bitcoin/src/random.cpp

643 lines
20 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
2018-07-26 18:36:45 -04:00
// Copyright (c) 2009-2018 The Bitcoin Core developers
2014-12-13 12:09:33 +08:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <random.h>
#include <crypto/sha512.h>
#include <support/cleanse.h>
#ifdef WIN32
#include <compat.h> // for Windows API
#include <wincrypt.h>
#endif
#include <logging.h> // for LogPrint()
#include <sync.h> // for WAIT_LOCK
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 15:51:11 -07:00
#include <util/time.h> // for GetTime()
#include <stdlib.h>
2017-05-02 18:21:33 -07:00
#include <chrono>
#include <thread>
2019-01-10 18:34:17 -08:00
#include <support/allocators/secure.h>
#ifndef WIN32
#include <fcntl.h>
#include <sys/time.h>
#endif
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
#ifdef HAVE_SYS_GETRANDOM
#include <sys/syscall.h>
#include <linux/random.h>
#endif
#if defined(HAVE_GETENTROPY) || (defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX))
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
#include <unistd.h>
#endif
#if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
#include <sys/random.h>
#endif
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
#ifdef HAVE_SYSCTL_ARND
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 15:51:11 -07:00
#include <util/strencodings.h> // for ARRAYLEN
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
#include <sys/sysctl.h>
#endif
#include <mutex>
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
#include <cpuid.h>
#endif
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/conf.h>
[[noreturn]] static void RandFailure()
{
LogPrintf("Failed to read randomness, aborting\n");
std::abort();
}
static inline int64_t GetPerformanceCounter() noexcept
{
2017-05-02 18:21:33 -07:00
// Read the hardware time stamp counter when available.
// See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
return __rdtsc();
#elif !defined(_MSC_VER) && defined(__i386__)
uint64_t r = 0;
__asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair.
return r;
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
uint64_t r1 = 0, r2 = 0;
__asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx.
return (r2 << 32) | r1;
#else
2017-05-02 18:21:33 -07:00
// Fall back to using C++11 clock (usually microsecond or nanosecond precision)
return std::chrono::high_resolution_clock::now().time_since_epoch().count();
#endif
}
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
static bool rdrand_supported = false;
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
static void InitHardwareRand()
{
uint32_t eax, ebx, ecx, edx;
if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) && (ecx & CPUID_F1_ECX_RDRAND)) {
rdrand_supported = true;
}
}
static void ReportHardwareRand()
{
if (rdrand_supported) {
// This must be done in a separate function, as HWRandInit() may be indirectly called
// from global constructors, before logging is initialized.
LogPrintf("Using RdRand as an additional entropy source\n");
}
}
#else
/* Access to other hardware random number generators could be added here later,
* assuming it is sufficiently fast (in the order of a few hundred CPU cycles).
* Slower sources should probably be invoked separately, and/or only from
* RandAddSeedSleep (which is called during idle background operation).
*/
static void InitHardwareRand() {}
static void ReportHardwareRand() {}
#endif
static bool GetHardwareRand(unsigned char* ent32) noexcept {
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
if (rdrand_supported) {
uint8_t ok;
// Not all assemblers support the rdrand instruction, write it in hex.
#ifdef __i386__
for (int iter = 0; iter < 4; ++iter) {
uint32_t r1, r2;
__asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax
".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx
"setc %2" :
"=a"(r1), "=d"(r2), "=q"(ok) :: "cc");
if (!ok) return false;
WriteLE32(ent32 + 8 * iter, r1);
WriteLE32(ent32 + 8 * iter + 4, r2);
}
#else
uint64_t r1, r2, r3, r4;
__asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax
"0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx
"0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx
"0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx
"setc %4" :
"=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc");
if (!ok) return false;
WriteLE64(ent32, r1);
WriteLE64(ent32 + 8, r2);
WriteLE64(ent32 + 16, r3);
WriteLE64(ent32 + 24, r4);
#endif
return true;
}
#endif
return false;
}
static void RandAddSeedPerfmon(CSHA512& hasher)
{
#ifdef WIN32
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom
// Seed with the entire set of perfmon data
// This can take up to 2 seconds, so only do it every 10 minutes
static int64_t nLastPerfmon;
if (GetTime() < nLastPerfmon + 10 * 60)
return;
nLastPerfmon = GetTime();
std::vector<unsigned char> vData(250000, 0);
long ret = 0;
unsigned long nSize = 0;
const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data
while (true) {
nSize = vData.size();
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", nullptr, nullptr, vData.data(), &nSize);
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize)
break;
vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially
}
RegCloseKey(HKEY_PERFORMANCE_DATA);
if (ret == ERROR_SUCCESS) {
hasher.Write(vData.data(), nSize);
memory_cleanse(vData.data(), nSize);
} else {
// Performance data is only a best-effort attempt at improving the
// situation when the OS randomness (and other sources) aren't
// adequate. As a result, failure to read it is isn't considered critical,
// so we don't call RandFailure().
