bitcoin/src/net.cpp

2912 lines
97 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
2014-12-13 12:09:33 +08:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <net.h>
2017-10-05 16:40:43 -04:00
#include <banman.h>
#include <chainparams.h>
#include <clientversion.h>
#include <consensus/consensus.h>
#include <crypto/sha256.h>
#include <net_permissions.h>
#include <netbase.h>
#include <node/ui_interface.h>
#include <protocol.h>
#include <random.h>
#include <scheduler.h>
scripted-diff: Move util files to separate directory. -BEGIN VERIFY SCRIPT- mkdir -p src/util git mv src/util.h src/util/system.h git mv src/util.cpp src/util/system.cpp git mv src/utilmemory.h src/util/memory.h git mv src/utilmoneystr.h src/util/moneystr.h git mv src/utilmoneystr.cpp src/util/moneystr.cpp git mv src/utilstrencodings.h src/util/strencodings.h git mv src/utilstrencodings.cpp src/util/strencodings.cpp git mv src/utiltime.h src/util/time.h git mv src/utiltime.cpp src/util/time.cpp sed -i 's/<util\.h>/<util\/system\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmemory\.h>/<util\/memory\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilmoneystr\.h>/<util\/moneystr\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utilstrencodings\.h>/<util\/strencodings\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/<utiltime\.h>/<util\/time\.h>/g' $(git ls-files 'src/*.h' 'src/*.cpp') sed -i 's/BITCOIN_UTIL_H/BITCOIN_UTIL_SYSTEM_H/g' src/util/system.h sed -i 's/BITCOIN_UTILMEMORY_H/BITCOIN_UTIL_MEMORY_H/g' src/util/memory.h sed -i 's/BITCOIN_UTILMONEYSTR_H/BITCOIN_UTIL_MONEYSTR_H/g' src/util/moneystr.h sed -i 's/BITCOIN_UTILSTRENCODINGS_H/BITCOIN_UTIL_STRENCODINGS_H/g' src/util/strencodings.h sed -i 's/BITCOIN_UTILTIME_H/BITCOIN_UTIL_TIME_H/g' src/util/time.h sed -i 's/ util\.\(h\|cpp\)/ util\/system\.\1/g' src/Makefile.am sed -i 's/utilmemory\.\(h\|cpp\)/util\/memory\.\1/g' src/Makefile.am sed -i 's/utilmoneystr\.\(h\|cpp\)/util\/moneystr\.\1/g' src/Makefile.am sed -i 's/utilstrencodings\.\(h\|cpp\)/util\/strencodings\.\1/g' src/Makefile.am sed -i 's/utiltime\.\(h\|cpp\)/util\/time\.\1/g' src/Makefile.am sed -i 's/-> util ->/-> util\/system ->/' test/lint/lint-circular-dependencies.sh sed -i 's/src\/util\.cpp/src\/util\/system\.cpp/g' test/lint/lint-format-strings.py test/lint/lint-locale-dependence.sh sed -i 's/src\/utilmoneystr\.cpp/src\/util\/moneystr\.cpp/g' test/lint/lint-locale-dependence.sh sed -i 's/src\/utilstrencodings\.\(h\|cpp\)/src\/util\/strencodings\.\1/g' test/lint/lint-locale-dependence.sh sed -i 's/src\\utilstrencodings\.cpp/src\\util\\strencodings\.cpp/' build_msvc/libbitcoinconsensus/libbitcoinconsensus.vcxproj -END VERIFY SCRIPT-
2018-10-22 15:51:11 -07:00
#include <util/strencodings.h>
#include <util/translation.h>
#ifdef WIN32
#include <string.h>
#else
#include <fcntl.h>
#endif
#ifdef USE_POLL
#include <poll.h>
#endif
#ifdef USE_UPNP
#include <miniupnpc/miniupnpc.h>
#include <miniupnpc/upnpcommands.h>
#include <miniupnpc/upnperrors.h>
// The minimum supported miniUPnPc API version is set to 10. This keeps compatibility
// with Ubuntu 16.04 LTS and Debian 8 libminiupnpc-dev packages.
static_assert(MINIUPNPC_API_VERSION >= 10, "miniUPnPc API version >= 10 assumed");
#endif
#include <cstdint>
#include <unordered_map>
#include <math.h>
// How often to dump addresses to peers.dat
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
/** Number of DNS seeds to query when the number of connections is low. */
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
/** How long to delay before querying DNS seeds
*
* If we have more than THRESHOLD entries in addrman, then it's likely
* that we got those addresses from having previously connected to the P2P
* network, and that we'll be able to successfully reconnect to the P2P
* network via contacting one of them. So if that's the case, spend a
* little longer trying to connect to known peers before querying the
* DNS seeds.
*/
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
#define FEELER_SLEEP_WINDOW 1
// MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define it as 0
#if !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
// MSG_DONTWAIT is not available on some platforms, if it doesn't exist define it as 0
#if !defined(MSG_DONTWAIT)
#define MSG_DONTWAIT 0
#endif
/** Used to pass flags to the Bind() function */
enum BindFlags {
BF_NONE = 0,
BF_EXPLICIT = (1U << 0),
BF_REPORT_ERROR = (1U << 1),
};
// The set of sockets cannot be modified while waiting
// The sleep time needs to be small to avoid new sockets stalling
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
const std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
2015-08-25 16:30:31 +02:00
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
//
// Global state variables
//
2012-05-24 19:02:21 +02:00
bool fDiscover = true;
bool fListen = true;
bool g_relay_txes = !DEFAULT_BLOCKSONLY;
RecursiveMutex cs_mapLocalHost;
2018-10-08 15:34:39 +02:00
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
std::string strSubVersion;
void CConnman::AddAddrFetch(const std::string& strDest)
{
LOCK(m_addr_fetches_mutex);
m_addr_fetches.push_back(strDest);
}
uint16_t GetListenPort()
{
return (uint16_t)(gArgs.GetArg("-port", Params().GetDefaultPort()));
}
2012-02-12 13:45:24 +01:00
// find 'best' local address for a particular peer
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
2012-02-12 13:45:24 +01:00
{
if (!fListen)
2012-02-12 13:45:24 +01:00
return false;
int nBestScore = -1;
2012-02-12 13:45:24 +01:00
int nBestReachability = -1;
{
LOCK(cs_mapLocalHost);
for (const auto& entry : mapLocalHost)
2012-02-12 13:45:24 +01:00
{
int nScore = entry.second.nScore;
int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
2012-02-12 13:45:24 +01:00
{
addr = CService(entry.first, entry.second.nPort);
2012-02-12 13:45:24 +01:00
nBestReachability = nReachability;
nBestScore = nScore;
2012-02-12 13:45:24 +01:00
}
}
}
return nBestScore >= 0;
2012-02-12 13:45:24 +01:00
}
//! Convert the pnSeed6 array into usable address objects.
static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
{
// It'll only connect to one or two seed nodes because once it connects,
// it'll get a pile of addresses with newer timestamps.
// Seed nodes are given a random 'last seen time' of between one and two
// weeks ago.
const int64_t nOneWeek = 7*24*60*60;
std::vector<CAddress> vSeedsOut;
vSeedsOut.reserve(vSeedsIn.size());
FastRandomContext rng;
for (const auto& seed_in : vSeedsIn) {
struct in6_addr ip;
memcpy(&ip, seed_in.addr, sizeof(ip));
CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE));
addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
vSeedsOut.push_back(addr);
}
return vSeedsOut;
}
2012-02-12 13:45:24 +01:00
// get best local address for a particular peer as a CAddress
// Otherwise, return the unroutable 0.0.0.0 but filled in with
// the normal parameters, since the IP may be changed to a useful
// one by discovery.
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
2012-02-12 13:45:24 +01:00
{
CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices);
CService addr;
2012-02-12 13:45:24 +01:00
if (GetLocal(addr, paddrPeer))
{
2016-05-25 17:18:37 +02:00
ret = CAddress(addr, nLocalServices);
2012-02-12 13:45:24 +01:00
}
ret.nTime = GetAdjustedTime();
2012-02-12 13:45:24 +01:00
return ret;
}
static int GetnScore(const CService& addr)
2012-02-12 13:45:24 +01:00
{
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == 0) return 0;
return mapLocalHost[addr].nScore;
}
// Is our peer's addrLocal potentially useful as an external IP source?
bool IsPeerAddrLocalGood(CNode *pnode)
{
CService addrLocal = pnode->GetAddrLocal();
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
IsReachable(addrLocal.GetNetwork());
}
// pushes our own address to a peer
void AdvertiseLocal(CNode *pnode)
{
if (fListen && pnode->fSuccessfullyConnected)
2012-02-12 13:45:24 +01:00
{
CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
if (gArgs.GetBoolArg("-addrmantest", false)) {
// use IPv4 loopback during addrmantest
addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices());
}
// If discovery is enabled, sometimes give our peer the address it
// tells us that it sees us as in case it has a better idea of our
// address than we do.
