bitcoin/src/main.h

1790 lines
52 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
2012-02-07 11:28:30 -05:00
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_MAIN_H
#define BITCOIN_MAIN_H
#include "bignum.h"
#include "sync.h"
#include "net.h"
#include "script.h"
#include <list>
class CWallet;
class CBlock;
class CBlockIndex;
class CKeyItem;
class CReserveKey;
2011-05-14 16:20:30 -05:00
class CAddress;
class CInv;
class CRequestTracker;
class CNode;
static const unsigned int MAX_BLOCK_SIZE = 1000000;
static const unsigned int MAX_BLOCK_SIZE_GEN = MAX_BLOCK_SIZE/2;
static const unsigned int MAX_BLOCK_SIGOPS = MAX_BLOCK_SIZE/50;
static const unsigned int MAX_ORPHAN_TRANSACTIONS = MAX_BLOCK_SIZE/100;
static const unsigned int MAX_INV_SZ = 50000;
static const unsigned int MAX_BLOCKFILE_SIZE = 0x8000000; // 128 MiB
static const unsigned int BLOCKFILE_CHUNK_SIZE = 0x1000000; // 16 MiB
static const unsigned int UNDOFILE_CHUNK_SIZE = 0x100000; // 1 MiB
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
static const unsigned int MEMPOOL_HEIGHT = 0x7FFFFFFF;
static const int64 MIN_TX_FEE = 50000;
static const int64 MIN_RELAY_TX_FEE = 10000;
static const int64 MAX_MONEY = 21000000 * COIN;
inline bool MoneyRange(int64 nValue) { return (nValue >= 0 && nValue <= MAX_MONEY); }
static const int COINBASE_MATURITY = 100;
// Threshold for nLockTime: below this value it is interpreted as block number, otherwise as UNIX timestamp.
static const unsigned int LOCKTIME_THRESHOLD = 500000000; // Tue Nov 5 00:53:20 1985 UTC
#ifdef USE_UPNP
static const int fHaveUPnP = true;
#else
static const int fHaveUPnP = false;
#endif
extern CScript COINBASE_FLAGS;
extern CCriticalSection cs_main;
extern std::map<uint256, CBlockIndex*> mapBlockIndex;
extern uint256 hashGenesisBlock;
extern CBlockIndex* pindexGenesisBlock;
extern int nBestHeight;
extern CBigNum bnBestChainWork;
extern CBigNum bnBestInvalidWork;
extern uint256 hashBestChain;
extern CBlockIndex* pindexBest;
extern unsigned int nTransactionsUpdated;
extern uint64 nLastBlockTx;
extern uint64 nLastBlockSize;
extern const std::string strMessageMagic;
extern double dHashesPerSec;
extern int64 nHPSTimerStart;
extern int64 nTimeBestReceived;
extern CCriticalSection cs_setpwalletRegistered;
extern std::set<CWallet*> setpwalletRegistered;
extern unsigned char pchMessageStart[4];
extern bool fImporting;
// Settings
extern int64 nTransactionFee;
// Minimum disk space required - used in CheckDiskSpace()
static const uint64 nMinDiskSpace = 52428800;
2011-05-14 15:57:34 -05:00
class CReserveKey;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
class CCoinsDB;
class CChainDB;
class CDiskBlockPos;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
class CCoins;
class CTxUndo;
class CCoinsView;
class CCoinsViewCache;
void RegisterWallet(CWallet* pwalletIn);
void UnregisterWallet(CWallet* pwalletIn);
void SyncWithWallets(const uint256 &hash, const CTransaction& tx, const CBlock* pblock = NULL, bool fUpdate = false);
bool ProcessBlock(CNode* pfrom, CBlock* pblock);
bool CheckDiskSpace(uint64 nAdditionalBytes=0);
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly = false);
FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly = false);
bool LoadBlockIndex(bool fAllowNew=true);
void PrintBlockTree();
CBlockIndex* FindBlockByHeight(int nHeight);
bool ProcessMessages(CNode* pfrom);
bool SendMessages(CNode* pto, bool fSendTrickle);
void ThreadImport(void *parg);
void GenerateBitcoins(bool fGenerate, CWallet* pwallet);
CBlock* CreateNewBlock(CReserveKey& reservekey);
void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce);
void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1);
bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey);
bool CheckProofOfWork(uint256 hash, unsigned int nBits);
unsigned int ComputeMinWork(unsigned int nBase, int64 nTime);
int GetNumBlocksOfPeers();
bool IsInitialBlockDownload();
std::string GetWarnings(std::string strFor);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock, bool fAllowSlow = false);
bool GetWalletFile(CWallet* pwallet, std::string &strWalletFileOut);
class CDiskBlockPos
{
public:
int nFile;
unsigned int nPos;
IMPLEMENT_SERIALIZE(
READWRITE(VARINT(nFile));
READWRITE(VARINT(nPos));
)
friend bool operator==(const CDiskBlockPos &a, const CDiskBlockPos &b) {
return (a.nFile == b.nFile && a.nPos == b.nPos);
}
friend bool operator!=(const CDiskBlockPos &a, const CDiskBlockPos &b) {
return !(a == b);
}
void SetNull() { nFile = -1; nPos = 0; }
bool IsNull() const { return (nFile == -1); }
};
2012-03-26 16:48:23 +02:00
/** An inpoint - a combination of a transaction and an index n into its vin */
class CInPoint
{
public:
CTransaction* ptx;
unsigned int n;
CInPoint() { SetNull(); }
CInPoint(CTransaction* ptxIn, unsigned int nIn) { ptx = ptxIn; n = nIn; }
void SetNull() { ptx = NULL; n = (unsigned int) -1; }
bool IsNull() const { return (ptx == NULL && n == (unsigned int) -1); }
};
2012-03-26 16:48:23 +02:00
/** An outpoint - a combination of a transaction hash and an index n into its vout */
class COutPoint
{
public:
uint256 hash;
unsigned int n;
COutPoint() { SetNull(); }
COutPoint(uint256 hashIn, unsigned int nIn) { hash = hashIn; n = nIn; }
IMPLEMENT_SERIALIZE( READWRITE(FLATDATA(*this)); )
void SetNull() { hash = 0; n = (unsigned int) -1; }
bool IsNull() const { return (hash == 0 && n == (unsigned int) -1); }
friend bool operator<(const COutPoint& a, const COutPoint& b)
{
return (a.hash < b.hash || (a.hash == b.hash && a.n < b.n));
}
friend bool operator==(const COutPoint& a, const COutPoint& b)
{
return (a.hash == b.hash && a.n == b.n);
}
friend bool operator!=(const COutPoint& a, const COutPoint& b)
{
return !(a == b);
}
std::string ToString() const
{
return strprintf("COutPoint(%s, %u)", hash.ToString().substr(0,10).c_str(), n);
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
2012-03-26 16:48:23 +02:00
/** An input of a transaction. It contains the location of the previous
* transaction's output that it claims and a signature that matches the
* output's public key.
