, // address reported by UPnP or NAT-PMP
LOCAL_MANUAL, // address explicitly specified (-externalip=)
LOCAL_MAX
};
bool IsPeerAddrLocalGood(CNode *pnode);
void AdvertiseLocal(CNode *pnode);
/**
* Mark a network as reachable or unreachable (no automatic connects to it)
* @note Networks are reachable by default
*/
void SetReachable(enum Network net, bool reachable);
/** @returns true if the network is reachable, false otherwise */
bool IsReachable(enum Network net);
/** @returns true if the address is in a reachable network, false otherwise */
bool IsReachable(const CNetAddr& addr);
bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService& addr);
bool SeenLocal(const CService& addr);
bool IsLocal(const CService& addr);
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices);
extern bool fDiscover;
extern bool fListen;
/** Subversion as sent to the P2P network in `version` messages */
extern std::string strSubVersion;
struct LocalServiceInfo {
int nScore;
int nPort;
};
extern RecursiveMutex cs_mapLocalHost;
extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
extern const std::string NET_MESSAGE_COMMAND_OTHER;
typedef std::map<std::string, uint64_t> mapMsgCmdSize; //command, total bytes
class CNodeStats
{
public:
NodeId nodeid;
ServiceFlags nServices;
bool fRelayTxes;
int64_t nLastSend;
int64_t nLastRecv;
int64_t nLastTXTime;
int64_t nLastBlockTime;
int64_t nTimeConnected;
int64_t nTimeOffset;
std::string addrName;
int nVersion;
std::string cleanSubVer;
bool fInbound;
bool m_bip152_highbandwidth_to;
bool m_bip152_highbandwidth_from;
int m_starting_height;
uint64_t nSendBytes;
mapMsgCmdSize mapSendBytesPerMsgCmd;
uint64_t nRecvBytes;
mapMsgCmdSize mapRecvBytesPerMsgCmd;
NetPermissionFlags m_permissionFlags;
int64_t m_ping_usec;
int64_t m_ping_wait_usec;
int64_t m_min_ping_usec;
CAmount minFeeFilter;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
// Network the peer connected through
Network m_network;
uint32_t m_mapped_as;
ConnectionType m_conn_type;
};
/** Transport protocol agnostic message container.
* Ideally it should only contain receive time, payload,
* command and size.
*/
class CNetMessage {
public:
CDataStream m_recv; //!< received message data
std::chrono::microseconds m_time{0}; //!< time of message receipt
uint32_t m_message_size{0}; //!< size of the payload
uint32_t m_raw_message_size{0}; //!< used wire size of the message (including header/checksum)
std::string m_command;
2017-01-14 21:00:00 -03:00
CNetMessage(CDataStream&& recv_in) : m_recv(std::move(recv_in)) {}
void SetVersion(int nVersionIn)
{
m_recv.SetVersion(nVersionIn);
}
};
/** The TransportDeserializer takes care of holding and deserializing the
* network receive buffer. It can deserialize the network buffer into a
* transport protocol agnostic CNetMessage (command & payload)
*/
class TransportDeserializer {
public:
// returns true if the current deserialization is complete
virtual bool Complete() const = 0;
// set the serialization context version
virtual void SetVersion(int version) = 0;
/** read and deserialize data, advances msg_bytes data pointer */
virtual int Read(Span<const uint8_t>& msg_bytes) = 0;
// decomposes a message from the context
virtual Optional<CNetMessage> GetMessage(std::chrono::microseconds time, uint32_t& out_err) = 0;
virtual ~TransportDeserializer() {}
};
class V1TransportDeserializer final : public TransportDeserializer
{
private:
const CChainParams& m_chain_params;
const NodeId m_node_id; // Only for logging
mutable CHash256 hasher;
mutable uint256 data_hash;
