2022-12-24 23:49:50 +00:00
|
|
|
// Copyright (c) 2021-2022 The Bitcoin Core developers
|
2021-08-31 13:22:36 +01:00
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#include <netgroup.h>
|
2021-09-01 12:12:52 +01:00
|
|
|
|
2021-09-01 16:34:23 +01:00
|
|
|
#include <hash.h>
|
2021-09-01 15:55:32 +01:00
|
|
|
#include <util/asmap.h>
|
|
|
|
|
2021-09-01 16:34:23 +01:00
|
|
|
uint256 NetGroupManager::GetAsmapChecksum() const
|
|
|
|
{
|
|
|
|
if (!m_asmap.size()) return {};
|
|
|
|
|
|
|
|
return SerializeHash(m_asmap);
|
|
|
|
}
|
|
|
|
|
2021-09-01 12:12:52 +01:00
|
|
|
std::vector<unsigned char> NetGroupManager::GetGroup(const CNetAddr& address) const
|
|
|
|
{
|
2021-09-01 15:55:32 +01:00
|
|
|
std::vector<unsigned char> vchRet;
|
|
|
|
// If non-empty asmap is supplied and the address is IPv4/IPv6,
|
|
|
|
// return ASN to be used for bucketing.
|
|
|
|
uint32_t asn = GetMappedAS(address);
|
|
|
|
if (asn != 0) { // Either asmap was empty, or address has non-asmappable net class (e.g. TOR).
|
|
|
|
vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in the same bucket
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
vchRet.push_back((asn >> (8 * i)) & 0xFF);
|
|
|
|
}
|
|
|
|
return vchRet;
|
|
|
|
}
|
|
|
|
|
|
|
|
vchRet.push_back(address.GetNetClass());
|
|
|
|
int nStartByte{0};
|
|
|
|
int nBits{0};
|
|
|
|
|
|
|
|
if (address.IsLocal()) {
|
|
|
|
// all local addresses belong to the same group
|
|
|
|
} else if (address.IsInternal()) {
|
|
|
|
// All internal-usage addresses get their own group.
|
|
|
|
// Skip over the INTERNAL_IN_IPV6_PREFIX returned by CAddress::GetAddrBytes().
|
|
|
|
nStartByte = INTERNAL_IN_IPV6_PREFIX.size();
|
|
|
|
nBits = ADDR_INTERNAL_SIZE * 8;
|
|
|
|
} else if (!address.IsRoutable()) {
|
|
|
|
// all other unroutable addresses belong to the same group
|
|
|
|
} else if (address.HasLinkedIPv4()) {
|
|
|
|
// IPv4 addresses (and mapped IPv4 addresses) use /16 groups
|
|
|
|
uint32_t ipv4 = address.GetLinkedIPv4();
|
|
|
|
vchRet.push_back((ipv4 >> 24) & 0xFF);
|
|
|
|
vchRet.push_back((ipv4 >> 16) & 0xFF);
|
|
|
|
return vchRet;
|
|
|
|
} else if (address.IsTor() || address.IsI2P()) {
|
|
|
|
nBits = 4;
|
|
|
|
} else if (address.IsCJDNS()) {
|
|
|
|
// Treat in the same way as Tor and I2P because the address in all of
|
|
|
|
// them is "random" bytes (derived from a public key). However in CJDNS
|
|
|
|
// the first byte is a constant 0xfc, so the random bytes come after it.
|
|
|
|
// Thus skip the constant 8 bits at the start.
|
|
|
|
nBits = 12;
|
|
|
|
} else if (address.IsHeNet()) {
|
|
|
|
// for he.net, use /36 groups
|
|
|
|
nBits = 36;
|
|
|
|
} else {
|
|
|
|
// for the rest of the IPv6 network, use /32 groups
|
|
|
|
nBits = 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Push our address onto vchRet.
|
|
|
|
auto addr_bytes = address.GetAddrBytes();
|
|
|
|
const size_t num_bytes = nBits / 8;
|
|
|
|
vchRet.insert(vchRet.end(), addr_bytes.begin() + nStartByte, addr_bytes.begin() + nStartByte + num_bytes);
|
|
|
|
nBits %= 8;
|
|
|
|
// ...for the last byte, push nBits and for the rest of the byte push 1's
|
|
|
|
if (nBits > 0) {
|
|
|
|
assert(num_bytes < addr_bytes.size());
|
2022-04-25 15:08:38 +02:00
|
|
|
vchRet.push_back(addr_bytes[num_bytes + nStartByte] | ((1 << (8 - nBits)) - 1));
|
2021-09-01 15:55:32 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
return vchRet;
|
2021-09-01 12:12:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t NetGroupManager::GetMappedAS(const CNetAddr& address) const
|
|
|
|
{
|
2021-09-01 15:55:32 +01:00
|
|
|
uint32_t net_class = address.GetNetClass();
|
|
|
|
if (m_asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) {
|
|
|
|
return 0; // Indicates not found, safe because AS0 is reserved per RFC7607.
|
|
|
|
}
|
|
|
|
std::vector<bool> ip_bits(128);
|
|
|
|
if (address.HasLinkedIPv4()) {
|
|
|
|
// For lookup, treat as if it was just an IPv4 address (IPV4_IN_IPV6_PREFIX + IPv4 bits)
|
|
|
|
for (int8_t byte_i = 0; byte_i < 12; ++byte_i) {
|
|
|
|
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
|
|
|
|
ip_bits[byte_i * 8 + bit_i] = (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uint32_t ipv4 = address.GetLinkedIPv4();
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
|
|
ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Use all 128 bits of the IPv6 address otherwise
|
|
|
|
assert(address.IsIPv6());
|
|
|
|
auto addr_bytes = address.GetAddrBytes();
|
|
|
|
for (int8_t byte_i = 0; byte_i < 16; ++byte_i) {
|
|
|
|
uint8_t cur_byte = addr_bytes[byte_i];
|
|
|
|
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
|
|
|
|
ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uint32_t mapped_as = Interpret(m_asmap, ip_bits);
|
|
|
|
return mapped_as;
|
2021-09-01 12:12:52 +01:00
|
|
|
}
|