*/
class CTxIn
{
public:
COutPoint prevout;
CScript scriptSig;
unsigned int nSequence;
CTxIn()
{
nSequence = std::numeric_limits<unsigned int>::max();
}
explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits<unsigned int>::max())
{
prevout = prevoutIn;
scriptSig = scriptSigIn;
nSequence = nSequenceIn;
}
CTxIn(uint256 hashPrevTx, unsigned int nOut, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits<unsigned int>::max())
{
prevout = COutPoint(hashPrevTx, nOut);
scriptSig = scriptSigIn;
nSequence = nSequenceIn;
}
IMPLEMENT_SERIALIZE
(
READWRITE(prevout);
READWRITE(scriptSig);
READWRITE(nSequence);
)
bool IsFinal() const
{
return (nSequence == std::numeric_limits<unsigned int>::max());
}
friend bool operator==(const CTxIn& a, const CTxIn& b)
{
return (a.prevout == b.prevout &&
a.scriptSig == b.scriptSig &&
a.nSequence == b.nSequence);
}
friend bool operator!=(const CTxIn& a, const CTxIn& b)
{
return !(a == b);
}
std::string ToString() const
{
std::string str;
2012-03-18 23:14:03 +01:00
str += "CTxIn(";
str += prevout.ToString();
if (prevout.IsNull())
str += strprintf(", coinbase %s", HexStr(scriptSig).c_str());
else
str += strprintf(", scriptSig=%s", scriptSig.ToString().substr(0,24).c_str());
if (nSequence != std::numeric_limits<unsigned int>::max())
str += strprintf(", nSequence=%u", nSequence);
str += ")";
return str;
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
2012-03-26 16:48:23 +02:00
/** An output of a transaction. It contains the public key that the next input
* must be able to sign with to claim it.
*/
class CTxOut
{
public:
int64 nValue;
CScript scriptPubKey;
CTxOut()
{
SetNull();
}
CTxOut(int64 nValueIn, CScript scriptPubKeyIn)
{
nValue = nValueIn;
scriptPubKey = scriptPubKeyIn;
}
IMPLEMENT_SERIALIZE
(
READWRITE(nValue);
READWRITE(scriptPubKey);
)
void SetNull()
{
nValue = -1;
scriptPubKey.clear();
}
bool IsNull() const
{
return (nValue == -1);
}
uint256 GetHash() const
{
return SerializeHash(*this);
}
friend bool operator==(const CTxOut& a, const CTxOut& b)
{
return (a.nValue == b.nValue &&
a.scriptPubKey == b.scriptPubKey);
}
friend bool operator!=(const CTxOut& a, const CTxOut& b)
{
return !(a == b);
}
std::string ToString() const
{
if (scriptPubKey.size() < 6)
return "CTxOut(error)";
return strprintf("CTxOut(nValue=%"PRI64d".%08"PRI64d", scriptPubKey=%s)", nValue / COIN, nValue % COIN, scriptPubKey.ToString().substr(0,30).c_str());
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
enum GetMinFee_mode
{
GMF_BLOCK,
GMF_RELAY,
GMF_SEND,
};
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Modes for script/signature checking
enum CheckSig_mode
{
CS_NEVER, // never validate scripts
CS_AFTER_CHECKPOINT, // validate scripts after the last checkpoint
CS_ALWAYS // always validate scripts
};
2012-03-26 16:48:23 +02:00
/** The basic transaction that is broadcasted on the network and contained in
* blocks. A transaction can contain multiple inputs and outputs.
*/
class CTransaction
{
public:
static const int CURRENT_VERSION=1;
int nVersion;
std::vector<CTxIn> vin;
std::vector<CTxOut> vout;
unsigned int nLockTime;
// Denial-of-service detection:
mutable int nDoS;
bool DoS(int nDoSIn, bool fIn) const { nDoS += nDoSIn; return fIn; }
CTransaction()
{
SetNull();
}
IMPLEMENT_SERIALIZE
(
READWRITE(this->nVersion);
nVersion = this->nVersion;
READWRITE(vin);
READWRITE(vout);
READWRITE(nLockTime);
)
void SetNull()
{
nVersion = CTransaction::CURRENT_VERSION;
vin.clear();
vout.clear();
nLockTime = 0;
nDoS = 0; // Denial-of-service prevention
}
bool IsNull() const
{
return (vin.empty() && vout.empty());
}
uint256 GetHash() const
{
return SerializeHash(*this);
}
bool IsFinal(int nBlockHeight=0, int64 nBlockTime=0) const
{
// Time based nLockTime implemented in 0.1.6
if (nLockTime == 0)
return true;
if (nBlockHeight == 0)
nBlockHeight = nBestHeight;
if (nBlockTime == 0)
nBlockTime = GetAdjustedTime();
if ((int64)nLockTime < ((int64)nLockTime < LOCKTIME_THRESHOLD ? (int64)nBlockHeight : nBlockTime))
return true;
BOOST_FOREACH(const CTxIn& txin, vin)
if (!txin.IsFinal())
return false;
return true;
}
bool IsNewerThan(const CTransaction& old) const
{
if (vin.size() != old.vin.size())
return false;
for (unsigned int i = 0; i < vin.size(); i++)
if (vin[i].prevout != old.vin[i].prevout)
return false;
bool fNewer = false;
unsigned int nLowest = std::numeric_limits<unsigned int>::max();
for (unsigned int i = 0; i < vin.size(); i++)
{
if (vin[i].nSequence != old.vin[i].nSequence)
{
if (vin[i].nSequence <= nLowest)
{
fNewer = false;
nLowest = vin[i].nSequence;
}
if (old.vin[i].nSequence < nLowest)
{
fNewer = true;
nLowest = old.vin[i].nSequence;
}
}
}
return fNewer;
}
bool IsCoinBase() const
{
return (vin.size() == 1 && vin[0].prevout.IsNull());
}
/** Check for standard transaction types
@return True if all outputs (scriptPubKeys) use only standard transaction forms
*/
bool IsStandard() const;
/** Check for standard transaction types
@param[in] mapInputs Map of previous transactions that have outputs we're spending
@return True if all inputs (scriptSigs) use only standard transaction forms
@see CTransaction::FetchInputs
*/
bool AreInputsStandard(CCoinsViewCache& mapInputs) const;
/** Count ECDSA signature operations the old-fashioned (pre-0.6) way
@return number of sigops this transaction's outputs will produce when spent
@see CTransaction::FetchInputs
*/
unsigned int GetLegacySigOpCount() const;
/** Count ECDSA signature operations in pay-to-script-hash inputs.
