bitcoin/src/pubkey.h

329 lines
10 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Copyright (c) 2017 The Zcash developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_PUBKEY_H
#define BITCOIN_PUBKEY_H
#include <hash.h>
#include <serialize.h>
#include <span.h>
#include <uint256.h>
#include <cstring>
2021-05-23 21:32:30 -04:00
#include <optional>
#include <vector>
const unsigned int BIP32_EXTKEY_SIZE = 74;
/** A reference to a CKey: the Hash160 of its serialized public key */
class CKeyID : public uint160
{
public:
CKeyID() : uint160() {}
explicit CKeyID(const uint160& in) : uint160(in) {}
};
typedef uint256 ChainCode;
/** An encapsulated public key. */
class CPubKey
{
public:
/**
* secp256k1:
*/
2019-03-04 06:26:31 -03:00
static constexpr unsigned int SIZE = 65;
static constexpr unsigned int COMPRESSED_SIZE = 33;
static constexpr unsigned int SIGNATURE_SIZE = 72;
static constexpr unsigned int COMPACT_SIGNATURE_SIZE = 65;
/**
* see www.keylength.com
* script supports up to 75 for single byte push
*/
static_assert(
SIZE >= COMPRESSED_SIZE,
"COMPRESSED_SIZE is larger than SIZE");
private:
/**
* Just store the serialized data.
* Its length can very cheaply be computed from the first byte.
*/
unsigned char vch[SIZE];
//! Compute the length of a pubkey with a given first byte.
unsigned int static GetLen(unsigned char chHeader)
{
if (chHeader == 2 || chHeader == 3)
return COMPRESSED_SIZE;
if (chHeader == 4 || chHeader == 6 || chHeader == 7)
return SIZE;
return 0;
}
//! Set this key data to be invalid
void Invalidate()
{
vch[0] = 0xFF;
}
public:
bool static ValidSize(const std::vector<unsigned char> &vch) {
return vch.size() > 0 && GetLen(vch[0]) == vch.size();
}
//! Construct an invalid public key.
CPubKey()
{
Invalidate();
}
//! Initialize a public key using begin/end iterators to byte data.
template <typename T>
void Set(const T pbegin, const T pend)
{
int len = pend == pbegin ? 0 : GetLen(pbegin[0]);
if (len && len == (pend - pbegin))
memcpy(vch, (unsigned char*)&pbegin[0], len);
else
Invalidate();
}
//! Construct a public key using begin/end iterators to byte data.
template <typename T>
CPubKey(const T pbegin, const T pend)
{
Set(pbegin, pend);
}
//! Construct a public key from a byte vector.
explicit CPubKey(Span<const uint8_t> _vch)
{
2016-09-02 13:19:01 -03:00
Set(_vch.begin(), _vch.end());
}
//! Simple read-only vector-like interface to the pubkey data.
unsigned int size() const { return GetLen(vch[0]); }
const unsigned char* data() const { return vch; }
const unsigned char* begin() const { return vch; }
const unsigned char* end() const { return vch + size(); }
const unsigned char& operator[](unsigned int pos) const { return vch[pos]; }
//! Comparator implementation.
friend bool operator==(const CPubKey& a, const CPubKey& b)
{
return a.vch[0] == b.vch[0] &&
memcmp(a.vch, b.vch, a.size()) == 0;
}
friend bool operator!=(const CPubKey& a, const CPubKey& b)
{
return !(a == b);
}
friend bool operator<(const CPubKey& a, const CPubKey& b)
{
return a.vch[0] < b.vch[0] ||
(a.vch[0] == b.vch[0] && memcmp(a.vch, b.vch, a.size()) < 0);
}
//! Implement serialization, as if this was a byte vector.
template <typename Stream>
void Serialize(Stream& s) const
{
unsigned int len = size();
::WriteCompactSize(s, len);
s.write((char*)vch, len);
}
template <typename Stream>
void Unserialize(Stream& s)
{
const unsigned int len(::ReadCompactSize(s));
if (len <= SIZE) {
s.read((char*)vch, len);
2020-06-10 10:34:28 -04:00
if (len != size()) {
Invalidate();
}
} else {
// invalid pubkey, skip available data
s.ignore(len);
Invalidate();
}
}
//! Get the KeyID of this public key (hash of its serialization)
CKeyID GetID() const
{
return CKeyID(Hash160(MakeSpan(vch).first(size())));
}
//! Get the 256-bit hash of this public key.
uint256 GetHash() const
{
return Hash(MakeSpan(vch).first(size()));
}
/*
* Check syntactic correctness.
*
2020-10-20 19:26:29 -03:00
* When setting a pubkey (Set()) or deserializing fails (its header bytes
* don't match the length of the data), the size is set to 0. Thus,
* by checking size, one can observe whether Set() or deserialization has
* failed.
*
* This does not check for more than that. In particular, it does not verify
* that the coordinates correspond to a point on the curve (see IsFullyValid()
* for that instead).
*
* Note that this is consensus critical as CheckECDSASignature() calls it!