bool in_data; // parsing header (false) or data (true)
CDataStream hdrbuf; // partially received header
CMessageHeader hdr; // complete header
CDataStream vRecv; // received message data
unsigned int nHdrPos;
unsigned int nDataPos;
2016-04-17 21:20:34 -03:00
const uint256& GetMessageHash() const;
int readHeader(Span<const uint8_t> msg_bytes);
int readData(Span<const uint8_t> msg_bytes);
2016-04-17 21:20:34 -03:00
void Reset() {
vRecv.clear();
hdrbuf.clear();
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
data_hash.SetNull();
hasher.Reset();
}
public:
V1TransportDeserializer(const CChainParams& chain_params, const NodeId node_id, int nTypeIn, int nVersionIn)
: m_chain_params(chain_params),
m_node_id(node_id),
hdrbuf(nTypeIn, nVersionIn),
vRecv(nTypeIn, nVersionIn)
{
Reset();
}
bool Complete() const override
{
if (!in_data)
return false;
return (hdr.nMessageSize == nDataPos);
}
void SetVersion(int nVersionIn) override
{
hdrbuf.SetVersion(nVersionIn);
vRecv.SetVersion(nVersionIn);
}
int Read(Span<const uint8_t>& msg_bytes) override
{
int ret = in_data ? readData(msg_bytes) : readHeader(msg_bytes);
if (ret < 0) {
Reset();
} else {
msg_bytes = msg_bytes.subspan(ret);
}
return ret;
}
Optional<CNetMessage> GetMessage(std::chrono::microseconds time, uint32_t& out_err_raw_size) override;
};
/** The TransportSerializer prepares messages for the network transport
*/
class TransportSerializer {
public:
// prepare message for transport (header construction, error-correction computation, payload encryption, etc.)
virtual void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) = 0;
virtual ~TransportSerializer() {}
};
class V1TransportSerializer : public TransportSerializer {
public:
void prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) override;
};
/** Information about a peer */
class CNode
{
friend class CConnman;
friend struct ConnmanTestMsg;
public:
std::unique_ptr<TransportDeserializer> m_deserializer;
std::unique_ptr<TransportSerializer> m_serializer;
NetPermissionFlags m_permissionFlags{PF_NONE};
std::atomic<ServiceFlags> nServices{NODE_NONE};
SOCKET hSocket GUARDED_BY(cs_hSocket);
/** Total size of all vSendMsg entries */
size_t nSendSize GUARDED_BY(cs_vSend){0};
/** Offset inside the first vSendMsg already sent */
size_t nSendOffset GUARDED_BY(cs_vSend){0};
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
std::deque<std::vector<unsigned char>> vSendMsg GUARDED_BY(cs_vSend);
Mutex cs_vSend;
Mutex cs_hSocket;
Mutex cs_vRecv;
RecursiveMutex cs_vProcessMsg;
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
size_t nProcessQueueSize{0};
RecursiveMutex cs_sendProcessing;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<int64_t> nLastSend{0};
std::atomic<int64_t> nLastRecv{0};
const int64_t nTimeConnected;
std::atomic<int64_t> nTimeOffset{0};
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
std::atomic<int> nVersion{0};
RecursiveMutex cs_SubVer;
/**
* cleanSubVer is a sanitized string of the user agent byte array we read
* from the wire. This cleaned string can safely be logged or displayed.
*/
std::string cleanSubVer GUARDED_BY(cs_SubVer){};
bool m_prefer_evict{false}; // This peer is preferred for eviction.
bool HasPermission(NetPermissionFlags permission) const {
return NetPermissions::HasFlag(m_permissionFlags, permission);
}
bool fClient{false}; // set by version message
bool m_limited_node{false}; //after BIP159, set by version message
/**
* Whether the peer has signaled support for receiving ADDRv2 (BIP155)
* messages, implying a preference to receive ADDRv2 instead of ADDR ones.