@param[in] mapInputs Map of previous transactions that have outputs we're spending
@return maximum number of sigops required to validate this transaction's inputs
@see CTransaction::FetchInputs
*/
unsigned int GetP2SHSigOpCount(CCoinsViewCache& mapInputs) const;
/** Amount of bitcoins spent by this transaction.
@return sum of all outputs (note: does not include fees)
*/
int64 GetValueOut() const
{
int64 nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, vout)
{
nValueOut += txout.nValue;
if (!MoneyRange(txout.nValue) || !MoneyRange(nValueOut))
throw std::runtime_error("CTransaction::GetValueOut() : value out of range");
}
return nValueOut;
}
/** Amount of bitcoins coming in to this transaction
Note that lightweight clients may not know anything besides the hash of previous transactions,
so may not be able to calculate this.
@param[in] mapInputs Map of previous transactions that have outputs we're spending
@return Sum of value of all inputs (scriptSigs)
@see CTransaction::FetchInputs
*/
int64 GetValueIn(CCoinsViewCache& mapInputs) const;
static bool AllowFree(double dPriority)
{
// Large (in bytes) low-priority (new, small-coin) transactions
// need a fee.
return dPriority > COIN * 144 / 250;
}
int64 GetMinFee(unsigned int nBlockSize=1, bool fAllowFree=true, enum GetMinFee_mode mode=GMF_BLOCK) const;
friend bool operator==(const CTransaction& a, const CTransaction& b)
{
return (a.nVersion == b.nVersion &&
a.vin == b.vin &&
a.vout == b.vout &&
a.nLockTime == b.nLockTime);
}
friend bool operator!=(const CTransaction& a, const CTransaction& b)
{
return !(a == b);
}
std::string ToString() const
{
std::string str;
str += strprintf("CTransaction(hash=%s, ver=%d, vin.size=%"PRIszu", vout.size=%"PRIszu", nLockTime=%u)\n",
GetHash().ToString().substr(0,10).c_str(),
nVersion,
vin.size(),
vout.size(),
nLockTime);
for (unsigned int i = 0; i < vin.size(); i++)
str += " " + vin[i].ToString() + "\n";
for (unsigned int i = 0; i < vout.size(); i++)
str += " " + vout[i].ToString() + "\n";
return str;
}
void print() const
{
printf("%s", ToString().c_str());
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Do all possible client-mode checks
bool ClientCheckInputs() const;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Check whether all prevouts of this transaction are present in the UTXO set represented by view
bool HaveInputs(CCoinsViewCache &view) const;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Check whether all inputs of this transaction are valid (no double spends, scripts & sigs, amounts)
// This does not modify the UTXO set
bool CheckInputs(CCoinsViewCache &view, enum CheckSig_mode csmode, bool fStrictPayToScriptHash=true, bool fStrictEncodings=true) const;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Apply the effects of this transaction on the UTXO set represented by view
bool UpdateCoins(CCoinsViewCache &view, CTxUndo &txundo, int nHeight, const uint256 &txhash) const;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Context-independent validity checks
bool CheckTransaction() const;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Try to accept this transaction into the memory pool
bool AcceptToMemoryPool(bool fCheckInputs=true, bool* pfMissingInputs=NULL);
protected:
static const CTxOut &GetOutputFor(const CTxIn& input, CCoinsViewCache& mapInputs);
};
/** wrapper for CTxOut that provides a more compact serialization */
class CTxOutCompressor
{
private:
CTxOut &txout;
public:
static uint64 CompressAmount(uint64 nAmount);
static uint64 DecompressAmount(uint64 nAmount);
CTxOutCompressor(CTxOut &txoutIn) : txout(txoutIn) { }
IMPLEMENT_SERIALIZE(({
if (!fRead) {
uint64 nVal = CompressAmount(txout.nValue);
READWRITE(VARINT(nVal));
} else {
uint64 nVal = 0;
READWRITE(VARINT(nVal));
txout.nValue = DecompressAmount(nVal);
}
CScriptCompressor cscript(REF(txout.scriptPubKey));
READWRITE(cscript);
});)
};
/** Undo information for a CTxIn
*
* Contains the prevout's CTxOut being spent, and if this was the
* last output of the affected transaction, its metadata as well
* (coinbase or not, height, transaction version)
*/
class CTxInUndo
{
public:
CTxOut txout; // the txout data before being spent
bool fCoinBase; // if the outpoint was the last unspent: whether it belonged to a coinbase
unsigned int nHeight; // if the outpoint was the last unspent: its height
int nVersion; // if the outpoint was the last unspent: its version
CTxInUndo() : txout(), fCoinBase(false), nHeight(0), nVersion(0) {}
CTxInUndo(const CTxOut &txoutIn, bool fCoinBaseIn = false, unsigned int nHeightIn = 0, int nVersionIn = 0) : txout(txoutIn), fCoinBase(fCoinBaseIn), nHeight(nHeightIn), nVersion(nVersionIn) { }
unsigned int GetSerializeSize(int nType, int nVersion) const {
return ::GetSerializeSize(VARINT(nHeight*2+(fCoinBase ? 1 : 0)), nType, nVersion) +
(nHeight > 0 ? ::GetSerializeSize(VARINT(this->nVersion), nType, nVersion) : 0) +
::GetSerializeSize(CTxOutCompressor(REF(txout)), nType, nVersion);
}
template<typename Stream>
void Serialize(Stream &s, int nType, int nVersion) const {
::Serialize(s, VARINT(nHeight*2+(fCoinBase ? 1 : 0)), nType, nVersion);
if (nHeight > 0)
::Serialize(s, VARINT(this->nVersion), nType, nVersion);
::Serialize(s, CTxOutCompressor(REF(txout)), nType, nVersion);
}
template<typename Stream>
void Unserialize(Stream &s, int nType, int nVersion) {
unsigned int nCode = 0;