FastRandomContext rng;
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
2012-02-12 13:45:24 +01:00
{
addrLocal.SetIP(pnode->GetAddrLocal());
}
if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
{
LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
pnode->PushAddress(addrLocal, rng);
2012-02-12 13:45:24 +01:00
}
}
}
// learn a new local address
bool AddLocal(const CService& addr, int nScore)
2012-02-12 13:45:24 +01:00
{
if (!addr.IsRoutable())
return false;
2012-05-24 19:02:21 +02:00
if (!fDiscover && nScore < LOCAL_MANUAL)
2012-05-13 14:11:53 +02:00
return false;
if (!IsReachable(addr))
2012-05-13 15:11:51 +02:00
return false;
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
2012-02-12 13:45:24 +01:00
{
LOCK(cs_mapLocalHost);
bool fAlready = mapLocalHost.count(addr) > 0;
LocalServiceInfo &info = mapLocalHost[addr];
if (!fAlready || nScore >= info.nScore) {
2012-08-29 02:33:25 +02:00
info.nScore = nScore + (fAlready ? 1 : 0);
info.nPort = addr.GetPort();
}
2012-02-12 13:45:24 +01:00
}
return true;
}
bool AddLocal(const CNetAddr &addr, int nScore)
{
return AddLocal(CService(addr, GetListenPort()), nScore);
}
void RemoveLocal(const CService& addr)
{
LOCK(cs_mapLocalHost);
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
mapLocalHost.erase(addr);
}
void SetReachable(enum Network net, bool reachable)
{
if (net == NET_UNROUTABLE || net == NET_INTERNAL)
2012-05-14 17:15:58 +02:00
return;
LOCK(cs_mapLocalHost);
vfLimited[net] = !reachable;
}
bool IsReachable(enum Network net)
{
LOCK(cs_mapLocalHost);
return !vfLimited[net];
2012-05-14 17:15:58 +02:00
}
bool IsReachable(const CNetAddr &addr)
2012-05-14 17:15:58 +02:00
{
return IsReachable(addr.GetNetwork());
}
/** vote for a local address */
bool SeenLocal(const CService& addr)
2012-02-12 13:45:24 +01:00
{
{
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == 0)
return false;
mapLocalHost[addr].nScore++;
2012-02-12 13:45:24 +01:00
}
return true;
}
/** check whether a given address is potentially local */
bool IsLocal(const CService& addr)
2012-02-12 13:45:24 +01:00
{
LOCK(cs_mapLocalHost);
return mapLocalHost.count(addr) > 0;
}
CNode* CConnman::FindNode(const CNetAddr& ip)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (static_cast<CNetAddr>(pnode->addr) == ip) {
return pnode;
}
}
return nullptr;
}
CNode* CConnman::FindNode(const CSubNet& subNet)
2015-05-25 20:03:51 +02:00
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
return pnode;
}
}
return nullptr;
2015-05-25 20:03:51 +02:00
}
CNode* CConnman::FindNode(const std::string& addrName)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (pnode->GetAddrName() == addrName) {
return pnode;
}
}
return nullptr;
}
CNode* CConnman::FindNode(const CService& addr)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (static_cast<CService>(pnode->addr) == addr) {
return pnode;
}
}
return nullptr;
}
bool CConnman::CheckIncomingNonce(uint64_t nonce)
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
return false;
}
return true;
}
/** Get the bind address for a socket as CAddress */
static CAddress GetBindAddress(SOCKET sock)
{
CAddress addr_bind;
struct sockaddr_storage sockaddr_bind;
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
if (sock != INVALID_SOCKET) {
if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
} else {
LogPrint(BCLog::NET, "Warning: getsockname failed\n");
}
}
return addr_bind;
}
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type)
{
assert(conn_type != ConnectionType::INBOUND);
if (pszDest == nullptr) {
2012-02-12 13:45:24 +01:00
if (IsLocal(addrConnect))
return nullptr;
// Look for an existing connection
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode)
{
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
/// debug print
LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
pszDest ? pszDest : addrConnect.ToString(),
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
// Resolve
const int default_port = Params().GetDefaultPort();
if (pszDest) {
std::vector<CService> resolved;
if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) {
addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
if (!addrConnect.IsValid()) {
LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest);
return nullptr;
}
// It is possible that we already have a connection to the IP/port pszDest resolved to.
// In that case, drop the connection that was just created, and return the existing CNode instead.
// Also store the name we used to connect in that CNode, so that future FindNode() calls to that
// name catch this early.
LOCK(cs_vNodes);
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode)
{
pnode->MaybeSetAddrName(std::string(pszDest));
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
}
// Connect
bool connected = false;
SOCKET hSocket = INVALID_SOCKET;
proxyType proxy;
if (addrConnect.IsValid()) {
bool proxyConnectionFailed = false;
if (GetProxy(addrConnect.GetNetwork(), proxy)) {
hSocket = CreateSocket(proxy.proxy);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, proxyConnectionFailed);
} else {
// no proxy needed (none set for target network)
hSocket = CreateSocket(addrConnect);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
connected = ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout, conn_type == ConnectionType::MANUAL);
}
if (!proxyConnectionFailed) {
// If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
// the proxy, mark this as an attempt.
addrman.Attempt(addrConnect, fCountFailure);
}
} else if (pszDest && GetNameProxy(proxy)) {
hSocket = CreateSocket(proxy.proxy);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
std::string host;
int port = default_port;
SplitHostPort(std::string(pszDest), port, host);
bool proxyConnectionFailed;
connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, proxyConnectionFailed);
}
if (!connected) {
CloseSocket(hSocket);
return nullptr;
}
// Add node
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
CAddress addr_bind = GetBindAddress(hSocket);
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", conn_type);
pnode->AddRef();
// We're making a new connection, harvest entropy from the time (and our peer count)
RandAddEvent((uint32_t)id);
return pnode;
}
void CNode::CloseSocketDisconnect()
{
fDisconnect = true;
2017-02-06 14:05:45 -05:00
LOCK(cs_hSocket);
if (hSocket != INVALID_SOCKET)
{
LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
CloseSocket(hSocket);
}
}
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const {
for (const auto& subnet : vWhitelistedRange) {
if (subnet.m_subnet.Match(addr)) NetPermissions::AddFlag(flags, subnet.m_flags);
}
}
std::string CNode::GetAddrName() const {
LOCK(cs_addrName);
return addrName;
}
void CNode::MaybeSetAddrName(const std::string& addrNameIn) {
LOCK(cs_addrName);
if (addrName.empty()) {
addrName = addrNameIn;
}
}
CService CNode::GetAddrLocal() const {
LOCK(cs_addrLocal);
return addrLocal;
}
void CNode::SetAddrLocal(const CService& addrLocalIn) {
LOCK(cs_addrLocal);
if (addrLocal.IsValid()) {
error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString());
} else {
addrLocal = addrLocalIn;
}
}
#undef X
#define X(name) stats.name = name
2020-01-29 13:57:58 -08:00
void CNode::copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap)
{
2013-11-18 01:25:17 +01:00
stats.nodeid = this->GetId();
X(nServices);
X(addr);
X(addrBind);
stats.m_mapped_as = addr.GetMappedAS(m_asmap);
if (m_tx_relay != nullptr) {
LOCK(m_tx_relay->cs_filter);
stats.fRelayTxes = m_tx_relay->fRelayTxes;
} else {
stats.fRelayTxes = false;
}
X(nLastSend);
X(nLastRecv);
X(nLastTXTime);
X(nLastBlockTime);
X(nTimeConnected);
2014-12-15 11:06:15 +01:00
X(nTimeOffset);
stats.addrName = GetAddrName();
X(nVersion);
{
LOCK(cs_SubVer);
X(cleanSubVer);
}
stats.fInbound = IsInboundConn();
stats.m_manual_connection = IsManualConn();
X(nStartingHeight);
{
LOCK(cs_vSend);
X(mapSendBytesPerMsgCmd);
X(nSendBytes);
}
{
LOCK(cs_vRecv);
X(mapRecvBytesPerMsgCmd);
X(nRecvBytes);
}
X(m_legacyWhitelisted);
X(m_permissionFlags);
if (m_tx_relay != nullptr) {
LOCK(m_tx_relay->cs_feeFilter);
stats.minFeeFilter = m_tx_relay->minFeeFilter;
} else {
stats.minFeeFilter = 0;
}
2013-11-15 12:24:34 +01:00
// It is common for nodes with good ping times to suddenly become lagged,
// due to a new block arriving or other large transfer.
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
// since pingtime does not update until the ping is complete, which might take a while.
// So, if a ping is taking an unusually long time in flight,
// the caller can immediately detect that this is happening.
std::chrono::microseconds ping_wait{0};
if ((0 != nPingNonceSent) && (0 != m_ping_start.load().count())) {
ping_wait = GetTime<std::chrono::microseconds>() - m_ping_start.load();
}
2013-11-15 12:24:34 +01:00
// Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :)
stats.m_ping_usec = nPingUsecTime;
stats.m_min_ping_usec = nMinPingUsecTime;
stats.m_ping_wait_usec = count_microseconds(ping_wait);
2013-11-15 12:24:34 +01:00
// Leave string empty if addrLocal invalid (not filled in yet)
CService addrLocalUnlocked = GetAddrLocal();
stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
}
#undef X
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete)
{
complete = false;
const auto time = GetTime<std::chrono::microseconds>();
LOCK(cs_vRecv);
nLastRecv = std::chrono::duration_cast<std::chrono::seconds>(time).count();
nRecvBytes += nBytes;
while (nBytes > 0) {
// absorb network data
int handled = m_deserializer->Read(pch, nBytes);
if (handled < 0) return false;
pch += handled;
nBytes -= handled;
if (m_deserializer->Complete()) {
// decompose a transport agnostic CNetMessage from the deserializer
CNetMessage msg = m_deserializer->GetMessage(Params().MessageStart(), time);
2015-08-25 16:30:31 +02:00
//store received bytes per message command
//to prevent a memory DOS, only allow valid commands
mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.m_command);
2015-08-25 16:30:31 +02:00
if (i == mapRecvBytesPerMsgCmd.end())
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
assert(i != mapRecvBytesPerMsgCmd.end());
i->second += msg.m_raw_message_size;
// push the message to the process queue,
vRecvMsg.push_back(std::move(msg));
2015-08-25 16:30:31 +02:00
complete = true;
}
}
return true;
}
void CNode::SetSendVersion(int nVersionIn)
{
// Send version may only be changed in the version message, and
// only one version message is allowed per session. We can therefore
// treat this value as const and even atomic as long as it's only used
// once a version message has been successfully processed. Any attempt to
// set this twice is an error.
if (nSendVersion != 0) {
error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn);
} else {
nSendVersion = nVersionIn;
}
}
int CNode::GetSendVersion() const
{
// The send version should always be explicitly set to
// INIT_PROTO_VERSION rather than using this value until SetSendVersion
// has been called.
if (nSendVersion == 0) {
error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION);
return INIT_PROTO_VERSION;
}
return nSendVersion;
}
int V1TransportDeserializer::readHeader(const char *pch, unsigned int nBytes)
{
// copy data to temporary parsing buffer
unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
nHdrPos += nCopy;
// if header incomplete, exit
if (nHdrPos < CMessageHeader::HEADER_SIZE)
return nCopy;
// deserialize to CMessageHeader
try {
hdrbuf >> hdr;
}
catch (const std::exception&) {
return -1;
}
// reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
return -1;
}
// switch state to reading message data
in_data = true;
return nCopy;
}
int V1TransportDeserializer::readData(const char *pch, unsigned int nBytes)
{
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
2014-06-21 17:00:38 +02:00
if (vRecv.size() < nDataPos + nCopy) {
// Allocate up to 256 KiB ahead, but never more than the total message size.
