bitcoin/src/txmempool.cpp

1251 lines
50 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <txmempool.h>
#include <coins.h>
#include <consensus/consensus.h>
#include <consensus/tx_verify.h>
#include <consensus/validation.h>
#include <policy/fees.h>
#include <policy/policy.h>
#include <policy/settings.h>
#include <reverse_iterator.h>
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 15:51:11 -07:00
#include <util/moneystr.h>
#include <util/system.h>
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 15:51:11 -07:00
#include <util/time.h>
#include <validation.h>
#include <validationinterface.h>
#include <cmath>
#include <optional>
// Helpers for modifying CTxMemPool::mapTx, which is a boost multi_index.
struct update_descendant_state
{
update_descendant_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount) :
modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount)
{}
void operator() (CTxMemPoolEntry &e)
{ e.UpdateDescendantState(modifySize, modifyFee, modifyCount); }
private:
int64_t modifySize;
CAmount modifyFee;
int64_t modifyCount;
};
struct update_ancestor_state
{
update_ancestor_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount, int64_t _modifySigOpsCost) :
modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount), modifySigOpsCost(_modifySigOpsCost)
{}
void operator() (CTxMemPoolEntry &e)
{ e.UpdateAncestorState(modifySize, modifyFee, modifyCount, modifySigOpsCost); }
private:
int64_t modifySize;
CAmount modifyFee;
int64_t modifyCount;
int64_t modifySigOpsCost;
};
struct update_fee_delta
{
explicit update_fee_delta(int64_t _feeDelta) : feeDelta(_feeDelta) { }
void operator() (CTxMemPoolEntry &e) { e.UpdateFeeDelta(feeDelta); }
private:
int64_t feeDelta;
};
struct update_lock_points
{
explicit update_lock_points(const LockPoints& _lp) : lp(_lp) { }
void operator() (CTxMemPoolEntry &e) { e.UpdateLockPoints(lp); }
private:
const LockPoints& lp;
};
bool TestLockPointValidity(CChain& active_chain, const LockPoints* lp)
{
AssertLockHeld(cs_main);
assert(lp);
// If there are relative lock times then the maxInputBlock will be set
// If there are no relative lock times, the LockPoints don't depend on the chain
if (lp->maxInputBlock) {
// Check whether active_chain is an extension of the block at which the LockPoints
// calculation was valid. If not LockPoints are no longer valid
if (!active_chain.Contains(lp->maxInputBlock)) {
return false;
}
}
// LockPoints still valid
return true;
}
CTxMemPoolEntry::CTxMemPoolEntry(const CTransactionRef& tx, CAmount fee,
int64_t time, unsigned int entry_height,
bool spends_coinbase, int64_t sigops_cost, LockPoints lp)
: tx{tx},
nFee{fee},
nTxWeight(GetTransactionWeight(*tx)),
nUsageSize{RecursiveDynamicUsage(tx)},
nTime{time},
entryHeight{entry_height},
spendsCoinbase{spends_coinbase},
sigOpCost{sigops_cost},
lockPoints{lp},
nSizeWithDescendants{GetTxSize()},
nModFeesWithDescendants{nFee},
nSizeWithAncestors{GetTxSize()},
nModFeesWithAncestors{nFee},
nSigOpCostWithAncestors{sigOpCost} {}
void CTxMemPoolEntry::UpdateFeeDelta(int64_t newFeeDelta)
{
nModFeesWithDescendants += newFeeDelta - feeDelta;
nModFeesWithAncestors += newFeeDelta - feeDelta;
feeDelta = newFeeDelta;
}
void CTxMemPoolEntry::UpdateLockPoints(const LockPoints& lp)
{
lockPoints = lp;
}
size_t CTxMemPoolEntry::GetTxSize() const
{
return GetVirtualTransactionSize(nTxWeight, sigOpCost);
}
// Update the given tx for any in-mempool descendants.
// Assumes that CTxMemPool::m_children is correct for the given tx and all
// descendants.
void CTxMemPool::UpdateForDescendants(txiter updateIt, cacheMap &cachedDescendants, const std::set<uint256> &setExclude)
{
CTxMemPoolEntry::Children stageEntries, descendants;
stageEntries = updateIt->GetMemPoolChildrenConst();
while (!stageEntries.empty()) {
const CTxMemPoolEntry& descendant = *stageEntries.begin();
descendants.insert(descendant);
stageEntries.erase(descendant);
const CTxMemPoolEntry::Children& children = descendant.GetMemPoolChildrenConst();
for (const CTxMemPoolEntry& childEntry : children) {
cacheMap::iterator cacheIt = cachedDescendants.find(mapTx.iterator_to(childEntry));
if (cacheIt != cachedDescendants.end()) {
// We've already calculated this one, just add the entries for this set
// but don't traverse again.
for (txiter cacheEntry : cacheIt->second) {
descendants.insert(*cacheEntry);
}
} else if (!descendants.count(childEntry)) {
// Schedule for later processing
stageEntries.insert(childEntry);
}
}
}
// descendants now contains all in-mempool descendants of updateIt.
// Update and add to cached descendant map
int64_t modifySize = 0;
CAmount modifyFee = 0;
int64_t modifyCount = 0;
for (const CTxMemPoolEntry& descendant : descendants) {
if (!setExclude.count(descendant.GetTx().GetHash())) {
modifySize += descendant.GetTxSize();
modifyFee += descendant.GetModifiedFee();
modifyCount++;
cachedDescendants[updateIt].insert(mapTx.iterator_to(descendant));
// Update ancestor state for each descendant
mapTx.modify(mapTx.iterator_to(descendant), update_ancestor_state(updateIt->GetTxSize(), updateIt->GetModifiedFee(), 1, updateIt->GetSigOpCost()));
}
}
mapTx.modify(updateIt, update_descendant_state(modifySize, modifyFee, modifyCount));
}
// vHashesToUpdate is the set of transaction hashes from a disconnected block
// which has been re-added to the mempool.