::Unserialize(s, VARINT(nCode), nType, nVersion);
nHeight = nCode / 2;
fCoinBase = nCode & 1;
if (nHeight > 0)
::Unserialize(s, VARINT(this->nVersion), nType, nVersion);
::Unserialize(s, REF(CTxOutCompressor(REF(txout))), nType, nVersion);
}
};
/** Undo information for a CTransaction */
class CTxUndo
{
public:
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// undo information for all txins
std::vector<CTxInUndo> vprevout;
IMPLEMENT_SERIALIZE(
READWRITE(vprevout);
)
};
/** Undo information for a CBlock */
class CBlockUndo
{
public:
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
std::vector<CTxUndo> vtxundo; // for all but the coinbase
IMPLEMENT_SERIALIZE(
READWRITE(vtxundo);
)
bool WriteToDisk(CDiskBlockPos &pos)
{
// Open history file to append
CAutoFile fileout = CAutoFile(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
if (!fileout)
return error("CBlockUndo::WriteToDisk() : OpenUndoFile failed");
// Write index header
unsigned int nSize = fileout.GetSerializeSize(*this);
fileout << FLATDATA(pchMessageStart) << nSize;
// Write undo data
long fileOutPos = ftell(fileout);
if (fileOutPos < 0)
return error("CBlock::WriteToDisk() : ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << *this;
// Flush stdio buffers and commit to disk before returning
fflush(fileout);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (!IsInitialBlockDownload())
FileCommit(fileout);
return true;
}
};
/** pruned version of CTransaction: only retains metadata and unspent transaction outputs
*
* Serialized format:
* - VARINT(nVersion)
* - VARINT(nCode)
* - unspentness bitvector, for vout[2] and further; least significant byte first
* - the non-spent CTxOuts (via CTxOutCompressor)
* - VARINT(nHeight)
*
* The nCode value consists of:
* - bit 1: IsCoinBase()
* - bit 2: vout[0] is not spent
* - bit 4: vout[1] is not spent
* - The higher bits encode N, the number of non-zero bytes in the following bitvector.
* - In case both bit 2 and bit 4 are unset, they encode N-1, as there must be at
* least one non-spent output).
*
* Example: 0104835800816115944e077fe7c803cfa57f29b36bf87c1d358bb85e
* <><><--------------------------------------------><---->
* | \ | /
* version code vout[1] height
*
* - version = 1
* - code = 4 (vout[1] is not spent, and 0 non-zero bytes of bitvector follow)
* - unspentness bitvector: as 0 non-zero bytes follow, it has length 0
* - vout[1]: 835800816115944e077fe7c803cfa57f29b36bf87c1d35
* * 8358: compact amount representation for 60000000000 (600 BTC)
* * 00: special txout type pay-to-pubkey-hash
* * 816115944e077fe7c803cfa57f29b36bf87c1d35: address uint160
* - height = 203998
*
*
* Example: 0109044086ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4eebbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa486af3b
* <><><--><--------------------------------------------------><----------------------------------------------><---->
* / \ \ | | /
* version code unspentness vout[4] vout[16] height
*
* - version = 1
* - code = 9 (coinbase, neither vout[0] or vout[1] are unspent,
* 2 (1, +1 because both bit 2 and bit 4 are unset) non-zero bitvector bytes follow)
* - unspentness bitvector: bits 2 (0x04) and 14 (0x4000) are set, so vout[2+2] and vout[14+2] are unspent
* - vout[4]: 86ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4ee
* * 86ef97d579: compact amount representation for 234925952 (2.35 BTC)
* * 00: special txout type pay-to-pubkey-hash
* * 61b01caab50f1b8e9c50a5057eb43c2d9563a4ee: address uint160
* - vout[16]: bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4
* * bbd123: compact amount representation for 110397 (0.001 BTC)
* * 00: special txout type pay-to-pubkey-hash
* * 8c988f1a4a4de2161e0f50aac7f17e7f9555caa4: address uint160
* - height = 120891
*/
class CCoins
{
public:
// whether transaction is a coinbase
bool fCoinBase;
// unspent transaction outputs; spent outputs are .IsNull(); spent outputs at the end of the array are dropped
std::vector<CTxOut> vout;
// at which height this transaction was included in the active blockchain
int nHeight;
// version of the CTransaction; accesses to this value should probably check for nHeight as well,
// as new tx version will probably only be introduced at certain heights
int nVersion;
// construct a CCoins from a CTransaction, at a given height
CCoins(const CTransaction &tx, int nHeightIn) : fCoinBase(tx.IsCoinBase()), vout(tx.vout), nHeight(nHeightIn), nVersion(tx.nVersion) { }
// empty constructor
CCoins() : fCoinBase(false), vout(0), nHeight(0), nVersion(0) { }
// remove spent outputs at the end of vout
void Cleanup() {
while (vout.size() > 0 && vout.back().IsNull())
vout.pop_back();
}
// equality test
friend bool operator==(const CCoins &a, const CCoins &b) {
return a.fCoinBase == b.fCoinBase &&
a.nHeight == b.nHeight &&
a.nVersion == b.nVersion &&
a.vout == b.vout;
}
friend bool operator!=(const CCoins &a, const CCoins &b) {
return !(a == b);
}
// calculate number of bytes for the bitmask, and its number of non-zero bytes
// each bit in the bitmask represents the availability of one output, but the
// availabilities of the first two outputs are encoded separately
void CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const {
unsigned int nLastUsedByte = 0;
for (unsigned int b = 0; 2+b*8 < vout.size(); b++) {
bool fZero = true;
for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++) {