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
}
hasher.Write({(const unsigned char*)pch, nCopy});
memcpy(&vRecv[nDataPos], pch, nCopy);
nDataPos += nCopy;
return nCopy;
}
const uint256& V1TransportDeserializer::GetMessageHash() const
{
assert(Complete());
if (data_hash.IsNull())
2020-06-18 17:19:46 -07:00
hasher.Finalize(data_hash);
return data_hash;
}
CNetMessage V1TransportDeserializer::GetMessage(const CMessageHeader::MessageStartChars& message_start, const std::chrono::microseconds time)
{
// decompose a single CNetMessage from the TransportDeserializer
CNetMessage msg(std::move(vRecv));
// store state about valid header, netmagic and checksum
msg.m_valid_header = hdr.IsValid(message_start);
msg.m_valid_netmagic = (memcmp(hdr.pchMessageStart, message_start, CMessageHeader::MESSAGE_START_SIZE) == 0);
uint256 hash = GetMessageHash();
// store command string, payload size
msg.m_command = hdr.GetCommand();
msg.m_message_size = hdr.nMessageSize;
msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
// We just received a message off the wire, harvest entropy from the time (and the message checksum)
RandAddEvent(ReadLE32(hash.begin()));
msg.m_valid_checksum = (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) == 0);
if (!msg.m_valid_checksum) {
LogPrint(BCLog::NET, "CHECKSUM ERROR (%s, %u bytes), expected %s was %s\n",
SanitizeString(msg.m_command), msg.m_message_size,
HexStr(Span<uint8_t>(hash.begin(), hash.begin() + CMessageHeader::CHECKSUM_SIZE)),
HexStr(hdr.pchChecksum));
}
// store receive time
msg.m_time = time;
// reset the network deserializer (prepare for the next message)
Reset();
return msg;
}
2019-08-07 15:56:24 +02:00
void V1TransportSerializer::prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) {
// create dbl-sha256 checksum
uint256 hash = Hash(msg.data);
2019-08-07 15:56:24 +02:00
// create header
CMessageHeader hdr(Params().MessageStart(), msg.m_type.c_str(), msg.data.size());
2019-08-07 15:56:24 +02:00
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
// serialize header
header.reserve(CMessageHeader::HEADER_SIZE);
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
}
2018-10-08 15:34:39 +02:00
size_t CConnman::SocketSendData(CNode *pnode) const EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend)
{
auto it = pnode->vSendMsg.begin();
size_t nSentSize = 0;
while (it != pnode->vSendMsg.end()) {
const auto &data = *it;
assert(data.size() > pnode->nSendOffset);
2017-02-06 14:05:45 -05:00
int nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
break;
nBytes = send(pnode->hSocket, reinterpret_cast<const char*>(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
}
if (nBytes > 0) {
pnode->nLastSend = GetSystemTimeInSeconds();
pnode->nSendBytes += nBytes;
pnode->nSendOffset += nBytes;
nSentSize += nBytes;
if (pnode->nSendOffset == data.size()) {
pnode->nSendOffset = 0;
pnode->nSendSize -= data.size();
pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
it++;
} else {
// could not send full message; stop sending more
break;
}
} else {
if (nBytes < 0) {
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
{
LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
pnode->CloseSocketDisconnect();
}
}
// couldn't send anything at all
break;
}
}
if (it == pnode->vSendMsg.end()) {
assert(pnode->nSendOffset == 0);
assert(pnode->nSendSize == 0);
}
pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
return nSentSize;
}
struct NodeEvictionCandidate
{
NodeId id;
int64_t nTimeConnected;
int64_t nMinPingUsecTime;
int64_t nLastBlockTime;
int64_t nLastTXTime;
bool fRelevantServices;
bool fRelayTxes;
bool fBloomFilter;
CAddress addr;
uint64_t nKeyedNetGroup;
bool prefer_evict;
2015-08-20 17:29:04 -07:00
};
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
2015-08-13 02:58:58 -07:00
{
return a.nMinPingUsecTime > b.nMinPingUsecTime;
2015-08-13 02:58:58 -07:00
}
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
2015-08-13 02:58:58 -07:00
{
return a.nTimeConnected > b.nTimeConnected;
2015-08-13 02:58:58 -07:00
}
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
return a.nKeyedNetGroup < b.nKeyedNetGroup;
}
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime;
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
return a.nTimeConnected > b.nTimeConnected;
}
2015-08-13 02:58:58 -07:00
//! Sort an array by the specified comparator, then erase the last K elements.
template<typename T, typename Comparator>
static void EraseLastKElements(std::vector<T> &elements, Comparator comparator, size_t k)
{
std::sort(elements.begin(), elements.end(), comparator);
size_t eraseSize = std::min(k, elements.size());
elements.erase(elements.end() - eraseSize, elements.end());
}
/** Try to find a connection to evict when the node is full.
* Extreme care must be taken to avoid opening the node to attacker
* triggered network partitioning.
* The strategy used here is to protect a small number of peers
* for each of several distinct characteristics which are difficult
* to forge. In order to partition a node the attacker must be
* simultaneously better at all of them than honest peers.
*/
bool CConnman::AttemptToEvictConnection()
{
std::vector<NodeEvictionCandidate> vEvictionCandidates;
2015-08-13 02:58:58 -07:00
{
LOCK(cs_vNodes);
for (const CNode* node : vNodes) {
if (node->HasPermission(PF_NOBAN))
2015-08-13 02:58:58 -07:00
continue;
if (!node->IsInboundConn())
2015-08-13 02:58:58 -07:00
continue;
if (node->fDisconnect)
continue;
bool peer_relay_txes = false;
bool peer_filter_not_null = false;
if (node->m_tx_relay != nullptr) {
LOCK(node->m_tx_relay->cs_filter);
peer_relay_txes = node->m_tx_relay->fRelayTxes;
peer_filter_not_null = node->m_tx_relay->pfilter != nullptr;
}
NodeEvictionCandidate candidate = {node->GetId(), node->nTimeConnected, node->nMinPingUsecTime,
node->nLastBlockTime, node->nLastTXTime,
HasAllDesirableServiceFlags(node->nServices),
peer_relay_txes, peer_filter_not_null, node->addr, node->nKeyedNetGroup,
node->m_prefer_evict};
vEvictionCandidates.push_back(candidate);
2015-08-13 02:58:58 -07:00
}
}
// Protect connections with certain characteristics
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
// Protect the 8 nodes with the lowest minimum ping time.
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
// Protect 4 nodes that most recently sent us transactions.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
// Protect 4 nodes that most recently sent us blocks.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
2015-08-25 16:31:13 -07:00
// Protect the half of the remaining nodes which have been connected the longest.
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2);
2015-08-13 02:58:58 -07:00
if (vEvictionCandidates.empty()) return false;
2015-08-13 02:58:58 -07:00
// If any remaining peers are preferred for eviction consider only them.
// This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
// then we probably don't want to evict it no matter what.
if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
[](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
}
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
uint64_t naMostConnections;
2015-08-13 02:58:58 -07:00
unsigned int nMostConnections = 0;
int64_t nMostConnectionsTime = 0;
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
group.push_back(node);
int64_t grouptime = group[0].nTimeConnected;
2015-08-13 02:58:58 -07:00
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
nMostConnections = group.size();
nMostConnectionsTime = grouptime;
naMostConnections = node.nKeyedNetGroup;
2015-08-13 02:58:58 -07:00
}
}
// Reduce to the network group with the most connections
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
2015-08-13 02:58:58 -07:00
// Disconnect from the network group with the most connections
NodeId evicted = vEvictionCandidates.front().id;
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (pnode->GetId() == evicted) {
pnode->fDisconnect = true;
return true;
}
}
return false;
2015-08-13 02:58:58 -07:00
}
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
2015-08-13 02:00:10 -07:00
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
CAddress addr;
int nInbound = 0;
int nMaxInbound = nMaxConnections - m_max_outbound;
2015-08-13 02:00:10 -07:00
if (hSocket != INVALID_SOCKET) {
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
2015-08-13 02:00:10 -07:00
LogPrintf("Warning: Unknown socket family\n");
}
}
2015-08-13 02:00:10 -07:00
NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE;
hListenSocket.AddSocketPermissionFlags(permissionFlags);
AddWhitelistPermissionFlags(permissionFlags, addr);
bool legacyWhitelisted = false;
if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_ISIMPLICIT)) {
NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT);
if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY);
if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permissionFlags, PF_RELAY);
NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL);
NetPermissions::AddFlag(permissionFlags, PF_NOBAN);
legacyWhitelisted = true;
}
2015-08-13 02:00:10 -07:00
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (pnode->IsInboundConn()) nInbound++;
}
2015-08-13 02:00:10 -07:00
}
if (hSocket == INVALID_SOCKET)
{
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK)
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
return;
2015-08-13 02:00:10 -07:00
}
if (!fNetworkActive) {
LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString());
CloseSocket(hSocket);
return;
}
if (!IsSelectableSocket(hSocket))
2015-08-13 02:00:10 -07:00
{
LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
CloseSocket(hSocket);
return;
2015-08-13 02:00:10 -07:00
}
// According to the internet TCP_NODELAY is not carried into accepted sockets
// on all platforms. Set it again here just to be sure.