// for each entry, look for descendants that are outside vHashesToUpdate, and
// add fee/size information for such descendants to the parent.
// for each such descendant, also update the ancestor state to include the parent.
void CTxMemPool::UpdateTransactionsFromBlock(const std::vector<uint256> &vHashesToUpdate)
{
2018-12-22 16:33:54 +01:00
AssertLockHeld(cs);
// For each entry in vHashesToUpdate, store the set of in-mempool, but not
// in-vHashesToUpdate transactions, so that we don't have to recalculate
// descendants when we come across a previously seen entry.
cacheMap mapMemPoolDescendantsToUpdate;
// Use a set for lookups into vHashesToUpdate (these entries are already
// accounted for in the state of their ancestors)
std::set<uint256> setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end());
// Iterate in reverse, so that whenever we are looking at a transaction
// we are sure that all in-mempool descendants have already been processed.
// This maximizes the benefit of the descendant cache and guarantees that
// CTxMemPool::m_children will be updated, an assumption made in
// UpdateForDescendants.
for (const uint256 &hash : reverse_iterate(vHashesToUpdate)) {
// calculate children from mapNextTx
txiter it = mapTx.find(hash);
if (it == mapTx.end()) {
continue;
}
auto iter = mapNextTx.lower_bound(COutPoint(hash, 0));
// First calculate the children, and update CTxMemPool::m_children to
// include them, and update their CTxMemPoolEntry::m_parents to include this tx.
// we cache the in-mempool children to avoid duplicate updates
{
WITH_FRESH_EPOCH(m_epoch);
for (; iter != mapNextTx.end() && iter->first->hash == hash; ++iter) {
const uint256 &childHash = iter->second->GetHash();
txiter childIter = mapTx.find(childHash);
assert(childIter != mapTx.end());
// We can skip updating entries we've encountered before or that
// are in the block (which are already accounted for).
if (!visited(childIter) && !setAlreadyIncluded.count(childHash)) {
UpdateChild(it, childIter, true);
UpdateParent(childIter, it, true);
}
}
} // release epoch guard for UpdateForDescendants
UpdateForDescendants(it, mapMemPoolDescendantsToUpdate, setAlreadyIncluded);
}
}
bool CTxMemPool::CalculateAncestorsAndCheckLimits(size_t entry_size,
size_t entry_count,
setEntries& setAncestors,
CTxMemPoolEntry::Parents& staged_ancestors,
uint64_t limitAncestorCount,
uint64_t limitAncestorSize,
uint64_t limitDescendantCount,
uint64_t limitDescendantSize,
std::string &errString) const
{
size_t totalSizeWithAncestors = entry_size;
while (!staged_ancestors.empty()) {
const CTxMemPoolEntry& stage = staged_ancestors.begin()->get();
txiter stageit = mapTx.iterator_to(stage);
setAncestors.insert(stageit);
staged_ancestors.erase(stage);
totalSizeWithAncestors += stageit->GetTxSize();
if (stageit->GetSizeWithDescendants() + entry_size > limitDescendantSize) {
errString = strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantSize);
return false;
} else if (stageit->GetCountWithDescendants() + entry_count > limitDescendantCount) {
errString = strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantCount);
return false;
} else if (totalSizeWithAncestors > limitAncestorSize) {
errString = strprintf("exceeds ancestor size limit [limit: %u]", limitAncestorSize);
return false;
}
const CTxMemPoolEntry::Parents& parents = stageit->GetMemPoolParentsConst();
for (const CTxMemPoolEntry& parent : parents) {
txiter parent_it = mapTx.iterator_to(parent);
// If this is a new ancestor, add it.
if (setAncestors.count(parent_it) == 0) {
staged_ancestors.insert(parent);
}
if (staged_ancestors.size() + setAncestors.size() + entry_count > limitAncestorCount) {
errString = strprintf("too many unconfirmed ancestors [limit: %u]", limitAncestorCount);
return false;
}
}
}
return true;
}
bool CTxMemPool::CheckPackageLimits(const Package& package,
uint64_t limitAncestorCount,
uint64_t limitAncestorSize,
uint64_t limitDescendantCount,
uint64_t limitDescendantSize,
std::string &errString) const
{
CTxMemPoolEntry::Parents staged_ancestors;
size_t total_size = 0;
for (const auto& tx : package) {
total_size += GetVirtualTransactionSize(*tx);
for (const auto& input : tx->vin) {
std::optional<txiter> piter = GetIter(input.prevout.hash);
if (piter) {
staged_ancestors.insert(**piter);
if (staged_ancestors.size() + package.size() > limitAncestorCount) {
errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount);
return false;
}
}
}
}
// When multiple transactions are passed in, the ancestors and descendants of all transactions
// considered together must be within limits even if they are not interdependent. This may be
// stricter than the limits for each individual transaction.
setEntries setAncestors;
const auto ret = CalculateAncestorsAndCheckLimits(total_size, package.size(),
setAncestors, staged_ancestors,
limitAncestorCount, limitAncestorSize,
limitDescendantCount, limitDescendantSize, errString);
// It's possible to overestimate the ancestor/descendant totals.
if (!ret) errString.insert(0, "possibly ");
return ret;
}
bool CTxMemPool::CalculateMemPoolAncestors(const CTxMemPoolEntry &entry,
setEntries &setAncestors,
uint64_t limitAncestorCount,
uint64_t limitAncestorSize,
uint64_t limitDescendantCount,
uint64_t limitDescendantSize,
std::string &errString,
bool fSearchForParents /* = true */) const
{
CTxMemPoolEntry::Parents staged_ancestors;
const CTransaction &tx = entry.GetTx();
if (fSearchForParents) {
// Get parents of this transaction that are in the mempool
// GetMemPoolParents() is only valid for entries in the mempool, so we
// iterate mapTx to find parents.