// TODO: Add logging when the logger is made functional before global
// constructors have been invoked.
}
#endif
}
#ifndef WIN32
/** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
* compatible way to get cryptographic randomness on UNIX-ish platforms.
*/
static void GetDevURandom(unsigned char *ent32)
{
int f = open("/dev/urandom", O_RDONLY);
if (f == -1) {
RandFailure();
}
int have = 0;
do {
ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
2017-07-15 21:34:52 +02:00
close(f);
RandFailure();
}
have += n;
} while (have < NUM_OS_RANDOM_BYTES);
close(f);
}
#endif
/** Get 32 bytes of system entropy. */
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
void GetOSRand(unsigned char *ent32)
{
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
#if defined(WIN32)
HCRYPTPROV hProvider;
int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
if (!ret) {
RandFailure();
}
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32);
if (!ret) {
RandFailure();
}
CryptReleaseContext(hProvider, 0);
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
#elif defined(HAVE_SYS_GETRANDOM)
/* Linux. From the getrandom(2) man page:
* "If the urandom source has been initialized, reads of up to 256 bytes
* will always return as many bytes as requested and will not be
* interrupted by signals."
*/
int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0);
if (rv != NUM_OS_RANDOM_BYTES) {
if (rv < 0 && errno == ENOSYS) {
/* Fallback for kernel <3.17: the return value will be -1 and errno
* ENOSYS if the syscall is not available, in that case fall back
* to /dev/urandom.
*/
GetDevURandom(ent32);
} else {
RandFailure();
}
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
}
2017-07-17 13:14:53 -04:00
#elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__)
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
/* On OpenBSD this can return up to 256 bytes of entropy, will return an
* error if more are requested.
* The call cannot return less than the requested number of bytes.
2017-07-17 13:14:53 -04:00
getentropy is explicitly limited to openbsd here, as a similar (but not
the same) function may exist on other platforms via glibc.
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
*/
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
RandFailure();
}
#elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
// We need a fallback for OSX < 10.12
if (&getentropy != nullptr) {
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
RandFailure();
}
} else {
GetDevURandom(ent32);
}
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
#elif defined(HAVE_SYSCTL_ARND)
/* FreeBSD and similar. It is possible for the call to return less
* bytes than requested, so need to read in a loop.
*/
static const int name[2] = {CTL_KERN, KERN_ARND};
int have = 0;
do {
size_t len = NUM_OS_RANDOM_BYTES - have;
if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, nullptr, 0) != 0) {
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
RandFailure();
}
have += len;
} while (have < NUM_OS_RANDOM_BYTES);
#else
util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD These are available in sandboxes without access to files or devices. Also [they are safer and more straightforward](https://en.wikipedia.org/wiki/Entropy-supplying_system_calls) to use than `/dev/urandom` as reading from a file has quite a few edge cases: - Linux: `getrandom(buf, buflen, 0)`. [getrandom(2)](http://man7.org/linux/man-pages/man2/getrandom.2.html) was introduced in version 3.17 of the Linux kernel. - OpenBSD: `getentropy(buf, buflen)`. The [getentropy(2)](http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/getentropy.2) function appeared in OpenBSD 5.6. - FreeBSD and NetBSD: `sysctl(KERN_ARND)`. Not sure when this was added but it has existed for quite a while. Alternatives: - Linux has sysctl `CTL_KERN` / `KERN_RANDOM` / `RANDOM_UUID` which gives 16 bytes of randomness. This may be available on older kernels, however [sysctl is deprecated on Linux](https://lwn.net/Articles/605392/) and even removed in some distros so we shouldn't use it. Add tests for `GetOSRand()`: - Test that no error happens (otherwise `RandFailure()` which aborts) - Test that all 32 bytes are overwritten (initialize with zeros, try multiple times) Discussion: - When to use these? Currently they are always used when available. Another option would be to use them only when `/dev/urandom` is not available. But this would mean these code paths receive less testing, and I'm not sure there is any reason to prefer `/dev/urandom`. Closes: #9676
2017-02-21 17:36:37 +01:00
/* Fall back to /dev/urandom if there is no specific method implemented to
* get system entropy for this OS.