*/
std::atomic_bool m_wants_addrv2{false};
/** fSuccessfullyConnected is set to true on receiving VERACK from the peer. */
std::atomic_bool fSuccessfullyConnected{false};
// Setting fDisconnect to true will cause the node to be disconnected the
// next time DisconnectNodes() runs
std::atomic_bool fDisconnect{false};
bool fSentAddr{false};
CSemaphoreGrant grantOutbound;
std::atomic<int> nRefCount{0};
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
bool IsOutboundOrBlockRelayConn() const {
switch (m_conn_type) {
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
return true;
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::ADDR_FETCH:
case ConnectionType::FEELER:
return false;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool IsFullOutboundConn() const {
return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY;
}
bool IsManualConn() const {
return m_conn_type == ConnectionType::MANUAL;
}
bool IsBlockOnlyConn() const {
return m_conn_type == ConnectionType::BLOCK_RELAY;
}
bool IsFeelerConn() const {
return m_conn_type == ConnectionType::FEELER;
}
bool IsAddrFetchConn() const {
return m_conn_type == ConnectionType::ADDR_FETCH;
}
bool IsInboundConn() const {
return m_conn_type == ConnectionType::INBOUND;
}
/* Whether we send addr messages over this connection */
bool RelayAddrsWithConn() const
{
// Don't relay addr messages to peers that we connect to as block-relay-only
// peers (to prevent adversaries from inferring these links from addr
// traffic).
return m_conn_type != ConnectionType::BLOCK_RELAY;
}
bool ExpectServicesFromConn() const {
switch (m_conn_type) {
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
case ConnectionType::FEELER:
return false;
case ConnectionType::OUTBOUND_FULL_RELAY:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH:
return true;
} // no default case, so the compiler can warn about missing cases
assert(false);
}
/**
* Get network the peer connected through.
*
* Returns Network::NET_ONION for *inbound* onion connections,
* and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly
* because it doesn't detect the former, and it's not the responsibility of
* the CNetAddr class to know the actual network a peer is connected through.
*
* @return network the peer connected through.
*/
Network ConnectedThroughNetwork() const;
// We selected peer as (compact blocks) high-bandwidth peer (BIP152)
std::atomic<bool> m_bip152_highbandwidth_to{false};
// Peer selected us as (compact blocks) high-bandwidth peer (BIP152)
std::atomic<bool> m_bip152_highbandwidth_from{false};
// flood relay
std::vector<CAddress> vAddrToSend;
std::unique_ptr<CRollingBloomFilter> m_addr_known{nullptr};
bool fGetAddr{false};
std::chrono::microseconds m_next_addr_send GUARDED_BY(cs_sendProcessing){0};
std::chrono::microseconds m_next_local_addr_send GUARDED_BY(cs_sendProcessing){0};
struct TxRelay {
mutable RecursiveMutex cs_filter;
// We use fRelayTxes for two purposes -
// a) it allows us to not relay tx invs before receiving the peer's version message
// b) the peer may tell us in its version message that we should not relay tx invs
// unless it loads a bloom filter.
bool fRelayTxes GUARDED_BY(cs_filter){false};
std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter) GUARDED_BY(cs_filter){nullptr};
mutable RecursiveMutex cs_tx_inventory;
CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){50000, 0.000001};
// Set of transaction ids we still have to announce.
// They are sorted by the mempool before relay, so the order is not important.
std::set<uint256> setInventoryTxToSend;
// Used for BIP35 mempool sending
bool fSendMempool GUARDED_BY(cs_tx_inventory){false};
// Last time a "MEMPOOL" request was serviced.