for (unsigned int i = 0; i < tx.vin.size(); i++) {
std::optional<txiter> piter = GetIter(tx.vin[i].prevout.hash);
if (piter) {
staged_ancestors.insert(**piter);
if (staged_ancestors.size() + 1 > limitAncestorCount) {
errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount);
return false;
}
}
}
} else {
// If we're not searching for parents, we require this to already be an
// entry in the mempool and use the entry's cached parents.
txiter it = mapTx.iterator_to(entry);
staged_ancestors = it->GetMemPoolParentsConst();
}
return CalculateAncestorsAndCheckLimits(entry.GetTxSize(), /* entry_count */ 1,
setAncestors, staged_ancestors,
limitAncestorCount, limitAncestorSize,
limitDescendantCount, limitDescendantSize, errString);
}
void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors)
{
const CTxMemPoolEntry::Parents& parents = it->GetMemPoolParentsConst();
// add or remove this tx as a child of each parent
for (const CTxMemPoolEntry& parent : parents) {
UpdateChild(mapTx.iterator_to(parent), it, add);
}
const int64_t updateCount = (add ? 1 : -1);
const int64_t updateSize = updateCount * it->GetTxSize();
const CAmount updateFee = updateCount * it->GetModifiedFee();
for (txiter ancestorIt : setAncestors) {
mapTx.modify(ancestorIt, update_descendant_state(updateSize, updateFee, updateCount));
}
}
void CTxMemPool::UpdateEntryForAncestors(txiter it, const setEntries &setAncestors)
{
int64_t updateCount = setAncestors.size();
int64_t updateSize = 0;
CAmount updateFee = 0;
int64_t updateSigOpsCost = 0;
for (txiter ancestorIt : setAncestors) {
updateSize += ancestorIt->GetTxSize();
updateFee += ancestorIt->GetModifiedFee();
updateSigOpsCost += ancestorIt->GetSigOpCost();
}
mapTx.modify(it, update_ancestor_state(updateSize, updateFee, updateCount, updateSigOpsCost));
}
void CTxMemPool::UpdateChildrenForRemoval(txiter it)
{
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
for (const CTxMemPoolEntry& updateIt : children) {
UpdateParent(mapTx.iterator_to(updateIt), it, false);
}
}
void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants)
{
// For each entry, walk back all ancestors and decrement size associated with this
// transaction
const uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
if (updateDescendants) {
// updateDescendants should be true whenever we're not recursively
// removing a tx and all its descendants, eg when a transaction is
// confirmed in a block.
// Here we only update statistics and not data in CTxMemPool::Parents
// and CTxMemPoolEntry::Children (which we need to preserve until we're
// finished with all operations that need to traverse the mempool).
for (txiter removeIt : entriesToRemove) {
setEntries setDescendants;
CalculateDescendants(removeIt, setDescendants);
setDescendants.erase(removeIt); // don't update state for self
int64_t modifySize = -((int64_t)removeIt->GetTxSize());
CAmount modifyFee = -removeIt->GetModifiedFee();
int modifySigOps = -removeIt->GetSigOpCost();
for (txiter dit : setDescendants) {
mapTx.modify(dit, update_ancestor_state(modifySize, modifyFee, -1, modifySigOps));
}
}
}
for (txiter removeIt : entriesToRemove) {
setEntries setAncestors;
const CTxMemPoolEntry &entry = *removeIt;
std::string dummy;
// Since this is a tx that is already in the mempool, we can call CMPA
// with fSearchForParents = false. If the mempool is in a consistent
// state, then using true or false should both be correct, though false
// should be a bit faster.
// However, if we happen to be in the middle of processing a reorg, then
// the mempool can be in an inconsistent state. In this case, the set
// of ancestors reachable via GetMemPoolParents()/GetMemPoolChildren()
// will be the same as the set of ancestors whose packages include this
// transaction, because when we add a new transaction to the mempool in
// addUnchecked(), we assume it has no children, and in the case of a
// reorg where that assumption is false, the in-mempool children aren't
// linked to the in-block tx's until UpdateTransactionsFromBlock() is
// called.
// So if we're being called during a reorg, ie before
// UpdateTransactionsFromBlock() has been called, then
// GetMemPoolParents()/GetMemPoolChildren() will differ from the set of
// mempool parents we'd calculate by searching, and it's important that
// we use the cached notion of ancestor transactions as the set of
// things to update for removal.
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);
// Note that UpdateAncestorsOf severs the child links that point to
// removeIt in the entries for the parents of removeIt.
UpdateAncestorsOf(false, removeIt, setAncestors);
}
// After updating all the ancestor sizes, we can now sever the link between each
// transaction being removed and any mempool children (ie, update CTxMemPoolEntry::m_parents
// for each direct child of a transaction being removed).
for (txiter removeIt : entriesToRemove) {
UpdateChildrenForRemoval(removeIt);
}
}
void CTxMemPoolEntry::UpdateDescendantState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount)
{
nSizeWithDescendants += modifySize;
assert(int64_t(nSizeWithDescendants) > 0);
nModFeesWithDescendants += modifyFee;
nCountWithDescendants += modifyCount;
assert(int64_t(nCountWithDescendants) > 0);
}
void CTxMemPoolEntry::UpdateAncestorState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount, int64_t modifySigOps)
{
nSizeWithAncestors += modifySize;
assert(int64_t(nSizeWithAncestors) > 0);
nModFeesWithAncestors += modifyFee;
nCountWithAncestors += modifyCount;
assert(int64_t(nCountWithAncestors) > 0);
nSigOpCostWithAncestors += modifySigOps;
assert(int(nSigOpCostWithAncestors) >= 0);
}
CTxMemPool::CTxMemPool(CBlockPolicyEstimator* estimator, int check_ratio)
: m_check_ratio(check_ratio), minerPolicyEstimator(estimator)
{
_clear(); //lock free clear
}
2018-03-22 13:55:22 +02:00
bool CTxMemPool::isSpent(const COutPoint& outpoint) const
{
LOCK(cs);
return mapNextTx.count(outpoint);
}
unsigned int CTxMemPool::GetTransactionsUpdated() const
{
return nTransactionsUpdated;
}
void CTxMemPool::AddTransactionsUpdated(unsigned int n)
{
nTransactionsUpdated += n;
}
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, setEntries &setAncestors, bool validFeeEstimate)
{
// Add to memory pool without checking anything.