SetSocketNoDelay(hSocket);
// Don't accept connections from banned peers.
bool banned = m_banman && m_banman->IsBanned(addr);
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && banned)
2015-08-13 02:00:10 -07:00
{
LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString());
2015-08-13 02:00:10 -07:00
CloseSocket(hSocket);
return;
2015-08-13 02:00:10 -07:00
}
// Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && nInbound + 1 >= nMaxInbound && discouraged)
{
LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToString());
CloseSocket(hSocket);
return;
}
if (nInbound >= nMaxInbound)
2015-08-13 02:00:10 -07:00
{
if (!AttemptToEvictConnection()) {
2015-08-13 02:58:58 -07:00
// No connection to evict, disconnect the new connection
LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
2015-08-13 02:58:58 -07:00
CloseSocket(hSocket);
return;
}
2015-08-13 02:00:10 -07:00
}
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
CAddress addr_bind = GetBindAddress(hSocket);
ServiceFlags nodeServices = nLocalServices;
if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) {
nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
}
CNode* pnode = new CNode(id, nodeServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", ConnectionType::INBOUND);
pnode->AddRef();
pnode->m_permissionFlags = permissionFlags;
// If this flag is present, the user probably expect that RPC and QT report it as whitelisted (backward compatibility)
pnode->m_legacyWhitelisted = legacyWhitelisted;
pnode->m_prefer_evict = discouraged;
m_msgproc->InitializeNode(pnode);
2015-08-13 02:00:10 -07:00
LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
2015-08-13 02:00:10 -07:00
}
// We received a new connection, harvest entropy from the time (and our peer count)
RandAddEvent((uint32_t)id);
2015-08-13 02:00:10 -07:00
}
void CConnman::DisconnectNodes()
{
{
LOCK(cs_vNodes);
if (!fNetworkActive) {
// Disconnect any connected nodes
for (CNode* pnode : vNodes) {
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
pnode->fDisconnect = true;
}
}
}
// Disconnect unused nodes
std::vector<CNode*> vNodesCopy = vNodes;
for (CNode* pnode : vNodesCopy)
{
if (pnode->fDisconnect)
{
// remove from vNodes
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());
// release outbound grant (if any)
pnode->grantOutbound.Release();
// close socket and cleanup
pnode->CloseSocketDisconnect();
// hold in disconnected pool until all refs are released
pnode->Release();
vNodesDisconnected.push_back(pnode);
}
}
}
{
// Delete disconnected nodes
std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
for (CNode* pnode : vNodesDisconnectedCopy)
{
// wait until threads are done using it
if (pnode->GetRefCount() <= 0) {
bool fDelete = false;
{
TRY_LOCK(pnode->cs_vSend, lockSend);
if (lockSend) {
fDelete = true;
}
}
if (fDelete) {
vNodesDisconnected.remove(pnode);
DeleteNode(pnode);
}
}
}
}
}
void CConnman::NotifyNumConnectionsChanged()
{
size_t vNodesSize;
{
LOCK(cs_vNodes);
vNodesSize = vNodes.size();
}
if(vNodesSize != nPrevNodeCount) {
nPrevNodeCount = vNodesSize;
if(clientInterface)
clientInterface->NotifyNumConnectionsChanged(vNodesSize);
}
}
void CConnman::InactivityCheck(CNode *pnode)
{
int64_t nTime = GetSystemTimeInSeconds();
if (nTime - pnode->nTimeConnected > m_peer_connect_timeout)
{
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
{
LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d from %d\n", m_peer_connect_timeout, pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId());
pnode->fDisconnect = true;
}
else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
2016-11-25 19:29:55 -08:00
{
LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
pnode->fDisconnect = true;
}
else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60))
{
LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
pnode->fDisconnect = true;
}
else if (pnode->nPingNonceSent && pnode->m_ping_start.load() + std::chrono::seconds{TIMEOUT_INTERVAL} < GetTime<std::chrono::microseconds>())
{
LogPrintf("ping timeout: %fs\n", 0.000001 * count_microseconds(GetTime<std::chrono::microseconds>() - pnode->m_ping_start.load()));
pnode->fDisconnect = true;
2016-11-25 19:29:55 -08:00
}
else if (!pnode->fSuccessfullyConnected)
{
LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId());
pnode->fDisconnect = true;
}
}
}
bool CConnman::GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
{
for (const ListenSocket& hListenSocket : vhListenSocket) {
recv_set.insert(hListenSocket.socket);
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes)
{
// Implement the following logic:
// * If there is data to send, select() for sending data. As this only
// happens when optimistic write failed, we choose to first drain the
// write buffer in this case before receiving more. This avoids
// needlessly queueing received data, if the remote peer is not themselves
// receiving data. This means properly utilizing TCP flow control signalling.
// * Otherwise, if there is space left in the receive buffer, select() for
// receiving data.
// * Hand off all complete messages to the processor, to be handled without
// blocking here.
bool select_recv = !pnode->fPauseRecv;
bool select_send;
{
LOCK(pnode->cs_vSend);
select_send = !pnode->vSendMsg.empty();
}
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
2017-02-06 14:05:45 -05:00
error_set.insert(pnode->hSocket);
if (select_send) {
send_set.insert(pnode->hSocket);
continue;
}
if (select_recv) {
recv_set.insert(pnode->hSocket);
}
}
}
return !recv_set.empty() || !send_set.empty() || !error_set.empty();
}
#ifdef USE_POLL
void CConnman::SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
{
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
return;
}
std::unordered_map<SOCKET, struct pollfd> pollfds;
for (SOCKET socket_id : recv_select_set) {
pollfds[socket_id].fd = socket_id;
pollfds[socket_id].events |= POLLIN;
}
for (SOCKET socket_id : send_select_set) {
pollfds[socket_id].fd = socket_id;
pollfds[socket_id].events |= POLLOUT;
}
for (SOCKET socket_id : error_select_set) {
pollfds[socket_id].fd = socket_id;
// These flags are ignored, but we set them for clarity
pollfds[socket_id].events |= POLLERR|POLLHUP;
}
std::vector<struct pollfd> vpollfds;
vpollfds.reserve(pollfds.size());
for (auto it : pollfds) {
vpollfds.push_back(std::move(it.second));
}
if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) < 0) return;
if (interruptNet) return;
for (struct pollfd pollfd_entry : vpollfds) {
if (pollfd_entry.revents & POLLIN) recv_set.insert(pollfd_entry.fd);
if (pollfd_entry.revents & POLLOUT) send_set.insert(pollfd_entry.fd);
if (pollfd_entry.revents & (POLLERR|POLLHUP)) error_set.insert(pollfd_entry.fd);
}
}
#else
void CConnman::SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
{
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
return;
}
//
// Find which sockets have data to receive
//
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000; // frequency to poll pnode->vSend
fd_set fdsetRecv;
fd_set fdsetSend;
fd_set fdsetError;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
SOCKET hSocketMax = 0;
for (SOCKET hSocket : recv_select_set) {
FD_SET(hSocket, &fdsetRecv);
hSocketMax = std::max(hSocketMax, hSocket);
}
for (SOCKET hSocket : send_select_set) {
FD_SET(hSocket, &fdsetSend);
hSocketMax = std::max(hSocketMax, hSocket);
}
for (SOCKET hSocket : error_select_set) {
FD_SET(hSocket, &fdsetError);
hSocketMax = std::max(hSocketMax, hSocket);
}
int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
if (interruptNet)
return;
if (nSelect == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
for (unsigned int i = 0; i <= hSocketMax; i++)
FD_SET(i, &fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
if (!interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)))
return;
}
for (SOCKET hSocket : recv_select_set) {
if (FD_ISSET(hSocket, &fdsetRecv)) {
recv_set.insert(hSocket);
}
}
for (SOCKET hSocket : send_select_set) {
if (FD_ISSET(hSocket, &fdsetSend)) {
send_set.insert(hSocket);
}
}
for (SOCKET hSocket : error_select_set) {
if (FD_ISSET(hSocket, &fdsetError)) {
error_set.insert(hSocket);
}
}
}
#endif
void CConnman::SocketHandler()
{
std::set<SOCKET> recv_set, send_set, error_set;
SocketEvents(recv_set, send_set, error_set);
if (interruptNet) return;
//
// Accept new connections
//
for (const ListenSocket& hListenSocket : vhListenSocket)
{
if (hListenSocket.socket != INVALID_SOCKET && recv_set.count(hListenSocket.socket) > 0)
{
AcceptConnection(hListenSocket);
}
}
//
// Service each socket
//
std::vector<CNode*> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode* pnode : vNodesCopy)
pnode->AddRef();
}
for (CNode* pnode : vNodesCopy)
{
if (interruptNet)
return;
//
// Receive
//
bool recvSet = false;
bool sendSet = false;
bool errorSet = false;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
recvSet = recv_set.count(pnode->hSocket) > 0;
sendSet = send_set.count(pnode->hSocket) > 0;
errorSet = error_set.count(pnode->hSocket) > 0;
}
if (recvSet || errorSet)
{
// typical socket buffer is 8K-64K
char pchBuf[0x10000];
int nBytes = 0;
2017-02-06 14:05:45 -05:00
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2017-02-06 14:05:45 -05:00
}
if (nBytes > 0)
{
bool notify = false;
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
pnode->CloseSocketDisconnect();
RecordBytesRecv(nBytes);
if (notify) {
size_t nSizeAdded = 0;
auto it(pnode->vRecvMsg.begin());
for (; it != pnode->vRecvMsg.end(); ++it) {
// vRecvMsg contains only completed CNetMessage
// the single possible partially deserialized message are held by TransportDeserializer
nSizeAdded += it->m_raw_message_size;
}
{
LOCK(pnode->cs_vProcessMsg);
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
pnode->nProcessQueueSize += nSizeAdded;
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
}
WakeMessageHandler();
}
}
else if (nBytes == 0)
{
// socket closed gracefully
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
}
pnode->CloseSocketDisconnect();
}
else if (nBytes < 0)
{
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
{
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
}
pnode->CloseSocketDisconnect();
}
}
}
//
// Send
//
if (sendSet)
{
LOCK(pnode->cs_vSend);
size_t nBytes = SocketSendData(pnode);
if (nBytes) {
RecordBytesSent(nBytes);
}
}
InactivityCheck(pnode);
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodesCopy)
pnode->Release();
}
}
void CConnman::ThreadSocketHandler()
{
while (!interruptNet)
{
DisconnectNodes();
NotifyNumConnectionsChanged();
SocketHandler();
}
}
void CConnman::WakeMessageHandler()
{
{
LOCK(mutexMsgProc);
fMsgProcWake = true;
}
condMsgProc.notify_one();
}
#ifdef USE_UPNP
2018-02-07 17:20:16 -05:00
static CThreadInterrupt g_upnp_interrupt;
static std::thread g_upnp_thread;
static void ThreadMapPort()
{
std::string port = strprintf("%u", GetListenPort());
const char * multicastif = nullptr;
const char * minissdpdpath = nullptr;
struct UPNPDev * devlist = nullptr;
char lanaddr[64];
int error = 0;
#if MINIUPNPC_API_VERSION < 14
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
#else
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
#endif
struct UPNPUrls urls;
struct IGDdatas data;
int r;
r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
if (r == 1)
{
2012-05-24 19:02:21 +02:00
if (fDiscover) {
char externalIPAddress[40];
r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress);
2019-05-06 23:17:51 +03:00
if (r != UPNPCOMMAND_SUCCESS) {
LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
2019-05-06 23:17:51 +03:00
} else {
if (externalIPAddress[0]) {
2016-05-31 13:05:52 -04:00
CNetAddr resolved;
2019-05-06 23:17:51 +03:00
if (LookupHost(externalIPAddress, resolved, false)) {
LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString());
2016-05-31 13:05:52 -04:00
AddLocal(resolved, LOCAL_UPNP);
}
2019-05-06 23:17:51 +03:00
} else {
LogPrintf("UPnP: GetExternalIPAddress failed.\n");
2019-05-06 23:17:51 +03:00
}
}
}
2019-05-06 22:58:10 +03:00
std::string strDesc = PACKAGE_NAME " " + FormatFullVersion();
2018-02-07 17:20:16 -05:00
do {
2019-05-06 23:17:51 +03:00
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0");
2019-05-06 23:17:51 +03:00
if (r != UPNPCOMMAND_SUCCESS) {
LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r));
} else {
2018-02-07 17:20:16 -05:00
LogPrintf("UPnP Port Mapping successful.\n");
2019-05-06 23:17:51 +03:00
}
} while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20)));
2018-02-07 17:20:16 -05:00
r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0);
LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
freeUPNPDevlist(devlist); devlist = nullptr;
FreeUPNPUrls(&urls);
} else {
LogPrintf("No valid UPnP IGDs found\n");
freeUPNPDevlist(devlist); devlist = nullptr;
if (r != 0)
FreeUPNPUrls(&urls);
}
}
2018-02-07 17:20:16 -05:00
void StartMapPort()
{
2018-02-07 17:20:16 -05:00
if (!g_upnp_thread.joinable()) {
assert(!g_upnp_interrupt);
g_upnp_thread = std::thread((std::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)));
}
}
2018-02-07 17:20:16 -05:00
void InterruptMapPort()
{
if(g_upnp_thread.joinable()) {
g_upnp_interrupt();
}
2018-02-07 17:20:16 -05:00
}
void StopMapPort()
{
if(g_upnp_thread.joinable()) {
g_upnp_thread.join();
g_upnp_interrupt.reset();
}
}
#else
2018-02-07 17:20:16 -05:00
void StartMapPort()
{
// Intentionally left blank.