*/
GetDevURandom(ent32);
#endif
}
void LockingCallbackOpenSSL(int mode, int i, const char* file, int line);
namespace {
2019-01-10 18:19:50 -08:00
class RNGState {
Mutex m_mutex;
2019-01-13 10:51:17 -08:00
/* The RNG state consists of 256 bits of entropy, taken from the output of
* one operation's SHA512 output, and fed as input to the next one.
* Carrying 256 bits of entropy should be sufficient to guarantee
* unpredictability as long as any entropy source was ever unpredictable
* to an attacker. To protect against situations where an attacker might
* observe the RNG's state, fresh entropy is always mixed when
* GetStrongRandBytes is called.
*/
unsigned char m_state[32] GUARDED_BY(m_mutex) = {0};
uint64_t m_counter GUARDED_BY(m_mutex) = 0;
bool m_strongly_seeded GUARDED_BY(m_mutex) = false;
std::unique_ptr<Mutex[]> m_mutex_openssl;
2019-01-10 18:19:50 -08:00
public:
RNGState() noexcept
{
InitHardwareRand();
// Init OpenSSL library multithreading support
m_mutex_openssl.reset(new Mutex[CRYPTO_num_locks()]);
CRYPTO_set_locking_callback(LockingCallbackOpenSSL);
// OpenSSL can optionally load a config file which lists optional loadable modules and engines.
// We don't use them so we don't require the config. However some of our libs may call functions
// which attempt to load the config file, possibly resulting in an exit() or crash if it is missing
// or corrupt. Explicitly tell OpenSSL not to try to load the file. The result for our libs will be
// that the config appears to have been loaded and there are no modules/engines available.
OPENSSL_no_config();
}
~RNGState()
{
// Securely erase the memory used by the OpenSSL PRNG
RAND_cleanup();
// Shutdown OpenSSL library multithreading support
CRYPTO_set_locking_callback(nullptr);
}
/** Extract up to 32 bytes of entropy from the RNG state, mixing in new entropy from hasher.
*
* If this function has never been called with strong_seed = true, false is returned.
*/
bool MixExtract(unsigned char* out, size_t num, CSHA512&& hasher, bool strong_seed) noexcept
{
assert(num <= 32);
unsigned char buf[64];
static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size");
bool ret;
{
LOCK(m_mutex);
ret = (m_strongly_seeded |= strong_seed);
// Write the current state of the RNG into the hasher
hasher.Write(m_state, 32);
// Write a new counter number into the state
hasher.Write((const unsigned char*)&m_counter, sizeof(m_counter));
++m_counter;
// Finalize the hasher
hasher.Finalize(buf);
// Store the last 32 bytes of the hash output as new RNG state.
memcpy(m_state, buf + 32, 32);
}
// If desired, copy (up to) the first 32 bytes of the hash output as output.
if (num) {
assert(out != nullptr);
memcpy(out, buf, num);
}
// Best effort cleanup of internal state
hasher.Reset();
memory_cleanse(buf, 64);
return ret;
}
2019-01-10 18:19:50 -08:00
Mutex& GetOpenSSLMutex(int i) { return m_mutex_openssl[i]; }
};
RNGState& GetRNGState() noexcept
{
// This C++11 idiom relies on the guarantee that static variable are initialized
// on first call, even when multiple parallel calls are permitted.