// Used by AcceptToMemoryPool(), which DOES do
// all the appropriate checks.
indexed_transaction_set::iterator newit = mapTx.insert(entry).first;
// Update transaction for any feeDelta created by PrioritiseTransaction
// TODO: refactor so that the fee delta is calculated before inserting
// into mapTx.
CAmount delta{0};
ApplyDelta(entry.GetTx().GetHash(), delta);
if (delta) {
mapTx.modify(newit, update_fee_delta(delta));
}
// Update cachedInnerUsage to include contained transaction's usage.
// (When we update the entry for in-mempool parents, memory usage will be
// further updated.)
cachedInnerUsage += entry.DynamicMemoryUsage();
const CTransaction& tx = newit->GetTx();
std::set<uint256> setParentTransactions;
for (unsigned int i = 0; i < tx.vin.size(); i++) {
mapNextTx.insert(std::make_pair(&tx.vin[i].prevout, &tx));
setParentTransactions.insert(tx.vin[i].prevout.hash);
}
// Don't bother worrying about child transactions of this one.
// Normal case of a new transaction arriving is that there can't be any
// children, because such children would be orphans.
// An exception to that is if a transaction enters that used to be in a block.
// In that case, our disconnect block logic will call UpdateTransactionsFromBlock
// to clean up the mess we're leaving here.
// Update ancestors with information about this tx
for (const auto& pit : GetIterSet(setParentTransactions)) {
UpdateParent(newit, pit, true);
}
UpdateAncestorsOf(true, newit, setAncestors);
UpdateEntryForAncestors(newit, setAncestors);
nTransactionsUpdated++;
totalTxSize += entry.GetTxSize();
m_total_fee += entry.GetFee();
if (minerPolicyEstimator) {
minerPolicyEstimator->processTransaction(entry, validFeeEstimate);
}
vTxHashes.emplace_back(tx.GetWitnessHash(), newit);
newit->vTxHashesIdx = vTxHashes.size() - 1;
}
void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason)
{
// We increment mempool sequence value no matter removal reason
// even if not directly reported below.
uint64_t mempool_sequence = GetAndIncrementSequence();
if (reason != MemPoolRemovalReason::BLOCK) {
// Notify clients that a transaction has been removed from the mempool
// for any reason except being included in a block. Clients interested
// in transactions included in blocks can subscribe to the BlockConnected
// notification.
GetMainSignals().TransactionRemovedFromMempool(it->GetSharedTx(), reason, mempool_sequence);
}
const uint256 hash = it->GetTx().GetHash();
for (const CTxIn& txin : it->GetTx().vin)
mapNextTx.erase(txin.prevout);
RemoveUnbroadcastTx(hash, true /* add logging because unchecked */ );
if (vTxHashes.size() > 1) {
vTxHashes[it->vTxHashesIdx] = std::move(vTxHashes.back());
vTxHashes[it->vTxHashesIdx].second->vTxHashesIdx = it->vTxHashesIdx;
vTxHashes.pop_back();
if (vTxHashes.size() * 2 < vTxHashes.capacity())
vTxHashes.shrink_to_fit();
} else
vTxHashes.clear();
totalTxSize -= it->GetTxSize();
m_total_fee -= it->GetFee();
cachedInnerUsage -= it->DynamicMemoryUsage();
cachedInnerUsage -= memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
mapTx.erase(it);
nTransactionsUpdated++;
if (minerPolicyEstimator) {minerPolicyEstimator->removeTx(hash, false);}
}
// Calculates descendants of entry that are not already in setDescendants, and adds to
// setDescendants. Assumes entryit is already a tx in the mempool and CTxMemPoolEntry::m_children
// is correct for tx and all descendants.
// Also assumes that if an entry is in setDescendants already, then all
// in-mempool descendants of it are already in setDescendants as well, so that we
// can save time by not iterating over those entries.
2017-11-17 12:54:39 -05:00
void CTxMemPool::CalculateDescendants(txiter entryit, setEntries& setDescendants) const
{
setEntries stage;
if (setDescendants.count(entryit) == 0) {
stage.insert(entryit);
}
// Traverse down the children of entry, only adding children that are not
// accounted for in setDescendants already (because those children have either
// already been walked, or will be walked in this iteration).
while (!stage.empty()) {
txiter it = *stage.begin();
setDescendants.insert(it);
stage.erase(it);
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
for (const CTxMemPoolEntry& child : children) {
txiter childiter = mapTx.iterator_to(child);
if (!setDescendants.count(childiter)) {
stage.insert(childiter);
}
}
}
}
void CTxMemPool::removeRecursive(const CTransaction &origTx, MemPoolRemovalReason reason)
{
// Remove transaction from memory pool
2018-12-22 16:33:54 +01:00
AssertLockHeld(cs);
setEntries txToRemove;
txiter origit = mapTx.find(origTx.GetHash());
if (origit != mapTx.end()) {
txToRemove.insert(origit);
} else {
// When recursively removing but origTx isn't in the mempool
// be sure to remove any children that are in the pool. This can
// happen during chain re-orgs if origTx isn't re-accepted into
// the mempool for any reason.