}
void InterruptMapPort()
{
// Intentionally left blank.
}
void StopMapPort()
{
// Intentionally left blank.
}
#endif
void CConnman::ThreadDNSAddressSeed()
2011-11-21 12:25:00 -05:00
{
FastRandomContext rng;
std::vector<std::string> seeds = Params().DNSSeeds();
Shuffle(seeds.begin(), seeds.end(), rng);
int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
int found = 0;
if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
// When -forcednsseed is provided, query all.
seeds_right_now = seeds.size();
} else if (addrman.size() == 0) {
// If we have no known peers, query all.
// This will occur on the first run, or if peers.dat has been
// deleted.
seeds_right_now = seeds.size();
}
// goal: only query DNS seed if address need is acute
// * If we have a reasonable number of peers in addrman, spend
// some time trying them first. This improves user privacy by
// creating fewer identifying DNS requests, reduces trust by
// giving seeds less influence on the network topology, and
// reduces traffic to the seeds.
// * When querying DNS seeds query a few at once, this ensures
// that we don't give DNS seeds the ability to eclipse nodes
// that query them.
// * If we continue having problems, eventually query all the
// DNS seeds, and if that fails too, also try the fixed seeds.
// (done in ThreadOpenConnections)
const std::chrono::seconds seeds_wait_time = (addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
for (const std::string& seed : seeds) {
if (seeds_right_now == 0) {
seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2011-03-08 22:40:50 -05:00
if (addrman.size() > 0) {
LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
std::chrono::seconds to_wait = seeds_wait_time;
while (to_wait.count() > 0) {
// if sleeping for the MANY_PEERS interval, wake up
// early to see if we have enough peers and can stop
// this thread entirely freeing up its resources
std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
if (!interruptNet.sleep_for(w)) return;
to_wait -= w;
int nRelevant = 0;
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (pnode->fSuccessfullyConnected && pnode->IsOutboundOrBlockRelayConn()) ++nRelevant;
}
}
if (nRelevant >= 2) {
if (found > 0) {
LogPrintf("%d addresses found from DNS seeds\n", found);
LogPrintf("P2P peers available. Finished DNS seeding.\n");
} else {
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
}
return;
}
}
}
}
2013-01-29 23:13:17 -05:00
if (interruptNet) return;
// hold off on querying seeds if P2P network deactivated
if (!fNetworkActive) {
LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
do {
if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
} while (!fNetworkActive);
}
LogPrintf("Loading addresses from DNS seed %s\n", seed);
2013-01-29 23:13:17 -05:00
if (HaveNameProxy()) {
AddAddrFetch(seed);
2013-01-29 23:13:17 -05:00
} else {
std::vector<CNetAddr> vIPs;
std::vector<CAddress> vAdd;
ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
CNetAddr resolveSource;
if (!resolveSource.SetInternal(host)) {
continue;
}
unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
if (LookupHost(host, vIPs, nMaxIPs, true)) {
for (const CNetAddr& ip : vIPs) {
2013-01-29 23:13:17 -05:00
int nOneDay = 24*3600;
CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
addr.nTime = GetTime() - 3*nOneDay - rng.randrange(4*nOneDay); // use a random age between 3 and 7 days old
2013-01-29 23:13:17 -05:00
vAdd.push_back(addr);
found++;
}
addrman.Add(vAdd, resolveSource);
} else {
// We now avoid directly using results from DNS Seeds which do not support service bit filtering,
// instead using them as a addrfetch to get nodes with our desired service bits.
AddAddrFetch(seed);
}
2011-03-08 22:40:50 -05:00
}
--seeds_right_now;
2011-03-08 22:40:50 -05:00
}
LogPrintf("%d addresses found from DNS seeds\n", found);
2011-03-08 22:40:50 -05:00
}
void CConnman::DumpAddresses()
{
int64_t nStart = GetTimeMillis();
CAddrDB adb;
adb.Write(addrman);
LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
addrman.size(), GetTimeMillis() - nStart);
}
void CConnman::ProcessAddrFetch()
{
std::string strDest;
{
LOCK(m_addr_fetches_mutex);
if (m_addr_fetches.empty())
return;
strDest = m_addr_fetches.front();
m_addr_fetches.pop_front();
}
CAddress addr;
CSemaphoreGrant grant(*semOutbound, true);
if (grant) {
OpenNetworkConnection(addr, false, &grant, strDest.c_str(), ConnectionType::ADDR_FETCH);
}
}
bool CConnman::GetTryNewOutboundPeer()
{
return m_try_another_outbound_peer;
}
void CConnman::SetTryNewOutboundPeer(bool flag)
{
m_try_another_outbound_peer = flag;
LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false");
}
// Return the number of peers we have over our outbound connection limit
// Exclude peers that are marked for disconnect, or are going to be
// disconnected soon (eg one-shots and feelers)
// Also exclude peers that haven't finished initial connection handshake yet
// (so that we don't decide we're over our desired connection limit, and then
// evict some peer that has finished the handshake)
int CConnman::GetExtraOutboundCount()
{
int nOutbound = 0;
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsOutboundOrBlockRelayConn()) {
++nOutbound;
}
}
}
return std::max(nOutbound - m_max_outbound_full_relay - m_max_outbound_block_relay, 0);
}
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
{
// Connect to specific addresses
if (!connect.empty())
{
for (int64_t nLoop = 0;; nLoop++)
{
ProcessAddrFetch();
for (const std::string& strAddr : connect)
{
CAddress addr(CService(), NODE_NONE);
OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), ConnectionType::MANUAL);
for (int i = 0; i < 10 && i < nLoop; i++)
{
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
}
}
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
}
}
// Initiate network connections
int64_t nStart = GetTime();
// Minimum time before next feeler connection (in microseconds).
int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
while (!interruptNet)
{
ProcessAddrFetch();
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
CSemaphoreGrant grant(*semOutbound);
if (interruptNet)
return;
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
// Note that we only do this if we started with an empty peers.dat,
// (in which case we will query DNS seeds immediately) *and* the DNS
// seeds have not returned any results.
if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
static bool done = false;
if (!done) {
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
2016-05-31 13:05:52 -04:00
CNetAddr local;
local.SetInternal("fixedseeds");
2016-05-31 13:05:52 -04:00
addrman.Add(convertSeed6(Params().FixedSeeds()), local);
done = true;
}
}
//
// Choose an address to connect to based on most recently seen
//
CAddress addrConnect;
// Only connect out to one peer per network group (/16 for IPv4).
int nOutboundFullRelay = 0;
int nOutboundBlockRelay = 0;
std::set<std::vector<unsigned char> > setConnected;
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
// Netgroups for inbound and manual peers are not excluded because our goal here
// is to not use multiple of our limited outbound slots on a single netgroup
// but inbound and manual peers do not use our outbound slots. Inbound peers
// also have the added issue that they could be attacker controlled and used
// to prevent us from connecting to particular hosts if we used them here.
switch(pnode->m_conn_type){
case ConnectionType::INBOUND:
case ConnectionType::MANUAL:
break;
case ConnectionType::OUTBOUND:
case ConnectionType::BLOCK_RELAY:
case ConnectionType::ADDR_FETCH:
case ConnectionType::FEELER:
setConnected.insert(pnode->addr.GetGroup(addrman.m_asmap));
}
}
}
// Feeler Connections
//
// Design goals:
// * Increase the number of connectable addresses in the tried table.
//
// Method:
// * Choose a random address from new and attempt to connect to it if we can connect
// successfully it is added to tried.
// * Start attempting feeler connections only after node finishes making outbound
// connections.
// * Only make a feeler connection once every few minutes.