std::atomic<std::chrono::seconds> m_last_mempool_req{0s};
std::chrono::microseconds nNextInvSend{0};
2020-04-29 15:29:40 -04:00
/** Minimum fee rate with which to filter inv's to this node */
std::atomic<CAmount> minFeeFilter{0};
CAmount lastSentFeeFilter{0};
int64_t nextSendTimeFeeFilter{0};
};
// m_tx_relay == nullptr if we're not relaying transactions with this peer
std::unique_ptr<TxRelay> m_tx_relay;
/** UNIX epoch time of the last block received from this peer that we had
* not yet seen (e.g. not already received from another peer), that passed
* preliminary validity checks and was saved to disk, even if we don't
* connect the block or it eventually fails connection. Used as an inbound
* peer eviction criterium in CConnman::AttemptToEvictConnection. */
std::atomic<int64_t> nLastBlockTime{0};
2012-02-12 09:45:24 -03:00
/** UNIX epoch time of the last transaction received from this peer that we
* had not yet seen (e.g. not already received from another peer) and that
* was accepted into our mempool. Used as an inbound peer eviction criterium
* in CConnman::AttemptToEvictConnection. */
std::atomic<int64_t> nLastTXTime{0};
// Ping time measurement:
// The pong reply we're expecting, or 0 if no pong expected.
std::atomic<uint64_t> nPingNonceSent{0};
/** When the last ping was sent, or 0 if no ping was ever sent */
std::atomic<std::chrono::microseconds> m_ping_start{0us};
// Last measured round-trip time.
std::atomic<int64_t> nPingUsecTime{0};
// Best measured round-trip time.
std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
// Whether a ping is requested.
std::atomic<bool> fPingQueued{false};
CNode(NodeId id, ServiceFlags nLocalServicesIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress& addrBindIn, const std::string& addrNameIn, ConnectionType conn_type_in, bool inbound_onion = false);
~CNode();
CNode(const CNode&) = delete;
CNode& operator=(const CNode&) = delete;
2012-02-12 09:45:24 -03:00
NodeId GetId() const {
return id;
}
uint64_t GetLocalNonce() const {
return nLocalHostNonce;
}
int GetRefCount() const
{
assert(nRefCount >= 0);
return nRefCount;
}
/**
* Receive bytes from the buffer and deserialize them into messages.
*
* @param[in] msg_bytes The raw data
* @param[out] complete Set True if at least one message has been
* deserialized and is ready to be processed
* @return True if the peer should stay connected,
* False if the peer should be disconnected from.
*/
bool ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete);
void SetCommonVersion(int greatest_common_version)
{
Assume(m_greatest_common_version == INIT_PROTO_VERSION);
m_greatest_common_version = greatest_common_version;
}
int GetCommonVersion() const
{
return m_greatest_common_version;
}
CService GetAddrLocal() const;
//! May not be called more than once
void SetAddrLocal(const CService& addrLocalIn);
CNode* AddRef()
{
nRefCount++;
return this;
}
void Release()
{
nRefCount--;
}
void AddAddressKnown(const CAddress& _addr)
{
assert(m_addr_known);
m_addr_known->insert(_addr.GetKey());
}
/**
* Whether the peer supports the address. For example, a peer that does not
* implement BIP155 cannot receive Tor v3 addresses because it requires
* ADDRv2 (BIP155) encoding.
*/
bool IsAddrCompatible(const CAddress& addr) const
{
return m_wants_addrv2 || addr.IsAddrV1Compatible();
}
void PushAddress(const CAddress& _addr, FastRandomContext &insecure_rand)
{
// Known checking here is only to save space from duplicates.
// SendMessages will filter it again for knowns that were added
// after addresses were pushed.