for (unsigned int i = 0; i < origTx.vout.size(); i++) {
auto it = mapNextTx.find(COutPoint(origTx.GetHash(), i));
if (it == mapNextTx.end())
continue;
txiter nextit = mapTx.find(it->second->GetHash());
assert(nextit != mapTx.end());
txToRemove.insert(nextit);
}
}
setEntries setAllRemoves;
for (txiter it : txToRemove) {
CalculateDescendants(it, setAllRemoves);
}
RemoveStaged(setAllRemoves, false, reason);
}
void CTxMemPool::removeForReorg(CChainState& active_chainstate, int flags)
{
2015-09-05 21:40:21 -07:00
// Remove transactions spending a coinbase which are now immature and no-longer-final transactions
2018-12-22 16:33:54 +01:00
AssertLockHeld(cs);
setEntries txToRemove;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
const CTransaction& tx = it->GetTx();
LockPoints lp = it->GetLockPoints();
const bool validLP = TestLockPointValidity(active_chainstate.m_chain, &lp);
2021-05-27 08:39:59 +01:00
CCoinsViewMemPool view_mempool(&active_chainstate.CoinsTip(), *this);
if (!CheckFinalTx(active_chainstate.m_chain.Tip(), tx, flags)
2021-05-27 08:39:59 +01:00
|| !CheckSequenceLocks(active_chainstate.m_chain.Tip(), view_mempool, tx, flags, &lp, validLP)) {
// Note if CheckSequenceLocks fails the LockPoints may still be invalid
// So it's critical that we remove the tx and not depend on the LockPoints.
txToRemove.insert(it);
} else if (it->GetSpendsCoinbase()) {
for (const CTxIn& txin : tx.vin) {
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
if (it2 != mapTx.end())
continue;
const Coin &coin = active_chainstate.CoinsTip().AccessCoin(txin.prevout);
if (m_check_ratio != 0) assert(!coin.IsSpent());
unsigned int nMemPoolHeight = active_chainstate.m_chain.Tip()->nHeight + 1;
if (coin.IsSpent() || (coin.IsCoinBase() && ((signed long)nMemPoolHeight) - coin.nHeight < COINBASE_MATURITY)) {
txToRemove.insert(it);
break;
}
}
}
}
setEntries setAllRemoves;
for (txiter it : txToRemove) {
CalculateDescendants(it, setAllRemoves);
}
RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG);
auto chain = active_chainstate.m_chain;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
LockPoints lp = it->GetLockPoints();
if (!TestLockPointValidity(chain, &lp)) {
mapTx.modify(it, update_lock_points(lp));
}
}
}
void CTxMemPool::removeConflicts(const CTransaction &tx)
{
// Remove transactions which depend on inputs of tx, recursively
AssertLockHeld(cs);
for (const CTxIn &txin : tx.vin) {
auto it = mapNextTx.find(txin.prevout);
if (it != mapNextTx.end()) {
const CTransaction &txConflict = *it->second;
if (txConflict != tx)
{
ClearPrioritisation(txConflict.GetHash());
removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT);
}
}
}
}
/**
* Called when a block is connected. Removes from mempool and updates the miner fee estimator.
*/
void CTxMemPool::removeForBlock(const std::vector<CTransactionRef>& vtx, unsigned int nBlockHeight)
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
{
2018-12-22 16:33:54 +01:00
AssertLockHeld(cs);
std::vector<const CTxMemPoolEntry*> entries;
for (const auto& tx : vtx)
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
{
uint256 hash = tx->GetHash();
indexed_transaction_set::iterator i = mapTx.find(hash);
if (i != mapTx.end())
entries.push_back(&*i);
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
}
// Before the txs in the new block have been removed from the mempool, update policy estimates
if (minerPolicyEstimator) {minerPolicyEstimator->processBlock(nBlockHeight, entries);}
for (const auto& tx : vtx)
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
{
txiter it = mapTx.find(tx->GetHash());
if (it != mapTx.end()) {
setEntries stage;
stage.insert(it);
RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK);
}
removeConflicts(*tx);
ClearPrioritisation(tx->GetHash());
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
}
lastRollingFeeUpdate = GetTime();
blockSinceLastRollingFeeBump = true;
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
}
void CTxMemPool::_clear()
{
mapTx.clear();
mapNextTx.clear();
totalTxSize = 0;
m_total_fee = 0;
cachedInnerUsage = 0;
lastRollingFeeUpdate = GetTime();
blockSinceLastRollingFeeBump = false;
rollingMinimumFeeRate = 0;
++nTransactionsUpdated;
}
void CTxMemPool::clear()
{
LOCK(cs);
_clear();
}
void CTxMemPool::check(const CCoinsViewCache& active_coins_tip, int64_t spendheight) const
{
if (m_check_ratio == 0) return;
if (GetRand(m_check_ratio) >= 1) return;
AssertLockHeld(::cs_main);
LOCK(cs);
LogPrint(BCLog::MEMPOOL, "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
uint64_t checkTotal = 0;
CAmount check_total_fee{0};
uint64_t innerUsage = 0;
uint64_t prev_ancestor_count{0};
CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache*>(&active_coins_tip));
for (const auto& it : GetSortedDepthAndScore()) {
checkTotal += it->GetTxSize();
check_total_fee += it->GetFee();
innerUsage += it->DynamicMemoryUsage();
const CTransaction& tx = it->GetTx();
innerUsage += memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
CTxMemPoolEntry::Parents setParentCheck;
for (const CTxIn &txin : tx.vin) {
// Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
if (it2 != mapTx.end()) {
const CTransaction& tx2 = it2->GetTx();
assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
setParentCheck.insert(*it2);
}
// We are iterating through the mempool entries sorted in order by ancestor count.