*/
bool IsValid() const
{
return size() > 0;
}
//! fully validate whether this is a valid public key (more expensive than IsValid())
bool IsFullyValid() const;
//! Check whether this is a compressed public key.
bool IsCompressed() const
{
return size() == COMPRESSED_SIZE;
}
/**
* Verify a DER signature (~72 bytes).
* If this public key is not fully valid, the return value will be false.
*/
bool Verify(const uint256& hash, const std::vector<unsigned char>& vchSig) const;
/**
* Check whether a signature is normalized (lower-S).
*/
static bool CheckLowS(const std::vector<unsigned char>& vchSig);
//! Recover a public key from a compact signature.
bool RecoverCompact(const uint256& hash, const std::vector<unsigned char>& vchSig);
//! Turn this public key into an uncompressed public key.
bool Decompress();
//! Derive BIP32 child pubkey.
bool Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
};
class XOnlyPubKey
{
private:
uint256 m_keydata;
public:
/** Construct an empty x-only pubkey. */
XOnlyPubKey() = default;
XOnlyPubKey(const XOnlyPubKey&) = default;
XOnlyPubKey& operator=(const XOnlyPubKey&) = default;
/** Determine if this pubkey is fully valid. This is true for approximately 50% of all
* possible 32-byte arrays. If false, VerifySchnorr, CheckTapTweak and CreateTapTweak
* will always fail. */
bool IsFullyValid() const;
/** Test whether this is the 0 key (the result of default construction). This implies
* !IsFullyValid(). */
bool IsNull() const { return m_keydata.IsNull(); }
/** Construct an x-only pubkey from exactly 32 bytes. */
explicit XOnlyPubKey(Span<const unsigned char> bytes);
/** Construct an x-only pubkey from a normal pubkey. */
explicit XOnlyPubKey(const CPubKey& pubkey) : XOnlyPubKey(Span<const unsigned char>(pubkey.begin() + 1, pubkey.begin() + 33)) {}
/** Verify a Schnorr signature against this public key.
*
* sigbytes must be exactly 64 bytes.
*/
bool VerifySchnorr(const uint256& msg, Span<const unsigned char> sigbytes) const;
/** Compute the Taproot tweak as specified in BIP341, with *this as internal
* key:
* - if merkle_root == nullptr: H_TapTweak(xonly_pubkey)
* - otherwise: H_TapTweak(xonly_pubkey || *merkle_root)
*
* Note that the behavior of this function with merkle_root != nullptr is
* consensus critical.
*/
uint256 ComputeTapTweakHash(const uint256* merkle_root) const;
/** Verify that this is a Taproot tweaked output point, against a specified internal key,
* Merkle root, and parity. */
bool CheckTapTweak(const XOnlyPubKey& internal, const uint256& merkle_root, bool parity) const;
2021-05-23 21:32:30 -04:00
/** Construct a Taproot tweaked output point with this point as internal key. */
std::optional<std::pair<XOnlyPubKey, bool>> CreateTapTweak(const uint256* merkle_root) const;
/** Returns a list of CKeyIDs for the CPubKeys that could have been used to create this XOnlyPubKey.
* This is needed for key lookups since keys are indexed by CKeyID.
*/
std::vector<CKeyID> GetKeyIDs() const;
const unsigned char& operator[](int pos) const { return *(m_keydata.begin() + pos); }
const unsigned char* data() const { return m_keydata.begin(); }
static constexpr size_t size() { return decltype(m_keydata)::size(); }
const unsigned char* begin() const { return m_keydata.begin(); }
const unsigned char* end() const { return m_keydata.end(); }
unsigned char* begin() { return m_keydata.begin(); }
unsigned char* end() { return m_keydata.end(); }
bool operator==(const XOnlyPubKey& other) const { return m_keydata == other.m_keydata; }
bool operator!=(const XOnlyPubKey& other) const { return m_keydata != other.m_keydata; }
bool operator<(const XOnlyPubKey& other) const { return m_keydata < other.m_keydata; }
};
struct CExtPubKey {
unsigned char nDepth;
unsigned char vchFingerprint[4];
unsigned int nChild;
ChainCode chaincode;
CPubKey pubkey;
friend bool operator==(const CExtPubKey &a, const CExtPubKey &b)
{
return a.nDepth == b.nDepth &&
memcmp(a.vchFingerprint, b.vchFingerprint, sizeof(vchFingerprint)) == 0 &&
a.nChild == b.nChild &&
a.chaincode == b.chaincode &&
a.pubkey == b.pubkey;
}
friend bool operator!=(const CExtPubKey &a, const CExtPubKey &b)
{
return !(a == b);
}
void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const;
void Decode(const unsigned char code[BIP32_EXTKEY_SIZE]);
bool Derive(CExtPubKey& out, unsigned int nChild) const;
};
/** Users of this module must hold an ECCVerifyHandle. The constructor and
* destructor of these are not allowed to run in parallel, though. */
class ECCVerifyHandle
{
static int refcount;
public:
ECCVerifyHandle();
~ECCVerifyHandle();
};
typedef struct secp256k1_context_struct secp256k1_context;
/** Access to the internal secp256k1 context used for verification. Only intended to be used
* by key.cpp. */
const secp256k1_context* GetVerifyContext();
#endif // BITCOIN_PUBKEY_H