if (!vout[2+b*8+i].IsNull()) {
fZero = false;
continue;
}
}
if (!fZero) {
nLastUsedByte = b + 1;
nNonzeroBytes++;
}
}
nBytes += nLastUsedByte;
}
bool IsCoinBase() const {
return fCoinBase;
}
unsigned int GetSerializeSize(int nType, int nVersion) const {
unsigned int nSize = 0;
unsigned int nMaskSize = 0, nMaskCode = 0;
CalcMaskSize(nMaskSize, nMaskCode);
bool fFirst = vout.size() > 0 && !vout[0].IsNull();
bool fSecond = vout.size() > 1 && !vout[1].IsNull();
assert(fFirst || fSecond || nMaskCode);
unsigned int nCode = 8*(nMaskCode - (fFirst || fSecond ? 0 : 1)) + (fCoinBase ? 1 : 0) + (fFirst ? 2 : 0) + (fSecond ? 4 : 0);
// version
nSize += ::GetSerializeSize(VARINT(this->nVersion), nType, nVersion);
// size of header code
nSize += ::GetSerializeSize(VARINT(nCode), nType, nVersion);
// spentness bitmask
nSize += nMaskSize;
// txouts themself
for (unsigned int i = 0; i < vout.size(); i++)
if (!vout[i].IsNull())
nSize += ::GetSerializeSize(CTxOutCompressor(REF(vout[i])), nType, nVersion);
// height
nSize += ::GetSerializeSize(VARINT(nHeight), nType, nVersion);
return nSize;
}
template<typename Stream>
void Serialize(Stream &s, int nType, int nVersion) const {
unsigned int nMaskSize = 0, nMaskCode = 0;
CalcMaskSize(nMaskSize, nMaskCode);
bool fFirst = vout.size() > 0 && !vout[0].IsNull();
bool fSecond = vout.size() > 1 && !vout[1].IsNull();
assert(fFirst || fSecond || nMaskCode);
unsigned int nCode = 8*(nMaskCode - (fFirst || fSecond ? 0 : 1)) + (fCoinBase ? 1 : 0) + (fFirst ? 2 : 0) + (fSecond ? 4 : 0);
// version
::Serialize(s, VARINT(this->nVersion), nType, nVersion);
// header code
::Serialize(s, VARINT(nCode), nType, nVersion);
// spentness bitmask
for (unsigned int b = 0; b<nMaskSize; b++) {
unsigned char chAvail = 0;
for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++)
if (!vout[2+b*8+i].IsNull())
chAvail |= (1 << i);
::Serialize(s, chAvail, nType, nVersion);
}
// txouts themself
for (unsigned int i = 0; i < vout.size(); i++) {
if (!vout[i].IsNull())
::Serialize(s, CTxOutCompressor(REF(vout[i])), nType, nVersion);
}
// coinbase height
::Serialize(s, VARINT(nHeight), nType, nVersion);
}
template<typename Stream>
void Unserialize(Stream &s, int nType, int nVersion) {
unsigned int nCode = 0;
// version
::Unserialize(s, VARINT(this->nVersion), nType, nVersion);
// header code
::Unserialize(s, VARINT(nCode), nType, nVersion);
fCoinBase = nCode & 1;
std::vector<bool> vAvail(2, false);
vAvail[0] = nCode & 2;
vAvail[1] = nCode & 4;
unsigned int nMaskCode = (nCode / 8) + ((nCode & 6) != 0 ? 0 : 1);
// spentness bitmask
while (nMaskCode > 0) {
unsigned char chAvail = 0;
::Unserialize(s, chAvail, nType, nVersion);
for (unsigned int p = 0; p < 8; p++) {
bool f = (chAvail & (1 << p)) != 0;
vAvail.push_back(f);
}
if (chAvail != 0)
nMaskCode--;
}
// txouts themself
vout.assign(vAvail.size(), CTxOut());
for (unsigned int i = 0; i < vAvail.size(); i++) {
if (vAvail[i])
::Unserialize(s, REF(CTxOutCompressor(vout[i])), nType, nVersion);
}
// coinbase height
::Unserialize(s, VARINT(nHeight), nType, nVersion);
Cleanup();
}
// mark an outpoint spent, and construct undo information
bool Spend(const COutPoint &out, CTxInUndo &undo) {
if (out.n >= vout.size())
return false;
if (vout[out.n].IsNull())
return false;
undo = CTxInUndo(vout[out.n]);
vout[out.n].SetNull();
Cleanup();
if (vout.size() == 0) {
undo.nHeight = nHeight;
undo.fCoinBase = fCoinBase;
undo.nVersion = this->nVersion;
}
return true;
}
// mark a vout spent
bool Spend(int nPos) {
CTxInUndo undo;
COutPoint out(0, nPos);
return Spend(out, undo);
}
// check whether a particular output is still available
bool IsAvailable(unsigned int nPos) const {
return (nPos < vout.size() && !vout[nPos].IsNull());
}
// check whether the entire CCoins is spent
// note that only !IsPruned() CCoins can be serialized
bool IsPruned() const {
BOOST_FOREACH(const CTxOut &out, vout)
if (!out.IsNull())
return false;
return true;
}
};
2012-03-26 16:48:23 +02:00
/** A transaction with a merkle branch linking it to the block chain. */
class CMerkleTx : public CTransaction
{
public:
uint256 hashBlock;
std::vector<uint256> vMerkleBranch;
int nIndex;
// memory only
mutable bool fMerkleVerified;
CMerkleTx()
{
Init();
}
CMerkleTx(const CTransaction& txIn) : CTransaction(txIn)
{
Init();
}
void Init()
{
hashBlock = 0;
nIndex = -1;
fMerkleVerified = false;
}
IMPLEMENT_SERIALIZE
(
nSerSize += SerReadWrite(s, *(CTransaction*)this, nType, nVersion, ser_action);
nVersion = this->nVersion;
READWRITE(hashBlock);
READWRITE(vMerkleBranch);
READWRITE(nIndex);
)
int SetMerkleBranch(const CBlock* pblock=NULL);
2011-07-11 21:49:45 +02:00
int GetDepthInMainChain(CBlockIndex* &pindexRet) const;
int GetDepthInMainChain() const { CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet); }
bool IsInMainChain() const { return GetDepthInMainChain() > 0; }
int GetBlocksToMaturity() const;
bool AcceptToMemoryPool(bool fCheckInputs=true);
};
2012-03-26 16:48:23 +02:00
/** Nodes collect new transactions into a block, hash them into a hash tree,
* and scan through nonce values to make the block's hash satisfy proof-of-work
* requirements. When they solve the proof-of-work, they broadcast the block
* to everyone and the block is added to the block chain. The first transaction
* in the block is a special one that creates a new coin owned by the creator
* of the block.