// All parents must have been checked before their children and their coins added to
// the mempoolDuplicate coins cache.
assert(mempoolDuplicate.HaveCoin(txin.prevout));
// Check whether its inputs are marked in mapNextTx.
auto it3 = mapNextTx.find(txin.prevout);
assert(it3 != mapNextTx.end());
assert(it3->first == &txin.prevout);
assert(it3->second == &tx);
}
auto comp = [](const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) -> bool {
return a.GetTx().GetHash() == b.GetTx().GetHash();
};
assert(setParentCheck.size() == it->GetMemPoolParentsConst().size());
assert(std::equal(setParentCheck.begin(), setParentCheck.end(), it->GetMemPoolParentsConst().begin(), comp));
// Verify ancestor state is correct.
setEntries setAncestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy);
uint64_t nCountCheck = setAncestors.size() + 1;
uint64_t nSizeCheck = it->GetTxSize();
CAmount nFeesCheck = it->GetModifiedFee();
int64_t nSigOpCheck = it->GetSigOpCost();
for (txiter ancestorIt : setAncestors) {
nSizeCheck += ancestorIt->GetTxSize();
nFeesCheck += ancestorIt->GetModifiedFee();
nSigOpCheck += ancestorIt->GetSigOpCost();
}
assert(it->GetCountWithAncestors() == nCountCheck);
assert(it->GetSizeWithAncestors() == nSizeCheck);
assert(it->GetSigOpCostWithAncestors() == nSigOpCheck);
assert(it->GetModFeesWithAncestors() == nFeesCheck);
// Sanity check: we are walking in ascending ancestor count order.
assert(prev_ancestor_count <= it->GetCountWithAncestors());
prev_ancestor_count = it->GetCountWithAncestors();
// Check children against mapNextTx
CTxMemPoolEntry::Children setChildrenCheck;
auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0));
uint64_t child_sizes = 0;
for (; iter != mapNextTx.end() && iter->first->hash == it->GetTx().GetHash(); ++iter) {
txiter childit = mapTx.find(iter->second->GetHash());
assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions
if (setChildrenCheck.insert(*childit).second) {
child_sizes += childit->GetTxSize();
}
}
assert(setChildrenCheck.size() == it->GetMemPoolChildrenConst().size());
assert(std::equal(setChildrenCheck.begin(), setChildrenCheck.end(), it->GetMemPoolChildrenConst().begin(), comp));
// Also check to make sure size is greater than sum with immediate children.
// just a sanity check, not definitive that this calc is correct...
assert(it->GetSizeWithDescendants() >= child_sizes + it->GetTxSize());
TxValidationState dummy_state; // Not used. CheckTxInputs() should always pass
CAmount txfee = 0;
assert(!tx.IsCoinBase());
assert(Consensus::CheckTxInputs(tx, dummy_state, mempoolDuplicate, spendheight, txfee));
for (const auto& input: tx.vin) mempoolDuplicate.SpendCoin(input.prevout);
AddCoins(mempoolDuplicate, tx, std::numeric_limits<int>::max());
}
for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) {
uint256 hash = it->second->GetHash();
indexed_transaction_set::const_iterator it2 = mapTx.find(hash);
const CTransaction& tx = it2->GetTx();
assert(it2 != mapTx.end());
assert(&tx == it->second);
}
assert(totalTxSize == checkTotal);
assert(m_total_fee == check_total_fee);
assert(innerUsage == cachedInnerUsage);
}
2020-01-29 10:36:23 -05:00
bool CTxMemPool::CompareDepthAndScore(const uint256& hasha, const uint256& hashb, bool wtxid)
{
LOCK(cs);
2020-01-29 10:36:23 -05:00
indexed_transaction_set::const_iterator i = wtxid ? get_iter_from_wtxid(hasha) : mapTx.find(hasha);
if (i == mapTx.end()) return false;
2020-01-29 10:36:23 -05:00
indexed_transaction_set::const_iterator j = wtxid ? get_iter_from_wtxid(hashb) : mapTx.find(hashb);
if (j == mapTx.end()) return true;
uint64_t counta = i->GetCountWithAncestors();
uint64_t countb = j->GetCountWithAncestors();
if (counta == countb) {
return CompareTxMemPoolEntryByScore()(*i, *j);
}
return counta < countb;
}
namespace {
class DepthAndScoreComparator
{
public:
bool operator()(const CTxMemPool::indexed_transaction_set::const_iterator& a, const CTxMemPool::indexed_transaction_set::const_iterator& b)
{
uint64_t counta = a->GetCountWithAncestors();
uint64_t countb = b->GetCountWithAncestors();
if (counta == countb) {
return CompareTxMemPoolEntryByScore()(*a, *b);
}
return counta < countb;
}
};
} // namespace
std::vector<CTxMemPool::indexed_transaction_set::const_iterator> CTxMemPool::GetSortedDepthAndScore() const
{
std::vector<indexed_transaction_set::const_iterator> iters;
AssertLockHeld(cs);
iters.reserve(mapTx.size());
for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) {
iters.push_back(mi);
}
std::sort(iters.begin(), iters.end(), DepthAndScoreComparator());
return iters;
}
2019-02-23 11:04:20 -05:00
void CTxMemPool::queryHashes(std::vector<uint256>& vtxid) const
{
LOCK(cs);
auto iters = GetSortedDepthAndScore();
vtxid.clear();
vtxid.reserve(mapTx.size());
for (auto it : iters) {
vtxid.push_back(it->GetTx().GetHash());
}
}
2016-07-31 20:53:17 +02:00
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) {
return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), it->GetFee(), it->GetTxSize(), it->GetModifiedFee() - it->GetFee()};
2016-07-31 20:53:17 +02:00
}
std::vector<TxMempoolInfo> CTxMemPool::infoAll() const
{
LOCK(cs);
auto iters = GetSortedDepthAndScore();
std::vector<TxMempoolInfo> ret;
ret.reserve(mapTx.size());
for (auto it : iters) {
2016-07-31 20:53:17 +02:00
ret.push_back(GetInfo(it));
}
return ret;
}
CTransactionRef CTxMemPool::get(const uint256& hash) const