//
bool fFeeler = false;
if (nOutboundFullRelay >= m_max_outbound_full_relay && nOutboundBlockRelay >= m_max_outbound_block_relay && !GetTryNewOutboundPeer()) {
int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
if (nTime > nNextFeeler) {
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
fFeeler = true;
} else {
continue;
}
}
addrman.ResolveCollisions();
int64_t nANow = GetAdjustedTime();
int nTries = 0;
while (!interruptNet)
{
CAddrInfo addr = addrman.SelectTriedCollision();
// SelectTriedCollision returns an invalid address if it is empty.
if (!fFeeler || !addr.IsValid()) {
addr = addrman.Select(fFeeler);
}
// Require outbound connections, other than feelers, to be to distinct network groups
if (!fFeeler && setConnected.count(addr.GetGroup(addrman.m_asmap))) {
break;
}
// if we selected an invalid or local address, restart
if (!addr.IsValid() || IsLocal(addr)) {
break;
}
2012-08-21 17:32:04 +02:00
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
// already-connected network ranges, ...) before trying new addrman addresses.
nTries++;
2012-08-21 17:32:04 +02:00
if (nTries > 100)
break;
if (!IsReachable(addr))
continue;
// only consider very recently tried nodes after 30 failed attempts
if (nANow - addr.nLastTry < 600 && nTries < 30)
continue;
// for non-feelers, require all the services we'll want,
// for feelers, only require they be a full node (only because most
// SPV clients don't have a good address DB available)
if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
continue;
} else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
continue;
}
// do not allow non-default ports, unless after 50 invalid addresses selected already
if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50)
continue;
addrConnect = addr;
break;
}
if (addrConnect.IsValid()) {
if (fFeeler) {
// Add small amount of random noise before connection to avoid synchronization.
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep)))
return;
LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString());
}
ConnectionType conn_type;
// Determine what type of connection to open. If fFeeler is not
// set, open OUTBOUND connections until we meet our full-relay
// capacity. Then open BLOCK_RELAY connections until we hit our
// block-relay peer limit. Otherwise, default to opening an
// OUTBOUND connection.
if (fFeeler) {
conn_type = ConnectionType::FEELER;
} else if (nOutboundFullRelay < m_max_outbound_full_relay) {
conn_type = ConnectionType::OUTBOUND;
} else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
conn_type = ConnectionType::BLOCK_RELAY;
} else {
// GetTryNewOutboundPeer() is true
conn_type = ConnectionType::OUTBOUND;
}
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, conn_type);
}
}
}
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo()
{
std::vector<AddedNodeInfo> ret;
std::list<std::string> lAddresses(0);
{
LOCK(cs_vAddedNodes);
ret.reserve(vAddedNodes.size());
std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses));
}
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
std::map<CService, bool> mapConnected;
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (pnode->addr.IsValid()) {
mapConnected[pnode->addr] = pnode->IsInboundConn();
}
std::string addrName = pnode->GetAddrName();
if (!addrName.empty()) {
mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
}
}
}
for (const std::string& strAddNode : lAddresses) {
CService service(LookupNumeric(strAddNode, Params().GetDefaultPort()));
2018-01-26 02:48:56 -08:00
AddedNodeInfo addedNode{strAddNode, CService(), false, false};
if (service.IsValid()) {
// strAddNode is an IP:port
auto it = mapConnected.find(service);
if (it != mapConnected.end()) {
2018-01-26 02:48:56 -08:00
addedNode.resolvedAddress = service;
addedNode.fConnected = true;
addedNode.fInbound = it->second;
}
} else {
// strAddNode is a name
auto it = mapConnectedByName.find(strAddNode);
if (it != mapConnectedByName.end()) {
2018-01-26 02:48:56 -08:00
addedNode.resolvedAddress = it->second.second;
addedNode.fConnected = true;
addedNode.fInbound = it->second.first;
}
}
2018-01-26 02:48:56 -08:00
ret.emplace_back(std::move(addedNode));
}
return ret;
}
void CConnman::ThreadOpenAddedConnections()
{
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
while (true)
{
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
CSemaphoreGrant grant(*semAddnode);
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
bool tried = false;
for (const AddedNodeInfo& info : vInfo) {
if (!info.fConnected) {
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
if (!grant.TryAcquire()) {
2018-03-18 16:26:45 +02:00
// If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
// the addednodeinfo state might change.
break;
}
tried = true;
CAddress addr(CService(), NODE_NONE);
OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), ConnectionType::MANUAL);
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
}
}
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
// Retry every 60 seconds if a connection was attempted, otherwise two seconds
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
return;
}
}
2012-07-26 00:48:39 +00:00
// if successful, this moves the passed grant to the constructed node
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, ConnectionType conn_type)
{
assert(conn_type != ConnectionType::INBOUND);
//
// Initiate outbound network connection
//
if (interruptNet) {
return;
}
if (!fNetworkActive) {
return;
}
if (!pszDest) {
bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
if (IsLocal(addrConnect) || FindNode(static_cast<CNetAddr>(addrConnect)) || banned_or_discouraged || FindNode(addrConnect.ToStringIPPort())) {
return;
}
} else if (FindNode(std::string(pszDest)))
return;
CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type);
if (!pnode)
return;
if (grantOutbound)
grantOutbound->MoveTo(pnode->grantOutbound);
m_msgproc->InitializeNode(pnode);
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
}
}
void CConnman::ThreadMessageHandler()
{
while (!flagInterruptMsgProc)
{
std::vector<CNode*> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode* pnode : vNodesCopy) {
pnode->AddRef();
}
}
bool fMoreWork = false;
2013-11-15 12:24:34 +01:00
for (CNode* pnode : vNodesCopy)
{
if (pnode->fDisconnect)
continue;
// Receive messages
bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
if (flagInterruptMsgProc)
return;
// Send messages
{
LOCK(pnode->cs_sendProcessing);
m_msgproc->SendMessages(pnode);
}
if (flagInterruptMsgProc)
return;
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodesCopy)
pnode->Release();
}
2013-11-15 12:24:34 +01:00
WAIT_LOCK(mutexMsgProc, lock);
if (!fMoreWork) {
condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
}
fMsgProcWake = false;
}
}
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
{
int nOne = 1;
// Create socket for listening for incoming connections
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
{
strError = strprintf(Untranslated("Error: Bind address family for %s not supported"), addrBind.ToString());
LogPrintf("%s\n", strError.original);
return false;
}
2017-10-02 16:31:37 -04:00
SOCKET hListenSocket = CreateSocket(addrBind);
if (hListenSocket == INVALID_SOCKET)
{
strError = strprintf(Untranslated("Error: Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
return false;
}
2018-01-26 02:48:56 -08:00
// Allow binding if the port is still in TIME_WAIT state after
// the program was closed and restarted.
2018-01-26 02:48:56 -08:00
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int));
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
// and enable it by default or not. Try to enable it, if possible.
if (addrBind.IsIPv6()) {
#ifdef IPV6_V6ONLY
2018-01-26 02:48:56 -08:00
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int));
#endif
#ifdef WIN32
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
#endif
}
if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
if (nErr == WSAEADDRINUSE)
strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), PACKAGE_NAME);
else
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
LogPrintf("%s\n", strError.original);
CloseSocket(hListenSocket);
return false;
}
LogPrintf("Bound to %s\n", addrBind.ToString());
// Listen for incoming connections
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
{
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
CloseSocket(hListenSocket);
return false;
}
vhListenSocket.push_back(ListenSocket(hListenSocket, permissions));
if (addrBind.IsRoutable() && fDiscover && (permissions & PF_NOBAN) == 0)
AddLocal(addrBind, LOCAL_BIND);
return true;
}
void Discover()
{
2012-05-24 19:02:21 +02:00
if (!fDiscover)
return;
#ifdef WIN32
2012-07-26 00:48:39 +00:00
// Get local host IP
char pszHostName[256] = "";
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
{
std::vector<CNetAddr> vaddr;
if (LookupHost(pszHostName, vaddr, 0, true))
{
for (const CNetAddr &addr : vaddr)
{
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
}
}
}
#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
// Get local host ip
struct ifaddrs* myaddrs;
if (getifaddrs(&myaddrs) == 0)
{
for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ifa->ifa_addr == nullptr) continue;
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
if (strcmp(ifa->ifa_name, "lo") == 0) continue;
if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
if (ifa->ifa_addr->sa_family == AF_INET)
{
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
2012-02-12 13:45:24 +01:00
CNetAddr addr(s4->sin_addr);
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
}
else if (ifa->ifa_addr->sa_family == AF_INET6)
{
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
2012-02-12 13:45:24 +01:00
CNetAddr addr(s6->sin6_addr);
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
}
}
freeifaddrs(myaddrs);
}
#endif
}
void CConnman::SetNetworkActive(bool active)
{
LogPrintf("%s: %s\n", __func__, active);
if (fNetworkActive == active) {
return;
}
fNetworkActive = active;
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
}
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, bool network_active)
: nSeed0(nSeed0In), nSeed1(nSeed1In)
{
SetTryNewOutboundPeer(false);
[net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) When running test_bitcoin under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable nLocalServices is triggered by g_connman->GetLocalServices() in getnetworkinfo(const JSONRPCRequest& request) (net.cpp:462): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized nLocalServices is that CConnman::Start(...) is not called by the tests, and hence the initialization normally performed by CConnman::Start(...) is not done. This commit adds a method Init(const Options& connOptions) which is called by both the constructor and CConnman::Start(...). This method initializes nLocalServices and the other relevant values from the supplied Options object.
2017-08-02 14:02:36 +02:00
Options connOptions;
Init(connOptions);
SetNetworkActive(network_active);
}
2016-04-17 20:20:34 -04:00
NodeId CConnman::GetNewNodeId()
{
2016-04-17 20:20:34 -04:00
return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
}
bool CConnman::Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions) {
if (!(flags & BF_EXPLICIT) && !IsReachable(addr))
return false;
bilingual_str strError;
if (!BindListenPort(addr, strError, permissions)) {
if ((flags & BF_REPORT_ERROR) && clientInterface) {
clientInterface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
}
return false;
}
return true;
}
bool CConnman::InitBinds(const std::vector<CService>& binds, const std::vector<NetWhitebindPermissions>& whiteBinds)
{
bool fBound = false;
for (const auto& addrBind : binds) {
fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR), NetPermissionFlags::PF_NONE);
}
for (const auto& addrBind : whiteBinds) {
fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR), addrBind.m_flags);
}
if (binds.empty() && whiteBinds.empty()) {
struct in_addr inaddr_any;
inaddr_any.s_addr = INADDR_ANY;
struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::PF_NONE);
fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::PF_NONE);
}
return fBound;
}
[net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) When running test_bitcoin under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable nLocalServices is triggered by g_connman->GetLocalServices() in getnetworkinfo(const JSONRPCRequest& request) (net.cpp:462): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized nLocalServices is that CConnman::Start(...) is not called by the tests, and hence the initialization normally performed by CConnman::Start(...) is not done. This commit adds a method Init(const Options& connOptions) which is called by both the constructor and CConnman::Start(...). This method initializes nLocalServices and the other relevant values from the supplied Options object.