assert(m_addr_known);
if (_addr.IsValid() && !m_addr_known->contains(_addr.GetKey()) && IsAddrCompatible(_addr)) {
if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] = _addr;
} else {
vAddrToSend.push_back(_addr);
}
}
}
void AddKnownTx(const uint256& hash)
{
if (m_tx_relay != nullptr) {
LOCK(m_tx_relay->cs_tx_inventory);
m_tx_relay->filterInventoryKnown.insert(hash);
}
}
void PushTxInventory(const uint256& hash)
2020-09-30 12:08:26 -03:00
{
if (m_tx_relay == nullptr) return;
LOCK(m_tx_relay->cs_tx_inventory);
if (!m_tx_relay->filterInventoryKnown.contains(hash)) {
m_tx_relay->setInventoryTxToSend.insert(hash);
2020-09-30 12:08:26 -03:00
}
}
void CloseSocketDisconnect();
void copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap);
ServiceFlags GetLocalServices() const
{
return nLocalServices;
}
std::string GetAddrName() const;
//! Sets the addrName only if it was not previously set
void MaybeSetAddrName(const std::string& addrNameIn);
std::string ConnectionTypeAsString() const { return ::ConnectionTypeAsString(m_conn_type); }
/** Whether this peer is an inbound onion, e.g. connected via our Tor onion service. */
bool IsInboundOnion() const { return m_inbound_onion; }
private:
const NodeId id;
const uint64_t nLocalHostNonce;
const ConnectionType m_conn_type;
std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION};
//! Services offered to this peer.
//!
//! This is supplied by the parent CConnman during peer connection
//! (CConnman::ConnectNode()) from its attribute of the same name.
//!
//! This is const because there is no protocol defined for renegotiating
//! services initially offered to a peer. The set of local services we
//! offer should not change after initialization.
//!
//! An interesting example of this is NODE_NETWORK and initial block
//! download: a node which starts up from scratch doesn't have any blocks
//! to serve, but still advertises NODE_NETWORK because it will eventually
//! fulfill this role after IBD completes. P2P code is written in such a
//! way that it can gracefully handle peers who don't make good on their
//! service advertisements.
const ServiceFlags nLocalServices;
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
mutable RecursiveMutex cs_addrName;
std::string addrName GUARDED_BY(cs_addrName);
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(cs_addrLocal);
mutable RecursiveMutex cs_addrLocal;
//! Whether this peer is an inbound onion, e.g. connected via our Tor onion service.
const bool m_inbound_onion{false};
mapMsgCmdSize mapSendBytesPerMsgCmd GUARDED_BY(cs_vSend);
mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
};
/**
* Interface for message handling
2019-08-07 09:56:24 -04:00
*/
class NetEventsInterface
{
2019-08-07 09:56:24 -04:00
public:
/** Initialize a peer (setup state, queue any initial messages) */
virtual void InitializeNode(CNode* pnode) = 0;
/** Handle removal of a peer (clear state) */
virtual void FinalizeNode(const CNode& node, bool& update_connection_time) = 0;
2019-08-07 09:56:24 -04:00
/**
* Process protocol messages received from a given node
*
* @param[in] pnode The node which we have received messages from.
* @param[in] interrupt Interrupt condition for processing threads
* @return True if there is more work to be done
*/
virtual bool ProcessMessages(CNode* pnode, std::atomic<bool>& interrupt) = 0;
/**
* Send queued protocol messages to a given node.
*
* @param[in] pnode The node which we are sending messages to.
* @return True if there is more work to be done
*/
virtual bool SendMessages(CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_sendProcessing) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived classes.
* If that restriction is no longer desired, this should be made public and virtual.