*/
class CBlock
{
public:
// header
static const int CURRENT_VERSION=2;
int nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
// network and disk
std::vector<CTransaction> vtx;
// memory only
mutable std::vector<uint256> vMerkleTree;
// Denial-of-service detection:
mutable int nDoS;
bool DoS(int nDoSIn, bool fIn) const { nDoS += nDoSIn; return fIn; }
CBlock()
{
SetNull();
}
IMPLEMENT_SERIALIZE
(
READWRITE(this->nVersion);
nVersion = this->nVersion;
READWRITE(hashPrevBlock);
READWRITE(hashMerkleRoot);
READWRITE(nTime);
READWRITE(nBits);
READWRITE(nNonce);
// ConnectBlock depends on vtx being last so it can calculate offset
if (!(nType & (SER_GETHASH|SER_BLOCKHEADERONLY)))
READWRITE(vtx);
else if (fRead)
const_cast<CBlock*>(this)->vtx.clear();
)
void SetNull()
{
nVersion = CBlock::CURRENT_VERSION;
hashPrevBlock = 0;
hashMerkleRoot = 0;
nTime = 0;
nBits = 0;
nNonce = 0;
vtx.clear();
vMerkleTree.clear();
nDoS = 0;
}
bool IsNull() const
{
return (nBits == 0);
}
uint256 GetHash() const
{
return Hash(BEGIN(nVersion), END(nNonce));
}
int64 GetBlockTime() const
{
return (int64)nTime;
}
void UpdateTime(const CBlockIndex* pindexPrev);
uint256 BuildMerkleTree() const
{
vMerkleTree.clear();
BOOST_FOREACH(const CTransaction& tx, vtx)
vMerkleTree.push_back(tx.GetHash());
int j = 0;
for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
{
for (int i = 0; i < nSize; i += 2)
{
int i2 = std::min(i+1, nSize-1);
vMerkleTree.push_back(Hash(BEGIN(vMerkleTree[j+i]), END(vMerkleTree[j+i]),
BEGIN(vMerkleTree[j+i2]), END(vMerkleTree[j+i2])));
}
j += nSize;
}
return (vMerkleTree.empty() ? 0 : vMerkleTree.back());
}
const uint256 &GetTxHash(unsigned int nIndex) const {
assert(vMerkleTree.size() > 0); // BuildMerkleTree must have been called first
assert(nIndex < vtx.size());
return vMerkleTree[nIndex];
}
std::vector<uint256> GetMerkleBranch(int nIndex) const
{
if (vMerkleTree.empty())
BuildMerkleTree();
std::vector<uint256> vMerkleBranch;
int j = 0;
for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
{
int i = std::min(nIndex^1, nSize-1);
vMerkleBranch.push_back(vMerkleTree[j+i]);
nIndex >>= 1;
j += nSize;
}
return vMerkleBranch;
}
static uint256 CheckMerkleBranch(uint256 hash, const std::vector<uint256>& vMerkleBranch, int nIndex)
{
if (nIndex == -1)
return 0;
BOOST_FOREACH(const uint256& otherside, vMerkleBranch)
{
if (nIndex & 1)
hash = Hash(BEGIN(otherside), END(otherside), BEGIN(hash), END(hash));
else
hash = Hash(BEGIN(hash), END(hash), BEGIN(otherside), END(otherside));
nIndex >>= 1;
}
return hash;
}
bool WriteToDisk(CDiskBlockPos &pos)
{
// Open history file to append
CAutoFile fileout = CAutoFile(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (!fileout)
return error("CBlock::WriteToDisk() : OpenBlockFile failed");
// Write index header
unsigned int nSize = fileout.GetSerializeSize(*this);
fileout << FLATDATA(pchMessageStart) << nSize;
// Write block
long fileOutPos = ftell(fileout);
if (fileOutPos < 0)
return error("CBlock::WriteToDisk() : ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << *this;
// Flush stdio buffers and commit to disk before returning
fflush(fileout);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (!IsInitialBlockDownload())
FileCommit(fileout);
return true;
}
bool ReadFromDisk(const CDiskBlockPos &pos, bool fReadTransactions = true)
{
SetNull();
// Open history file to read
CAutoFile filein = CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (!filein)
return error("CBlock::ReadFromDisk() : OpenBlockFile failed");
if (!fReadTransactions)
filein.nType |= SER_BLOCKHEADERONLY;
// Read block
try {
filein >> *this;
}
catch (std::exception &e) {
return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__);
}
// Check the header
if (!CheckProofOfWork(GetHash(), nBits))
return error("CBlock::ReadFromDisk() : errors in block header");
return true;
}
void print() const
{
printf("CBlock(hash=%s, ver=%d, hashPrevBlock=%s, hashMerkleRoot=%s, nTime=%u, nBits=%08x, nNonce=%u, vtx=%"PRIszu")\n",
GetHash().ToString().substr(0,20).c_str(),
nVersion,
hashPrevBlock.ToString().substr(0,20).c_str(),
hashMerkleRoot.ToString().substr(0,10).c_str(),
nTime, nBits, nNonce,
vtx.size());
for (unsigned int i = 0; i < vtx.size(); i++)
{
printf(" ");
vtx[i].print();
}
printf(" vMerkleTree: ");
for (unsigned int i = 0; i < vMerkleTree.size(); i++)
printf("%s ", vMerkleTree[i].ToString().substr(0,10).c_str());
printf("\n");
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Undo the effects of this block (with given index) on the UTXO set represented by coins
bool DisconnectBlock(CBlockIndex *pindex, CCoinsViewCache &coins);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Apply the effects of this block (with given index) on the UTXO set represented by coins
bool ConnectBlock(CBlockIndex *pindex, CCoinsViewCache &coins, bool fJustCheck=false);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Read a block from disk
bool ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions=true);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Make this block (with given index) the new tip of the active block chain
bool SetBestChain(CBlockIndex* pindexNew);
// Add this block to the block index, and if necessary, switch the active block chain to this
bool AddToBlockIndex(const CDiskBlockPos &pos);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Context-independent validity checks
bool CheckBlock(bool fCheckPOW=true, bool fCheckMerkleRoot=true) const;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
// Store block on disk
bool AcceptBlock();
};
class CBlockFileInfo
{
public:
unsigned int nBlocks; // number of blocks stored in file
unsigned int nSize; // number of used bytes of block file
unsigned int nUndoSize; // number of used bytes in the undo file
unsigned int nHeightFirst; // lowest height of block in file
unsigned int nHeightLast; // highest height of block in file
uint64 nTimeFirst; // earliest time of block in file
uint64 nTimeLast; // latest time of block in file