{
LOCK(cs);
indexed_transaction_set::const_iterator i = mapTx.find(hash);
if (i == mapTx.end())
return nullptr;
return i->GetSharedTx();
}
TxMempoolInfo CTxMemPool::info(const GenTxid& gtxid) const
{
LOCK(cs);
indexed_transaction_set::const_iterator i = (gtxid.IsWtxid() ? get_iter_from_wtxid(gtxid.GetHash()) : mapTx.find(gtxid.GetHash()));
if (i == mapTx.end())
return TxMempoolInfo();
2016-07-31 20:53:17 +02:00
return GetInfo(i);
}
void CTxMemPool::PrioritiseTransaction(const uint256& hash, const CAmount& nFeeDelta)
{
{
LOCK(cs);
CAmount &delta = mapDeltas[hash];
delta += nFeeDelta;
txiter it = mapTx.find(hash);
if (it != mapTx.end()) {
mapTx.modify(it, update_fee_delta(delta));
// Now update all ancestors' modified fees with descendants
setEntries setAncestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);
for (txiter ancestorIt : setAncestors) {
mapTx.modify(ancestorIt, update_descendant_state(0, nFeeDelta, 0));
}
// Now update all descendants' modified fees with ancestors
setEntries setDescendants;
CalculateDescendants(it, setDescendants);
setDescendants.erase(it);
for (txiter descendantIt : setDescendants) {
mapTx.modify(descendantIt, update_ancestor_state(0, nFeeDelta, 0, 0));
}
++nTransactionsUpdated;
}
}
LogPrintf("PrioritiseTransaction: %s fee += %s\n", hash.ToString(), FormatMoney(nFeeDelta));
}
void CTxMemPool::ApplyDelta(const uint256& hash, CAmount &nFeeDelta) const
{
AssertLockHeld(cs);
std::map<uint256, CAmount>::const_iterator pos = mapDeltas.find(hash);
if (pos == mapDeltas.end())
return;
const CAmount &delta = pos->second;
nFeeDelta += delta;
}
void CTxMemPool::ClearPrioritisation(const uint256& hash)
{
AssertLockHeld(cs);
mapDeltas.erase(hash);
}
const CTransaction* CTxMemPool::GetConflictTx(const COutPoint& prevout) const
{
const auto it = mapNextTx.find(prevout);
return it == mapNextTx.end() ? nullptr : it->second;
}
std::optional<CTxMemPool::txiter> CTxMemPool::GetIter(const uint256& txid) const
{
auto it = mapTx.find(txid);
if (it != mapTx.end()) return it;
return std::nullopt;
}
CTxMemPool::setEntries CTxMemPool::GetIterSet(const std::set<uint256>& hashes) const
{
CTxMemPool::setEntries ret;
for (const auto& h : hashes) {
const auto mi = GetIter(h);
if (mi) ret.insert(*mi);
}
return ret;
}
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
{
for (unsigned int i = 0; i < tx.vin.size(); i++)
if (exists(GenTxid::Txid(tx.vin[i].prevout.hash)))
return false;
return true;
}
estimatefee / estimatepriority RPC methods New RPC methods: return an estimate of the fee (or priority) a transaction needs to be likely to confirm in a given number of blocks. Mike Hearn created the first version of this method for estimating fees. It works as follows: For transactions that took 1 to N (I picked N=25) blocks to confirm, keep N buckets with at most 100 entries in each recording the fees-per-kilobyte paid by those transactions. (separate buckets are kept for transactions that confirmed because they are high-priority) The buckets are filled as blocks are found, and are saved/restored in a new fee_estiamtes.dat file in the data directory. A few variations on Mike's initial scheme: To estimate the fee needed for a transaction to confirm in X buckets, all of the samples in all of the buckets are used and a median of all of the data is used to make the estimate. For example, imagine 25 buckets each containing the full 100 entries. Those 2,500 samples are sorted, and the estimate of the fee needed to confirm in the very next block is the 50'th-highest-fee-entry in that sorted list; the estimate of the fee needed to confirm in the next two blocks is the 150'th-highest-fee-entry, etc. That algorithm has the nice property that estimates of how much fee you need to pay to get confirmed in block N will always be greater than or equal to the estimate for block N+1. It would clearly be wrong to say "pay 11 uBTC and you'll get confirmed in 3 blocks, but pay 12 uBTC and it will take LONGER". A single block will not contribute more than 10 entries to any one bucket, so a single miner and a large block cannot overwhelm the estimates.
2014-03-17 08:19:54 -04:00
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const {
// Check to see if the inputs are made available by another tx in the package.
// These Coins would not be available in the underlying CoinsView.
if (auto it = m_temp_added.find(outpoint); it != m_temp_added.end()) {
coin = it->second;
return true;
}
// If an entry in the mempool exists, always return that one, as it's guaranteed to never
// conflict with the underlying cache, and it cannot have pruned entries (as it contains full)
// transactions. First checking the underlying cache risks returning a pruned entry instead.
CTransactionRef ptx = mempool.get(outpoint.hash);
if (ptx) {
if (outpoint.n < ptx->vout.size()) {
coin = Coin(ptx->vout[outpoint.n], MEMPOOL_HEIGHT, false);
return true;
} else {
return false;
}
}
return base->GetCoin(outpoint, coin);
}
void CCoinsViewMemPool::PackageAddTransaction(const CTransactionRef& tx)
{
for (unsigned int n = 0; n < tx->vout.size(); ++n) {
m_temp_added.emplace(COutPoint(tx->GetHash(), n), Coin(tx->vout[n], MEMPOOL_HEIGHT, false));
}
}
size_t CTxMemPool::DynamicMemoryUsage() const {
LOCK(cs);
2020-01-29 10:36:23 -05:00
// Estimate the overhead of mapTx to be 15 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented.