2019-01-10 18:34:17 -08:00
static std::vector<RNGState, secure_allocator<RNGState>> g_rng(1);
return g_rng[0];
}
}
void LockingCallbackOpenSSL(int mode, int i, const char* file, int line) NO_THREAD_SAFETY_ANALYSIS
{
RNGState& rng = GetRNGState();
if (mode & CRYPTO_LOCK) {
2019-01-10 18:19:50 -08:00
rng.GetOpenSSLMutex(i).lock();
} else {
2019-01-10 18:19:50 -08:00
rng.GetOpenSSLMutex(i).unlock();
}
}
/* A note on the use of noexcept in the seeding functions below:
*
* None of the RNG code should ever throw any exception, with the sole exception
* of MilliSleep in SeedSleep, which can (and does) support interruptions which
* cause a boost::thread_interrupted to be thrown.
*
* This means that SeedSleep, and all functions that invoke it are throwing.
* However, we know that GetRandBytes() and GetStrongRandBytes() never trigger
* this sleeping logic, so they are noexcept. The same is true for all the
* GetRand*() functions that use GetRandBytes() indirectly.
*
* TODO: After moving away from interruptible boost-based thread management,
* everything can become noexcept here.
*/
static void SeedTimestamp(CSHA512& hasher) noexcept
{
int64_t perfcounter = GetPerformanceCounter();
hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter));
}
static void SeedFast(CSHA512& hasher) noexcept
{
unsigned char buffer[32];
// Stack pointer to indirectly commit to thread/callstack
const unsigned char* ptr = buffer;
hasher.Write((const unsigned char*)&ptr, sizeof(ptr));
// Hardware randomness is very fast when available; use it always.
bool have_hw_rand = GetHardwareRand(buffer);
if (have_hw_rand) hasher.Write(buffer, sizeof(buffer));
// High-precision timestamp
SeedTimestamp(hasher);
}
static void SeedSlow(CSHA512& hasher) noexcept
{
unsigned char buffer[32];
// Everything that the 'fast' seeder includes
SeedFast(hasher);
// OS randomness
GetOSRand(buffer);
hasher.Write(buffer, sizeof(buffer));
// OpenSSL RNG (for now)
RAND_bytes(buffer, sizeof(buffer));
hasher.Write(buffer, sizeof(buffer));
// High-precision timestamp.
//
// Note that we also commit to a timestamp in the Fast seeder, so we indirectly commit to a
// benchmark of all the entropy gathering sources in this function).
SeedTimestamp(hasher);
}
static void SeedSleep(CSHA512& hasher)
{
// Everything that the 'fast' seeder includes
SeedFast(hasher);
// High-precision timestamp
SeedTimestamp(hasher);
// Sleep for 1ms
MilliSleep(1);
// High-precision timestamp after sleeping (as we commit to both the time before and after, this measures the delay)
SeedTimestamp(hasher);
// Windows performance monitor data (once every 10 minutes)
RandAddSeedPerfmon(hasher);
}
static void SeedStartup(CSHA512& hasher) noexcept
{
#ifdef WIN32
RAND_screen();
#endif
// Everything that the 'slow' seeder includes.
SeedSlow(hasher);
// Windows performance monitor data.
RandAddSeedPerfmon(hasher);
}
enum class RNGLevel {
FAST, //!< Automatically called by GetRandBytes
SLOW, //!< Automatically called by GetStrongRandBytes
SLEEP, //!< Called by RandAddSeedSleep()
};
static void ProcRand(unsigned char* out, int num, RNGLevel level)
{
// Make sure the RNG is initialized first (as all Seed* function possibly need hwrand to be available).
RNGState& rng = GetRNGState();
assert(num <= 32);
CSHA512 hasher;
switch (level) {
case RNGLevel::FAST:
SeedFast(hasher);
break;
case RNGLevel::SLOW:
SeedSlow(hasher);
break;
case RNGLevel::SLEEP:
SeedSleep(hasher);
break;
}
// Combine with and update state
if (!rng.MixExtract(out, num, std::move(hasher), false)) {
// On the first invocation, also seed with SeedStartup().