IMPLEMENT_SERIALIZE(
READWRITE(VARINT(nBlocks));
READWRITE(VARINT(nSize));
READWRITE(VARINT(nUndoSize));
READWRITE(VARINT(nHeightFirst));
READWRITE(VARINT(nHeightLast));
READWRITE(VARINT(nTimeFirst));
READWRITE(VARINT(nTimeLast));
)
void SetNull() {
nBlocks = 0;
nSize = 0;
nUndoSize = 0;
nHeightFirst = 0;
nHeightLast = 0;
nTimeFirst = 0;
nTimeLast = 0;
}
CBlockFileInfo() {
SetNull();
}
std::string ToString() const {
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
return strprintf("CBlockFileInfo(blocks=%u, size=%u, heights=%u..%u, time=%s..%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst).c_str(), DateTimeStrFormat("%Y-%m-%d", nTimeLast).c_str());
}
// update statistics (does not update nSize)
void AddBlock(unsigned int nHeightIn, uint64 nTimeIn) {
if (nBlocks==0 || nHeightFirst > nHeightIn)
nHeightFirst = nHeightIn;
if (nBlocks==0 || nTimeFirst > nTimeIn)
nTimeFirst = nTimeIn;
nBlocks++;
if (nHeightIn > nHeightFirst)
nHeightLast = nHeightIn;
if (nTimeIn > nTimeLast)
nTimeLast = nTimeIn;
}
};
extern CCriticalSection cs_LastBlockFile;
extern CBlockFileInfo infoLastBlockFile;
extern int nLastBlockFile;
2012-03-26 16:48:23 +02:00
/** The block chain is a tree shaped structure starting with the
* genesis block at the root, with each block potentially having multiple
* candidates to be the next block. pprev and pnext link a path through the
* main/longest chain. A blockindex may have multiple pprev pointing back
* to it, but pnext will only point forward to the longest branch, or will
* be null if the block is not part of the longest chain.
*/
class CBlockIndex
{
public:
const uint256* phashBlock;
CBlockIndex* pprev;
CBlockIndex* pnext;
int nHeight;
CDiskBlockPos pos;
unsigned int nUndoPos;
CBigNum bnChainWork;
// block header
int nVersion;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
CBlockIndex()
{
phashBlock = NULL;
pprev = NULL;
pnext = NULL;
nHeight = 0;
pos.SetNull();
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
nUndoPos = 0;
bnChainWork = 0;
nVersion = 0;
hashMerkleRoot = 0;
nTime = 0;
nBits = 0;
nNonce = 0;
}
CBlockIndex(CBlock& block)
{
phashBlock = NULL;
pprev = NULL;
pnext = NULL;
nHeight = 0;
pos.SetNull();
nUndoPos = 0;
bnChainWork = 0;
nVersion = block.nVersion;
hashMerkleRoot = block.hashMerkleRoot;
nTime = block.nTime;
nBits = block.nBits;
nNonce = block.nNonce;
}
CDiskBlockPos GetBlockPos() const {
return pos;
}
CDiskBlockPos GetUndoPos() const {
CDiskBlockPos ret = pos;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
if (nUndoPos == 0)
ret.SetNull();
else
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
ret.nPos = nUndoPos - 1;
return ret;
}
CBlock GetBlockHeader() const
{
CBlock block;
block.nVersion = nVersion;
if (pprev)
block.hashPrevBlock = pprev->GetBlockHash();
block.hashMerkleRoot = hashMerkleRoot;
block.nTime = nTime;
block.nBits = nBits;
block.nNonce = nNonce;
return block;
}
uint256 GetBlockHash() const
{
return *phashBlock;
}
int64 GetBlockTime() const
{
return (int64)nTime;
}
CBigNum GetBlockWork() const
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
if (bnTarget <= 0)
return 0;
return (CBigNum(1)<<256) / (bnTarget+1);
}
bool IsInMainChain() const
{
return (pnext || this == pindexBest);
}
bool CheckIndex() const
{
return CheckProofOfWork(GetBlockHash(), nBits);
}
enum { nMedianTimeSpan=11 };
int64 GetMedianTimePast() const
{
int64 pmedian[nMedianTimeSpan];
int64* pbegin = &pmedian[nMedianTimeSpan];
int64* pend = &pmedian[nMedianTimeSpan];
const CBlockIndex* pindex = this;
for (int i = 0; i < nMedianTimeSpan && pindex; i++, pindex = pindex->pprev)
*(--pbegin) = pindex->GetBlockTime();
std::sort(pbegin, pend);
return pbegin[(pend - pbegin)/2];
}
int64 GetMedianTime() const
{
const CBlockIndex* pindex = this;
for (int i = 0; i < nMedianTimeSpan/2; i++)
{
if (!pindex->pnext)
return GetBlockTime();
pindex = pindex->pnext;
}
return pindex->GetMedianTimePast();
}
/**
* Returns true if there are nRequired or more blocks of minVersion or above
* in the last nToCheck blocks, starting at pstart and going backwards.
*/
static bool IsSuperMajority(int minVersion, const CBlockIndex* pstart,
unsigned int nRequired, unsigned int nToCheck);
std::string ToString() const
{
return strprintf("CBlockIndex(pprev=%p, pnext=%p, nHeight=%d, merkle=%s, hashBlock=%s)",
pprev, pnext, nHeight,
hashMerkleRoot.ToString().substr(0,10).c_str(),
GetBlockHash().ToString().substr(0,20).c_str());
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
2012-03-26 16:48:23 +02:00
/** Used to marshal pointers into hashes for db storage. */
class CDiskBlockIndex : public CBlockIndex
{
public:
uint256 hashPrev;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
CDiskBlockIndex() {
hashPrev = 0;
}
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
explicit CDiskBlockIndex(CBlockIndex* pindex) : CBlockIndex(*pindex) {
hashPrev = (pprev ? pprev->GetBlockHash() : 0);
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(nHeight);
READWRITE(pos);
READWRITE(nUndoPos);
// block header
READWRITE(this->nVersion);
READWRITE(hashPrev);
READWRITE(hashMerkleRoot);
READWRITE(nTime);
READWRITE(nBits);
READWRITE(nNonce);
)
uint256 GetBlockHash() const
{
CBlock block;
block.nVersion = nVersion;
block.hashPrevBlock = hashPrev;
block.hashMerkleRoot = hashMerkleRoot;
block.nTime = nTime;
block.nBits = nBits;
block.nNonce = nNonce;
return block.GetHash();
}
std::string ToString() const
{
std::string str = "CDiskBlockIndex(";
str += CBlockIndex::ToString();
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
str += strprintf("\n hashBlock=%s, hashPrev=%s)",
GetBlockHash().ToString().c_str(),
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
hashPrev.ToString().substr(0,20).c_str());
return str;
}
void print() const
{
printf("%s\n", ToString().c_str());
}
};
2012-03-26 16:48:23 +02:00
/** Describes a place in the block chain to another node such that if the
* other node doesn't have the same branch, it can find a recent common trunk.