*/
~NetEventsInterface() = default;
2019-08-07 09:56:24 -04:00
};
class CConnman
{
public:
enum NumConnections {
CONNECTIONS_NONE = 0,
CONNECTIONS_IN = (1U << 0),
CONNECTIONS_OUT = (1U << 1),
CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
};
struct Options
{
ServiceFlags nLocalServices = NODE_NONE;
int nMaxConnections = 0;
int m_max_outbound_full_relay = 0;
int m_max_outbound_block_relay = 0;
int nMaxAddnode = 0;
int nMaxFeeler = 0;
CClientUIInterface* uiInterface = nullptr;
NetEventsInterface* m_msgproc = nullptr;
BanMan* m_banman = nullptr;
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundLimit = 0;
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
std::vector<std::string> vSeedNodes;
std::vector<NetWhitelistPermissions> vWhitelistedRange;
std::vector<NetWhitebindPermissions> vWhiteBinds;
std::vector<CService> vBinds;
std::vector<CService> onion_binds;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
std::vector<bool> m_asmap;
};
void Init(const Options& connOptions) {
nLocalServices = connOptions.nLocalServices;
nMaxConnections = connOptions.nMaxConnections;
m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections);
m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay;
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
nMaxAddnode = connOptions.nMaxAddnode;
nMaxFeeler = connOptions.nMaxFeeler;
m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler;
clientInterface = connOptions.uiInterface;
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
m_peer_connect_timeout = connOptions.m_peer_connect_timeout;
{
LOCK(cs_totalBytesSent);
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
vWhitelistedRange = connOptions.vWhitelistedRange;
{
LOCK(cs_vAddedNodes);
vAddedNodes = connOptions.m_added_nodes;
}
m_onion_binds = connOptions.onion_binds;
}
CConnman(uint64_t seed0, uint64_t seed1, bool network_active = true);
~CConnman();
bool Start(CScheduler& scheduler, const Options& options);
void StopThreads();
void StopNodes();
void Stop()
{
StopThreads();
StopNodes();
};
void Interrupt();
bool GetNetworkActive() const { return fNetworkActive; };
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
void SetNetworkActive(bool active);
void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant* grantOutbound, const char* strDest, ConnectionType conn_type);
bool CheckIncomingNonce(uint64_t nonce);
bool ForNode(NodeId id, std::function<bool(CNode* pnode)> func);
void PushMessage(CNode* pnode, CSerializedNetMsg&& msg);
using NodeFn = std::function<void(CNode*)>;
void ForEachNode(const NodeFn& func)
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
func(node);
}
};
void ForEachNode(const NodeFn& func) const
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
func(node);
}
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post)
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
pre(node);
}
post();
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post) const
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
pre(node);
}
post();
};
// Addrman functions
void SetServices(const CService &addr, ServiceFlags nServices);
void MarkAddressGood(const CAddress& addr);
bool AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty = 0);
std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct);
/**
* Cache is used to minimize topology leaks, so it should
* be used for all non-trusted calls, for example, p2p.
* A non-malicious call (from RPC or a peer with addr permission) should
* call the function without a parameter to avoid using the cache.
*/
std::vector<CAddress> GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct);
// This allows temporarily exceeding m_max_outbound_full_relay, with the goal of finding
// a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer();
void StartExtraBlockRelayPeers() {
LogPrint(BCLog::NET, "net: enabling extra block-relay-only peers\n");
m_start_extra_block_relay_peers = true;
}
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraFullOutboundCount();
// Count the number of block-relay-only peers we have over our limit.
int GetExtraBlockRelayCount();
bool AddNode(const std::string& node);
bool RemoveAddedNode(const std::string& node);
std::vector<AddedNodeInfo> GetAddedNodeInfo();
/**
* Attempts to open a connection. Currently only used from tests.
*
* @param[in] address Address of node to try connecting to
* @param[in] conn_type ConnectionType::OUTBOUND or ConnectionType::BLOCK_RELAY
* @return bool Returns false if there are no available
* slots for this connection:
* - conn_type not a supported ConnectionType
* - Max total outbound connection capacity filled
* - Max connection capacity for type is filled
*/
bool AddConnection(const std::string& address, ConnectionType conn_type);
size_t GetNodeCount(NumConnections num);
void GetNodeStats(std::vector<CNodeStats>& vstats);
bool DisconnectNode(const std::string& node);
bool DisconnectNode(const CSubNet& subnet);
bool DisconnectNode(const CNetAddr& addr);
bool DisconnectNode(NodeId id);
//! Used to convey which local services we are offering peers during node
//! connection.
//!
//! The data returned by this is used in CNode construction,
//! which is used to advertise which services we are offering
//! that peer during `net_processing.cpp:PushNodeVersion()`.