return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 15 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(vTxHashes) + cachedInnerUsage;
}
void CTxMemPool::RemoveUnbroadcastTx(const uint256& txid, const bool unchecked) {
LOCK(cs);
if (m_unbroadcast_txids.erase(txid))
{
LogPrint(BCLog::MEMPOOL, "Removed %i from set of unbroadcast txns%s\n", txid.GetHex(), (unchecked ? " before confirmation that txn was sent out" : ""));
}
}
void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason) {
AssertLockHeld(cs);
UpdateForRemoveFromMempool(stage, updateDescendants);
for (txiter it : stage) {
removeUnchecked(it, reason);
}
}
int CTxMemPool::Expire(std::chrono::seconds time)
{
2018-12-22 16:33:54 +01:00
AssertLockHeld(cs);
2016-02-16 12:10:12 -05:00
indexed_transaction_set::index<entry_time>::type::iterator it = mapTx.get<entry_time>().begin();
setEntries toremove;
2016-02-16 12:10:12 -05:00
while (it != mapTx.get<entry_time>().end() && it->GetTime() < time) {
toremove.insert(mapTx.project<0>(it));
it++;
}
setEntries stage;
for (txiter removeit : toremove) {
CalculateDescendants(removeit, stage);
}
RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY);
return stage.size();
}
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, bool validFeeEstimate)
{
setEntries setAncestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy);
return addUnchecked(entry, setAncestors, validFeeEstimate);
}
void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add)
{
AssertLockHeld(cs);
CTxMemPoolEntry::Children s;
if (add && entry->GetMemPoolChildren().insert(*child).second) {
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
} else if (!add && entry->GetMemPoolChildren().erase(*child)) {
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
}
}
void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add)
{
AssertLockHeld(cs);
CTxMemPoolEntry::Parents s;
if (add && entry->GetMemPoolParents().insert(*parent).second) {
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
} else if (!add && entry->GetMemPoolParents().erase(*parent)) {
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
}
}
CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const {
LOCK(cs);
if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0)
return CFeeRate(llround(rollingMinimumFeeRate));
int64_t time = GetTime();
if (time > lastRollingFeeUpdate + 10) {
double halflife = ROLLING_FEE_HALFLIFE;
if (DynamicMemoryUsage() < sizelimit / 4)
halflife /= 4;
else if (DynamicMemoryUsage() < sizelimit / 2)
halflife /= 2;
rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife);
lastRollingFeeUpdate = time;
2016-12-13 13:43:35 -05:00
if (rollingMinimumFeeRate < (double)incrementalRelayFee.GetFeePerK() / 2) {
rollingMinimumFeeRate = 0;
return CFeeRate(0);
}
}
return std::max(CFeeRate(llround(rollingMinimumFeeRate)), incrementalRelayFee);
}
void CTxMemPool::trackPackageRemoved(const CFeeRate& rate) {
AssertLockHeld(cs);
if (rate.GetFeePerK() > rollingMinimumFeeRate) {
rollingMinimumFeeRate = rate.GetFeePerK();
blockSinceLastRollingFeeBump = false;
}
}
void CTxMemPool::TrimToSize(size_t sizelimit, std::vector<COutPoint>* pvNoSpendsRemaining) {
2018-12-22 16:33:54 +01:00
AssertLockHeld(cs);
unsigned nTxnRemoved = 0;
CFeeRate maxFeeRateRemoved(0);
2016-06-18 18:16:36 +02:00
while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) {
2016-02-16 12:10:12 -05:00
indexed_transaction_set::index<descendant_score>::type::iterator it = mapTx.get<descendant_score>().begin();
// We set the new mempool min fee to the feerate of the removed set, plus the
// "minimum reasonable fee rate" (ie some value under which we consider txn
// to have 0 fee). This way, we don't allow txn to enter mempool with feerate
// equal to txn which were removed with no block in between.
CFeeRate removed(it->GetModFeesWithDescendants(), it->GetSizeWithDescendants());
2016-12-13 13:43:35 -05:00
removed += incrementalRelayFee;
trackPackageRemoved(removed);
maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed);
setEntries stage;
CalculateDescendants(mapTx.project<0>(it), stage);
nTxnRemoved += stage.size();
std::vector<CTransaction> txn;
if (pvNoSpendsRemaining) {
txn.reserve(stage.size());
for (txiter iter : stage)
2016-09-02 18:19:01 +02:00
txn.push_back(iter->GetTx());
}
RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT);
if (pvNoSpendsRemaining) {
for (const CTransaction& tx : txn) {
for (const CTxIn& txin : tx.vin) {
if (exists(GenTxid::Txid(txin.prevout.hash))) continue;
pvNoSpendsRemaining->push_back(txin.prevout);
}
}
}
}
if (maxFeeRateRemoved > CFeeRate(0)) {
LogPrint(BCLog::MEMPOOL, "Removed %u txn, rolling minimum fee bumped to %s\n", nTxnRemoved, maxFeeRateRemoved.ToString());
}
}
uint64_t CTxMemPool::CalculateDescendantMaximum(txiter entry) const {
// find parent with highest descendant count
std::vector<txiter> candidates;
setEntries counted;
candidates.push_back(entry);
uint64_t maximum = 0;
while (candidates.size()) {
txiter candidate = candidates.back();
candidates.pop_back();
if (!counted.insert(candidate).second) continue;
const CTxMemPoolEntry::Parents& parents = candidate->GetMemPoolParentsConst();
if (parents.size() == 0) {
maximum = std::max(maximum, candidate->GetCountWithDescendants());
} else {
for (const CTxMemPoolEntry& i : parents) {
candidates.push_back(mapTx.iterator_to(i));
}
}
}
return maximum;
}
void CTxMemPool::GetTransactionAncestry(const uint256& txid, size_t& ancestors, size_t& descendants, size_t* const ancestorsize, CAmount* const ancestorfees) const {
LOCK(cs);
auto it = mapTx.find(txid);
ancestors = descendants = 0;
if (it != mapTx.end()) {
ancestors = it->GetCountWithAncestors();
if (ancestorsize) *ancestorsize = it->GetSizeWithAncestors();
if (ancestorfees) *ancestorfees = it->GetModFeesWithAncestors();
descendants = CalculateDescendantMaximum(it);
}
}
bool CTxMemPool::IsLoaded() const
{
LOCK(cs);
return m_is_loaded;
}
void CTxMemPool::SetIsLoaded(bool loaded)
{
LOCK(cs);
m_is_loaded = loaded;
}