2017-08-02 14:02:36 +02:00
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
2016-04-17 20:20:34 -04:00
{
[net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest& request) When running test_bitcoin under Valgrind I found the following issue: ``` $ valgrind src/test/test_bitcoin ... ==10465== Use of uninitialised value of size 8 ==10465== at 0x6D09B61: ??? (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B1BB: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_int<unsigned long>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D0B36C: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, unsigned long) const (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x6D17699: std::ostream& std::ostream::_M_insert<unsigned long>(unsigned long) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21) ==10465== by 0x4CAAD7: operator<< (ostream:171) ==10465== by 0x4CAAD7: formatValue<ServiceFlags> (tinyformat.h:345) ==10465== by 0x4CAAD7: void tinyformat::detail::FormatArg::formatImpl<ServiceFlags>(std::ostream&, char const*, char const*, int, void const*) (tinyformat.h:523) ==10465== by 0x1924D4: format (tinyformat.h:510) ==10465== by 0x1924D4: tinyformat::detail::formatImpl(std::ostream&, char const*, tinyformat::detail::FormatArg const*, int) (tinyformat.h:803) ==10465== by 0x553A55: vformat (tinyformat.h:947) ==10465== by 0x553A55: format<ServiceFlags> (tinyformat.h:957) ==10465== by 0x553A55: std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > tinyformat::format<ServiceFlags>(char const*, ServiceFlags const&) (tinyformat.h:966) ==10465== by 0x54C952: getnetworkinfo(JSONRPCRequest const&) (net.cpp:462) ==10465== by 0x28EDB5: CallRPC(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) (rpc_tests.cpp:31) ==10465== by 0x293947: rpc_tests::rpc_togglenetwork::test_method() (rpc_tests.cpp:88) ==10465== by 0x2950E5: rpc_tests::rpc_togglenetwork_invoker() (rpc_tests.cpp:84) ==10465== by 0x182496: invoke<void (*)()> (callback.hpp:56) ==10465== by 0x182496: boost::unit_test::ut_detail::callback0_impl_t<boost::unit_test::ut_detail::unused, void (*)()>::invoke() (callback.hpp:89) ... ``` The read of the uninitialized variable nLocalServices is triggered by g_connman->GetLocalServices() in getnetworkinfo(const JSONRPCRequest& request) (net.cpp:462): ```c++ UniValue getnetworkinfo(const JSONRPCRequest& request) { ... if(g_connman) obj.push_back(Pair("localservices", strprintf("%016x", g_connman->GetLocalServices()))); ... } ``` The reason for the uninitialized nLocalServices is that CConnman::Start(...) is not called by the tests, and hence the initialization normally performed by CConnman::Start(...) is not done. This commit adds a method Init(const Options& connOptions) which is called by both the constructor and CConnman::Start(...). This method initializes nLocalServices and the other relevant values from the supplied Options object.
2017-08-02 14:02:36 +02:00
Init(connOptions);
{
LOCK(cs_totalBytesRecv);
nTotalBytesRecv = 0;
}
{
LOCK(cs_totalBytesSent);
nTotalBytesSent = 0;
nMaxOutboundTotalBytesSentInCycle = 0;
nMaxOutboundCycleStartTime = 0;
}
if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Failed to listen on any port. Use -listen=0 if you want this."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
for (const auto& strDest : connOptions.vSeedNodes) {
AddAddrFetch(strDest);
}
if (clientInterface) {
clientInterface->InitMessage(_("Loading P2P addresses...").translated);
}
// Load addresses from peers.dat
int64_t nStart = GetTimeMillis();
{
CAddrDB adb;
if (adb.Read(addrman))
LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
else {
addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
LogPrintf("Invalid or missing peers.dat; recreating\n");
DumpAddresses();
}
}
2015-06-19 15:27:37 +02:00
uiInterface.InitMessage(_("Starting network threads...").translated);
fAddressesInitialized = true;
if (semOutbound == nullptr) {
// initialize semaphore
semOutbound = MakeUnique<CSemaphore>(std::min(m_max_outbound, nMaxConnections));
}
if (semAddnode == nullptr) {
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
// initialize semaphore
semAddnode = MakeUnique<CSemaphore>(nMaxAddnode);
Break addnode out from the outbound connection limits. Previously addnodes were in competition with outbound connections for access to the eight outbound slots. One result of this is that frequently a node with several addnode configured peers would end up connected to none of them, because while the addnode loop was in its two minute sleep the automatic connection logic would fill any free slots with random peers. This is particularly unwelcome to users trying to maintain links to specific nodes for fast block relay or purposes. Another result is that a group of nine or more nodes which are have addnode configured towards each other can become partitioned from the public network. This commit introduces a new limit of eight connections just for addnode peers which is not subject to any of the other connection limitations (including maxconnections). The choice of eight is sufficient so that under no condition would a user find themselves connected to fewer addnoded peers than previously. It is also low enough that users who are confused about the significance of more connections and have gotten too copy-and-paste happy will not consume more than twice the slot usage of a typical user. Any additional load on the network resulting from this will likely be offset by a reduction in users applying even more wasteful workaround for the prior behavior. The retry delays are reduced to avoid nodes sitting around without their added peers up, but are still sufficient to prevent overly aggressive repeated connections. The reduced delays also make the system much more responsive to the addnode RPC. Ban-disconnects are also exempted for peers added via addnode since the outbound addnode logic ignores bans. Previously it would ban an addnode then immediately reconnect to it. A minor change was also made to CSemaphoreGrant so that it is possible to re-acquire via an object whos grant was moved.
2016-12-11 04:39:26 +00:00
}
//
// Start threads
//
assert(m_msgproc);
2016-12-27 17:13:31 -05:00
InterruptSocks5(false);
interruptNet.reset();
flagInterruptMsgProc = false;
{
LOCK(mutexMsgProc);
fMsgProcWake = false;
}
// Send and receive from sockets, accept connections
threadSocketHandler = std::thread(&TraceThread<std::function<void()> >, "net", std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
if (!gArgs.GetBoolArg("-dnsseed", true))
LogPrintf("DNS seeding disabled\n");
2011-11-21 12:25:00 -05:00
else
threadDNSAddressSeed = std::thread(&TraceThread<std::function<void()> >, "dnsseed", std::function<void()>(std::bind(&CConnman::ThreadDNSAddressSeed, this)));
// Initiate manual connections
threadOpenAddedConnections = std::thread(&TraceThread<std::function<void()> >, "addcon", std::function<void()>(std::bind(&CConnman::ThreadOpenAddedConnections, this)));
if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Cannot provide specific connections and have addrman find outgoing connections at the same."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty())
threadOpenConnections = std::thread(&TraceThread<std::function<void()> >, "opencon", std::function<void()>(std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing)));
// Process messages
threadMessageHandler = std::thread(&TraceThread<std::function<void()> >, "msghand", std::function<void()>(std::bind(&CConnman::ThreadMessageHandler, this)));
// Dump network addresses
scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
return true;
}
class CNetCleanup
{
public:
CNetCleanup() {}
~CNetCleanup()
{
#ifdef WIN32
// Shutdown Windows Sockets
WSACleanup();
#endif
}
};
static CNetCleanup instance_of_cnetcleanup;
void CConnman::Interrupt()
{
{
LOCK(mutexMsgProc);
flagInterruptMsgProc = true;
}
condMsgProc.notify_all();
interruptNet();
2016-12-27 17:13:31 -05:00
InterruptSocks5(true);
if (semOutbound) {
for (int i=0; i<m_max_outbound; i++) {
semOutbound->post();
}
}
if (semAddnode) {
for (int i=0; i<nMaxAddnode; i++) {
semAddnode->post();
}
}
}
2020-03-28 10:44:53 -04:00
void CConnman::StopThreads()
{
if (threadMessageHandler.joinable())
threadMessageHandler.join();
if (threadOpenConnections.joinable())
threadOpenConnections.join();
if (threadOpenAddedConnections.joinable())
threadOpenAddedConnections.join();
if (threadDNSAddressSeed.joinable())
threadDNSAddressSeed.join();
if (threadSocketHandler.joinable())
threadSocketHandler.join();
2020-03-28 10:44:53 -04:00
}
2020-03-28 10:44:53 -04:00
void CConnman::StopNodes()
{
if (fAddressesInitialized) {
DumpAddresses();
fAddressesInitialized = false;
}
// Close sockets
2020-03-28 10:44:53 -04:00
LOCK(cs_vNodes);
for (CNode* pnode : vNodes)
2017-02-06 14:05:45 -05:00
pnode->CloseSocketDisconnect();
for (ListenSocket& hListenSocket : vhListenSocket)
if (hListenSocket.socket != INVALID_SOCKET)
if (!CloseSocket(hListenSocket.socket))
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
// clean up some globals (to help leak detection)
2020-03-28 10:44:53 -04:00
for (CNode* pnode : vNodes) {
2016-05-24 18:59:16 -04:00
DeleteNode(pnode);
}
2020-03-28 10:44:53 -04:00
for (CNode* pnode : vNodesDisconnected) {
2016-05-24 18:59:16 -04:00
DeleteNode(pnode);
}
vNodes.clear();
vNodesDisconnected.clear();
vhListenSocket.clear();
semOutbound.reset();
semAddnode.reset();
}
2016-05-24 18:59:16 -04:00
void CConnman::DeleteNode(CNode* pnode)
{
assert(pnode);
bool fUpdateConnectionTime = false;
m_msgproc->FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
2020-03-28 10:44:53 -04:00
if (fUpdateConnectionTime) {
2016-05-24 18:59:16 -04:00
addrman.Connected(pnode->addr);
}
2016-05-24 18:59:16 -04:00
delete pnode;
}
CConnman::~CConnman()
{
Interrupt();
Stop();
}
void CConnman::SetServices(const CService &addr, ServiceFlags nServices)
{
addrman.SetServices(addr, nServices);
}
void CConnman::MarkAddressGood(const CAddress& addr)
{
addrman.Good(addr);
}
bool CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty)
{
return addrman.Add(vAddr, addrFrom, nTimePenalty);
}
std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct)
{
std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct);
if (m_banman) {
addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
[this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
addresses.end());
}
return addresses;
}
std::vector<CAddress> CConnman::GetAddresses(Network requestor_network, size_t max_addresses, size_t max_pct)
{
const auto current_time = GetTime<std::chrono::microseconds>();
if (m_addr_response_caches.find(requestor_network) == m_addr_response_caches.end() ||
m_addr_response_caches[requestor_network].m_update_addr_response < current_time) {
m_addr_response_caches[requestor_network].m_addrs_response_cache = GetAddresses(max_addresses, max_pct);
// Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
// and the usefulness of ADDR responses to honest users.