ServiceFlags GetLocalServices() const;
uint64_t GetMaxOutboundTarget();
std::chrono::seconds GetMaxOutboundTimeframe();
//! check if the outbound target is reached
//! if param historicalBlockServingLimit is set true, the function will
//! response true if the limit for serving historical blocks has been reached
bool OutboundTargetReached(bool historicalBlockServingLimit);
//! response the bytes left in the current max outbound cycle
//! in case of no limit, it will always response 0
uint64_t GetOutboundTargetBytesLeft();
//! returns the time left in the current max outbound cycle
//! in case of no limit, it will always return 0
std::chrono::seconds GetMaxOutboundTimeLeftInCycle();
uint64_t GetTotalBytesRecv();
uint64_t GetTotalBytesSent();
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
2015-08-25 11:30:31 -03:00
unsigned int GetReceiveFloodSize() const;
void WakeMessageHandler();
/** Attempts to obfuscate tx time through exponentially distributed emitting.
Works assuming that a single interval is used.
Variable intervals will result in privacy decrease.
*/
int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
void SetAsmap(std::vector<bool> asmap) { addrman.m_asmap = std::move(asmap); }
private:
struct ListenSocket {
public:
SOCKET socket;
inline void AddSocketPermissionFlags(NetPermissionFlags& flags) const { NetPermissions::AddFlag(flags, m_permissions); }
ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {}
private:
NetPermissionFlags m_permissions;
};
bool BindListenPort(const CService& bindAddr, bilingual_str& strError, NetPermissionFlags permissions);
bool Bind(const CService& addr, unsigned int flags, NetPermissionFlags permissions);
bool InitBinds(
const std::vector<CService>& binds,
const std::vector<NetWhitebindPermissions>& whiteBinds,
const std::vector<CService>& onion_binds);
void ThreadOpenAddedConnections();
void AddAddrFetch(const std::string& strDest);
void ProcessAddrFetch();
void ThreadOpenConnections(std::vector<std::string> connect);
void ThreadMessageHandler();
void AcceptConnection(const ListenSocket& hListenSocket);
void DisconnectNodes();
void NotifyNumConnectionsChanged();
/** Return true if the peer is inactive and should be disconnected. */
bool InactivityCheck(const CNode& node) const;
bool GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set);
void SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set);
void SocketHandler();
void ThreadSocketHandler();
void ThreadDNSAddressSeed();
uint64_t CalculateKeyedNetGroup(const CAddress& ad) const;
CNode* FindNode(const CNetAddr& ip);
CNode* FindNode(const CSubNet& subNet);
CNode* FindNode(const std::string& addrName);
CNode* FindNode(const CService& addr);
/**
* Determine whether we're already connected to a given address, in order to
* avoid initiating duplicate connections.
*/
bool AlreadyConnectedToAddress(const CAddress& addr);
bool AttemptToEvictConnection();
CNode* ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type);
void AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const;
void DeleteNode(CNode* pnode);
NodeId GetNewNodeId();
size_t SocketSendData(CNode& node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend);
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes);
/**
* Return vector of current BLOCK_RELAY peers.
*/
std::vector<CAddress> GetCurrentBlockRelayOnlyConns() const;
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode* pnode);
// Network usage totals
RecursiveMutex cs_totalBytesRecv;
RecursiveMutex cs_totalBytesSent;
uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv) {0};
uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent) {0};
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent) {0};
std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent) {0};
uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
// P2P timeout in seconds
int64_t m_peer_connect_timeout;
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
std::vector<NetWhitelistPermissions> vWhitelistedRange;
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
CAddrMan addrman;
std::deque<std::string> m_addr_fetches GUARDED_BY(m_addr_fetches_mutex);
RecursiveMutex m_addr_fetches_mutex;
std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
RecursiveMutex cs_vAddedNodes;
std::vector<CNode*> vNodes GUARDED_BY(cs_vNodes);
std::list<CNode*> vNodesDisconnected;
mutable RecursiveMutex cs_vNodes;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
2020-09-30 12:08:26 -03:00
/**
* Cache responses to addr requests to minimize privacy leak.