CSHA512 startup_hasher;
SeedStartup(startup_hasher);
rng.MixExtract(out, num, std::move(startup_hasher), true);
}
// For anything but the 'fast' level, feed the resulting RNG output (after an additional hashing step) back into OpenSSL.
if (level != RNGLevel::FAST) {
unsigned char buf[64];
CSHA512().Write(out, num).Finalize(buf);
RAND_add(buf, sizeof(buf), num);
memory_cleanse(buf, 64);
}
}
void GetRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::FAST); }
void GetStrongRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::SLOW); }
void RandAddSeedSleep() { ProcRand(nullptr, 0, RNGLevel::SLEEP); }
uint64_t GetRand(uint64_t nMax) noexcept
{
return FastRandomContext().randrange(nMax);
}
int GetRandInt(int nMax) noexcept
{
return GetRand(nMax);
}
uint256 GetRandHash() noexcept
{
uint256 hash;
GetRandBytes((unsigned char*)&hash, sizeof(hash));
return hash;
}
2017-02-15 17:45:22 -08:00
void FastRandomContext::RandomSeed()
{
2017-02-15 17:45:22 -08:00
uint256 seed = GetRandHash();
rng.SetKey(seed.begin(), 32);
requires_seed = false;
}
uint256 FastRandomContext::rand256() noexcept
{
if (bytebuf_size < 32) {
FillByteBuffer();
}
uint256 ret;
memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32);
bytebuf_size -= 32;
return ret;
}
std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
{
if (requires_seed) RandomSeed();
std::vector<unsigned char> ret(len);
if (len > 0) {
rng.Output(&ret[0], len);
}
return ret;
}
FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
2017-02-15 17:45:22 -08:00
{
rng.SetKey(seed.begin(), 32);
}
bool Random_SanityCheck()
{
uint64_t start = GetPerformanceCounter();
/* This does not measure the quality of randomness, but it does test that
* OSRandom() overwrites all 32 bytes of the output given a maximum
* number of tries.
*/
static const ssize_t MAX_TRIES = 1024;
uint8_t data[NUM_OS_RANDOM_BYTES];
bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */
int num_overwritten;
int tries = 0;
/* Loop until all bytes have been overwritten at least once, or max number tries reached */
do {
memset(data, 0, NUM_OS_RANDOM_BYTES);
GetOSRand(data);
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
overwritten[x] |= (data[x] != 0);
}
num_overwritten = 0;
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
if (overwritten[x]) {
num_overwritten += 1;
}
}
tries += 1;
} while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */
// Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
std::this_thread::sleep_for(std::chrono::milliseconds(1));
uint64_t stop = GetPerformanceCounter();
if (stop == start) return false;
2017-05-05 11:45:37 -07:00
// We called GetPerformanceCounter. Use it as entropy.
CSHA512 to_add;
to_add.Write((const unsigned char*)&start, sizeof(start));
to_add.Write((const unsigned char*)&stop, sizeof(stop));
GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false);
2017-05-05 11:45:37 -07:00
return true;
}
2017-02-15 17:45:22 -08:00
FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0)
2017-02-15 17:45:22 -08:00
{
if (!fDeterministic) {
return;
}
uint256 seed;
rng.SetKey(seed.begin(), 32);
}
FastRandomContext& FastRandomContext::operator=(FastRandomContext&& from) noexcept
{
requires_seed = from.requires_seed;
rng = from.rng;
std::copy(std::begin(from.bytebuf), std::end(from.bytebuf), std::begin(bytebuf));
bytebuf_size = from.bytebuf_size;
bitbuf = from.bitbuf;
bitbuf_size = from.bitbuf_size;
from.requires_seed = true;
from.bytebuf_size = 0;
from.bitbuf_size = 0;
return *this;
}
void RandomInit()
{
// Invoke RNG code to trigger initialization (if not already performed)
ProcRand(nullptr, 0, RNGLevel::FAST);
ReportHardwareRand();
}