//
// Longer cache lifetime makes it more difficult for an attacker to scrape
// enough AddrMan data to maliciously infer something useful.
// By the time an attacker scraped enough AddrMan records, most of
// the records should be old enough to not leak topology info by
// e.g. analyzing real-time changes in timestamps.
//
// It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
// so ~24 hours of cache lifetime indeed makes the data less inferable by the time
// most of it could be scraped (considering that timestamps are updated via
// ADDR self-announcements and when nodes communicate).
// We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
// (because even several timestamps of the same handful of nodes may leak privacy).
//
// On the other hand, longer cache lifetime makes ADDR responses
// outdated and less useful for an honest requestor, e.g. if most nodes
// in the ADDR response are no longer active.
//
// However, the churn in the network is known to be rather low. Since we consider
// nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
// max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
// in terms of the freshness of the response.
m_addr_response_caches[requestor_network].m_update_addr_response = current_time + std::chrono::hours(21) + GetRandMillis(std::chrono::hours(6));
}
return m_addr_response_caches[requestor_network].m_addrs_response_cache;
}
bool CConnman::AddNode(const std::string& strNode)
{
LOCK(cs_vAddedNodes);
for (const std::string& it : vAddedNodes) {
if (strNode == it) return false;
}
vAddedNodes.push_back(strNode);
return true;
}
bool CConnman::RemoveAddedNode(const std::string& strNode)
{
LOCK(cs_vAddedNodes);
for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
if (strNode == *it) {
vAddedNodes.erase(it);
return true;
}
}
return false;
}
size_t CConnman::GetNodeCount(NumConnections flags)
{
LOCK(cs_vNodes);
if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total
return vNodes.size();
int nNum = 0;
for (const auto& pnode : vNodes) {
if (flags & (pnode->IsInboundConn() ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
nNum++;
}
}
return nNum;
}
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats)
{
vstats.clear();
LOCK(cs_vNodes);
vstats.reserve(vNodes.size());
for (CNode* pnode : vNodes) {
vstats.emplace_back();
pnode->copyStats(vstats.back(), addrman.m_asmap);
}
}
bool CConnman::DisconnectNode(const std::string& strNode)
{
LOCK(cs_vNodes);
if (CNode* pnode = FindNode(strNode)) {
pnode->fDisconnect = true;
return true;
}
return false;
}
bool CConnman::DisconnectNode(const CSubNet& subnet)
{
bool disconnected = false;
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (subnet.Match(pnode->addr)) {
pnode->fDisconnect = true;
disconnected = true;
}
}
return disconnected;
}
bool CConnman::DisconnectNode(const CNetAddr& addr)
{
return DisconnectNode(CSubNet(addr));
}
bool CConnman::DisconnectNode(NodeId id)
{
LOCK(cs_vNodes);
for(CNode* pnode : vNodes) {
if (id == pnode->GetId()) {
pnode->fDisconnect = true;
return true;
}
}
return false;
}
void CConnman::RecordBytesRecv(uint64_t bytes)
2013-08-23 02:09:32 +10:00
{
LOCK(cs_totalBytesRecv);
nTotalBytesRecv += bytes;
}
void CConnman::RecordBytesSent(uint64_t bytes)
2013-08-23 02:09:32 +10:00
{
LOCK(cs_totalBytesSent);
nTotalBytesSent += bytes;
uint64_t now = GetTime();
if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now)
{
// timeframe expired, reset cycle
nMaxOutboundCycleStartTime = now;
nMaxOutboundTotalBytesSentInCycle = 0;
}
// TODO, exclude peers with download permission
nMaxOutboundTotalBytesSentInCycle += bytes;
}
void CConnman::SetMaxOutboundTarget(uint64_t limit)
{
LOCK(cs_totalBytesSent);
nMaxOutboundLimit = limit;
}
uint64_t CConnman::GetMaxOutboundTarget()
{
LOCK(cs_totalBytesSent);
return nMaxOutboundLimit;
}
uint64_t CConnman::GetMaxOutboundTimeframe()
{
LOCK(cs_totalBytesSent);
return nMaxOutboundTimeframe;
}
uint64_t CConnman::GetMaxOutboundTimeLeftInCycle()
{
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0)
return 0;
if (nMaxOutboundCycleStartTime == 0)
return nMaxOutboundTimeframe;
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
uint64_t now = GetTime();
return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
}
void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe)
{
LOCK(cs_totalBytesSent);
if (nMaxOutboundTimeframe != timeframe)
{
// reset measure-cycle in case of changing
// the timeframe
nMaxOutboundCycleStartTime = GetTime();
}
nMaxOutboundTimeframe = timeframe;
}
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit)
{
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0)
return false;
if (historicalBlockServingLimit)
{
2016-01-17 11:03:56 +00:00
// keep a large enough buffer to at least relay each block once
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE;
if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
return true;
}
else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
return true;
return false;
}
uint64_t CConnman::GetOutboundTargetBytesLeft()
{
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0)
return 0;
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
2013-08-23 02:09:32 +10:00
}
uint64_t CConnman::GetTotalBytesRecv()
2013-08-23 02:09:32 +10:00
{
LOCK(cs_totalBytesRecv);
return nTotalBytesRecv;
}
uint64_t CConnman::GetTotalBytesSent()
2013-08-23 02:09:32 +10:00
{
LOCK(cs_totalBytesSent);
return nTotalBytesSent;
}
ServiceFlags CConnman::GetLocalServices() const
{
return nLocalServices;
}
void CConnman::SetBestHeight(int height)
{
nBestHeight.store(height, std::memory_order_release);
}
int CConnman::GetBestHeight() const
{
return nBestHeight.load(std::memory_order_acquire);
}
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress& addrBindIn, const std::string& addrNameIn, ConnectionType conn_type_in)
2019-01-05 06:11:04 -05:00
: nTimeConnected(GetSystemTimeInSeconds()),
addr(addrIn),
addrBind(addrBindIn),
nKeyedNetGroup(nKeyedNetGroupIn),
// Don't relay addr messages to peers that we connect to as block-relay-only
// peers (to prevent adversaries from inferring these links from addr
// traffic).
2017-04-11 12:11:27 -04:00
id(idIn),
nLocalHostNonce(nLocalHostNonceIn),
m_conn_type(conn_type_in),
nLocalServices(nLocalServicesIn),
2019-01-05 06:11:04 -05:00
nMyStartingHeight(nMyStartingHeightIn)
{
hSocket = hSocketIn;
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
hashContinue = uint256();
if (conn_type_in != ConnectionType::BLOCK_RELAY) {
m_tx_relay = MakeUnique<TxRelay>();
m_addr_known = MakeUnique<CRollingBloomFilter>(5000, 0.001);
}
for (const std::string &msg : getAllNetMessageTypes())
mapRecvBytesPerMsgCmd[msg] = 0;
2015-08-25 16:30:31 +02:00
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
if (fLogIPs) {
LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
} else {
LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
}
m_deserializer = MakeUnique<V1TransportDeserializer>(V1TransportDeserializer(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION));
2019-08-07 15:56:24 +02:00
m_serializer = MakeUnique<V1TransportSerializer>(V1TransportSerializer());
}
CNode::~CNode()
{
CloseSocket(hSocket);
}
bool CConnman::NodeFullyConnected(const CNode* pnode)
{
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
}
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
{
size_t nMessageSize = msg.data.size();
LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.m_type), nMessageSize, pnode->GetId());
2019-08-07 15:56:24 +02:00
// make sure we use the appropriate network transport format
std::vector<unsigned char> serializedHeader;
2019-08-07 15:56:24 +02:00
pnode->m_serializer->prepareForTransport(msg, serializedHeader);
size_t nTotalSize = nMessageSize + serializedHeader.size();
size_t nBytesSent = 0;
{
LOCK(pnode->cs_vSend);
bool optimisticSend(pnode->vSendMsg.empty());
//log total amount of bytes per message type
pnode->mapSendBytesPerMsgCmd[msg.m_type] += nTotalSize;
pnode->nSendSize += nTotalSize;
if (pnode->nSendSize > nSendBufferMaxSize)
pnode->fPauseSend = true;
pnode->vSendMsg.push_back(std::move(serializedHeader));
if (nMessageSize)
pnode->vSendMsg.push_back(std::move(msg.data));
// If write queue empty, attempt "optimistic write"
if (optimisticSend == true)
nBytesSent = SocketSendData(pnode);
}
if (nBytesSent)
RecordBytesSent(nBytesSent);
}
bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
{
CNode* found = nullptr;
LOCK(cs_vNodes);
for (auto&& pnode : vNodes) {
if(pnode->GetId() == id) {
found = pnode;
break;
}
}
return found != nullptr && NodeFullyConnected(found) && func(found);
}
int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds)
{
if (m_next_send_inv_to_incoming < now) {
// If this function were called from multiple threads simultaneously
// it would possible that both update the next send variable, and return a different result to their caller.
// This is not possible in practice as only the net processing thread invokes this function.
m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds);
}
return m_next_send_inv_to_incoming;
}
int64_t PoissonNextSend(int64_t now, int average_interval_seconds)
{
return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
}
2017-01-24 02:32:52 +01:00
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
{
return CSipHasher(nSeed0, nSeed1).Write(id);
}
2017-01-24 02:32:52 +01:00
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const
{
std::vector<unsigned char> vchNetGroup(ad.GetGroup(addrman.m_asmap));
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize();
}