* The further back it is, the further before the fork it may be.
*/
class CBlockLocator
{
protected:
std::vector<uint256> vHave;
public:
CBlockLocator()
{
}
explicit CBlockLocator(const CBlockIndex* pindex)
{
Set(pindex);
}
explicit CBlockLocator(uint256 hashBlock)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi != mapBlockIndex.end())
Set((*mi).second);
}
2011-07-11 21:49:45 +02:00
CBlockLocator(const std::vector<uint256>& vHaveIn)
{
vHave = vHaveIn;
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(vHave);
)
void SetNull()
{
vHave.clear();
}
bool IsNull()
{
return vHave.empty();
}
void Set(const CBlockIndex* pindex)
{
vHave.clear();
int nStep = 1;
while (pindex)
{
vHave.push_back(pindex->GetBlockHash());
// Exponentially larger steps back
for (int i = 0; pindex && i < nStep; i++)
pindex = pindex->pprev;
if (vHave.size() > 10)
nStep *= 2;
}
vHave.push_back(hashGenesisBlock);
}
int GetDistanceBack()
{
// Retrace how far back it was in the sender's branch
int nDistance = 0;
int nStep = 1;
BOOST_FOREACH(const uint256& hash, vHave)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (pindex->IsInMainChain())
return nDistance;
}
nDistance += nStep;
if (nDistance > 10)
nStep *= 2;
}
return nDistance;
}
CBlockIndex* GetBlockIndex()
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, vHave)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (pindex->IsInMainChain())
return pindex;
}
}
return pindexGenesisBlock;
}
uint256 GetBlockHash()
{
// Find the first block the caller has in the main chain
BOOST_FOREACH(const uint256& hash, vHave)
{
std::map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
{
CBlockIndex* pindex = (*mi).second;
if (pindex->IsInMainChain())
return hash;
}
}
return hashGenesisBlock;
}
int GetHeight()
{
CBlockIndex* pindex = GetBlockIndex();
if (!pindex)
return 0;
return pindex->nHeight;
}
};
class CTxMemPool
{
public:
mutable CCriticalSection cs;
std::map<uint256, CTransaction> mapTx;
std::map<COutPoint, CInPoint> mapNextTx;
bool accept(CTransaction &tx, bool fCheckInputs, bool* pfMissingInputs);
bool addUnchecked(const uint256& hash, CTransaction &tx);
bool remove(CTransaction &tx);
2012-05-22 21:55:15 +00:00
void clear();
void queryHashes(std::vector<uint256>& vtxid);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
void pruneSpent(const uint256& hash, CCoins &coins);
unsigned long size()
{
LOCK(cs);
return mapTx.size();
}
bool exists(uint256 hash)
{
return (mapTx.count(hash) != 0);
}
CTransaction& lookup(uint256 hash)
{
return mapTx[hash];
}
};
extern CTxMemPool mempool;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
/** Abstract view on the open txout dataset. */
class CCoinsView
{
public:
// Retrieve the CCoins (unspent transaction outputs) for a given txid
virtual bool GetCoins(uint256 txid, CCoins &coins);
// Modify the CCoins for a given txid
virtual bool SetCoins(uint256 txid, const CCoins &coins);
// Just check whether we have data for a given txid.
// This may (but cannot always) return true for fully spent transactions
virtual bool HaveCoins(uint256 txid);
// Retrieve the block index whose state this CCoinsView currently represents
virtual CBlockIndex *GetBestBlock();
// Modify the currently active block index
virtual bool SetBestBlock(CBlockIndex *pindex);
virtual bool BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
};
/** CCoinsView backed by another CCoinsView */
class CCoinsViewBacked : public CCoinsView
{
protected:
CCoinsView *base;
public:
CCoinsViewBacked(CCoinsView &viewIn);
bool GetCoins(uint256 txid, CCoins &coins);
bool SetCoins(uint256 txid, const CCoins &coins);
bool HaveCoins(uint256 txid);
CBlockIndex *GetBestBlock();
bool SetBestBlock(CBlockIndex *pindex);
void SetBackend(CCoinsView &viewIn);
bool BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
};
/** CCoinsView that adds a memory cache for transactions to another CCoinsView */
class CCoinsViewCache : public CCoinsViewBacked
{
protected:
CBlockIndex *pindexTip;
std::map<uint256,CCoins> cacheCoins;
public:
CCoinsViewCache(CCoinsView &baseIn, bool fDummy = false);
bool GetCoins(uint256 txid, CCoins &coins);
bool SetCoins(uint256 txid, const CCoins &coins);
bool HaveCoins(uint256 txid);
CCoins &GetCoins(uint256 txid);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
CBlockIndex *GetBestBlock();
bool SetBestBlock(CBlockIndex *pindex);
bool BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
bool Flush();
unsigned int GetCacheSize();
private:
std::map<uint256,CCoins>::iterator FetchCoins(uint256 txid);
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
};
/** CCoinsView that brings transactions from a memorypool into view.
It does not check for spendings by memory pool transactions. */
class CCoinsViewMemPool : public CCoinsViewBacked
{
protected:
CTxMemPool &mempool;
public:
CCoinsViewMemPool(CCoinsView &baseIn, CTxMemPool &mempoolIn);
bool GetCoins(uint256 txid, CCoins &coins);
bool HaveCoins(uint256 txid);
};
extern CCoinsViewCache *pcoinsTip;
#endif