* Attack example: scraping addrs in real-time may allow an attacker
* to infer new connections of the victim by detecting new records
* with fresh timestamps (per self-announcement).
2020-09-30 12:08:26 -03:00
*/
struct CachedAddrResponse {
std::vector<CAddress> m_addrs_response_cache;
std::chrono::microseconds m_cache_entry_expiration{0};
};
/**
* Addr responses stored in different caches
* per (network, local socket) prevent cross-network node identification.
* If a node for example is multi-homed under Tor and IPv6,
* a single cache (or no cache at all) would let an attacker
* to easily detect that it is the same node by comparing responses.
* Indexing by local socket prevents leakage when a node has multiple
* listening addresses on the same network.
*
* The used memory equals to 1000 CAddress records (or around 40 bytes) per
* distinct Network (up to 5) we have/had an inbound peer from,
* resulting in at most ~196 KB. Every separate local socket may
* add up to ~196 KB extra.
*/
std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
/**
* Services this instance offers.
*
* This data is replicated in each CNode instance we create during peer
* connection (in ConnectNode()) under a member also called
* nLocalServices.
*
* This data is not marked const, but after being set it should not
* change. See the note in CNode::nLocalServices documentation.
*
* \sa CNode::nLocalServices
*/
ServiceFlags nLocalServices;
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
int nMaxConnections;
// How many full-relay (tx, block, addr) outbound peers we want
int m_max_outbound_full_relay;
// How many block-relay only outbound peers we want
// We do not relay tx or addr messages with these peers
int m_max_outbound_block_relay;
int nMaxAddnode;
int nMaxFeeler;
int m_max_outbound;
bool m_use_addrman_outgoing;
CClientUIInterface* clientInterface;
NetEventsInterface* m_msgproc;
/** Pointer to this node's banman. May be nullptr - check existence before dereferencing. */
BanMan* m_banman;
/**
* Addresses that were saved during the previous clean shutdown. We'll
* attempt to make block-relay-only connections to them.
*/
std::vector<CAddress> m_anchors;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
/** flag for waking the message processor. */
bool fMsgProcWake GUARDED_BY(mutexMsgProc);
std::condition_variable condMsgProc;
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
CThreadInterrupt interruptNet;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadMessageHandler;
/** flag for deciding to connect to an extra outbound peer,
* in excess of m_max_outbound_full_relay
* This takes the place of a feeler connection */
std::atomic_bool m_try_another_outbound_peer;
/** flag for initiating extra block-relay-only peer connections.
* this should only be enabled after initial chain sync has occurred,
* as these connections are intended to be short-lived and low-bandwidth.
*/
std::atomic_bool m_start_extra_block_relay_peers{false};
std::atomic<int64_t> m_next_send_inv_to_incoming{0};
/**
* A vector of -bind=<address>:<port>=onion arguments each of which is
* an address and port that are designated for incoming Tor connections.
*/
std::vector<CService> m_onion_binds;
friend struct CConnmanTest;
friend struct ConnmanTestMsg;
};
/** Return a timestamp in the future (in microseconds) for exponentially distributed events. */
int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
/** Wrapper to return mockable type */
inline std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval)
{
return std::chrono::microseconds{PoissonNextSend(now.count(), average_interval.count())};
}
/** Dump binary message to file, with timestamp */
void CaptureMessage(const CAddress& addr, const std::string& msg_type, const Span<const unsigned char>& data, bool is_incoming);
struct NodeEvictionCandidate
{
NodeId id;
int64_t nTimeConnected;
int64_t nMinPingUsecTime;
int64_t nLastBlockTime;
int64_t nLastTXTime;
bool fRelevantServices;
bool fRelayTxes;
bool fBloomFilter;
uint64_t nKeyedNetGroup;
bool prefer_evict;
bool m_is_local;
};
[[nodiscard]] Optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates);
#endif // BITCOIN_NET_H