usbloadergx/source/libwbfs/rijndael.c

389 lines
9.7 KiB
C

/* Rijndael Block Cipher - rijndael.c
Written by Mike Scott 21st April 1999
mike@compapp.dcu.ie
Permission for free direct or derivative use is granted subject
to compliance with any conditions that the originators of the
algorithm place on its exploitation.
*/
#include <stdio.h>
#include <string.h>
#define u8 unsigned char /* 8 bits */
#define u32 unsigned long /* 32 bits */
#define u64 unsigned long long
/* rotates x one bit to the left */
#define ROTL(x) (((x)>>7)|((x)<<1))
/* Rotates 32-bit word left by 1, 2 or 3 byte */
#define ROTL8(x) (((x)<<8)|((x)>>24))
#define ROTL16(x) (((x)<<16)|((x)>>16))
#define ROTL24(x) (((x)<<24)|((x)>>8))
/* Fixed Data */
static u8 InCo[4]={0xB,0xD,0x9,0xE}; /* Inverse Coefficients */
static u8 fbsub[256];
static u8 rbsub[256];
static u8 ptab[256],ltab[256];
static u32 ftable[256];
static u32 rtable[256];
static u32 rco[30];
/* Parameter-dependent data */
int Nk,Nb,Nr;
u8 fi[24],ri[24];
u32 fkey[120];
u32 rkey[120];
static u32 pack(u8 *b) { /* pack bytes into a 32-bit Word */
return ((u32)b[3]<<24)|((u32)b[2]<<16)|((u32)b[1]<<8)|(u32)b[0];
}
static void unpack(u32 a,u8 *b) { /* unpack bytes from a word */
b[0]=(u8)a;
b[1]=(u8)(a>>8);
b[2]=(u8)(a>>16);
b[3]=(u8)(a>>24);
}
static u8 xtime(u8 a) {
u8 b;
if (a&0x80) b=0x1B;
else b=0;
a<<=1;
a^=b;
return a;
}
static u8 bmul(u8 x,u8 y) { /* x.y= AntiLog(Log(x) + Log(y)) */
if (x && y) return ptab[(ltab[x]+ltab[y])%255];
else return 0;
}
static u32 SubByte(u32 a) {
u8 b[4];
unpack(a,b);
b[0]=fbsub[b[0]];
b[1]=fbsub[b[1]];
b[2]=fbsub[b[2]];
b[3]=fbsub[b[3]];
return pack(b);
}
static u8 product(u32 x,u32 y) { /* dot product of two 4-byte arrays */
u8 xb[4],yb[4];
unpack(x,xb);
unpack(y,yb);
return bmul(xb[0],yb[0])^bmul(xb[1],yb[1])^bmul(xb[2],yb[2])^bmul(xb[3],yb[3]);
}
static u32 InvMixCol(u32 x) { /* matrix Multiplication */
u32 y,m;
u8 b[4];
m=pack(InCo);
b[3]=product(m,x);
m=ROTL24(m);
b[2]=product(m,x);
m=ROTL24(m);
b[1]=product(m,x);
m=ROTL24(m);
b[0]=product(m,x);
y=pack(b);
return y;
}
u8 ByteSub(u8 x) {
u8 y=ptab[255-ltab[x]]; /* multiplicative inverse */
x=y;
x=ROTL(x);
y^=x;
x=ROTL(x);
y^=x;
x=ROTL(x);
y^=x;
x=ROTL(x);
y^=x;
y^=0x63;
return y;
}
void gentables(void) { /* generate tables */
int i;
u8 y,b[4];
/* use 3 as primitive root to generate power and log tables */
ltab[0]=0;
ptab[0]=1;
ltab[1]=0;
ptab[1]=3;
ltab[3]=1;
for (i=2;i<256;i++) {
ptab[i]=ptab[i-1]^xtime(ptab[i-1]);
ltab[ptab[i]]=i;
}
/* affine transformation:- each bit is xored with itself shifted one bit */
fbsub[0]=0x63;
rbsub[0x63]=0;
for (i=1;i<256;i++) {
y=ByteSub((u8)i);
fbsub[i]=y;
rbsub[y]=i;
}
for (i=0,y=1;i<30;i++) {
rco[i]=y;
y=xtime(y);
}
/* calculate forward and reverse tables */
for (i=0;i<256;i++) {
y=fbsub[i];
b[3]=y^xtime(y);
b[2]=y;
b[1]=y;
b[0]=xtime(y);
ftable[i]=pack(b);
y=rbsub[i];
b[3]=bmul(InCo[0],y);
b[2]=bmul(InCo[1],y);
b[1]=bmul(InCo[2],y);
b[0]=bmul(InCo[3],y);
rtable[i]=pack(b);
}
}
void gkey(int nb,int nk,char *key) { /* blocksize=32*nb bits. Key=32*nk bits */
/* currently nb,bk = 4, 6 or 8 */
/* key comes as 4*Nk bytes */
/* Key Scheduler. Create expanded encryption key */
int i,j,k,m,N;
int C1,C2,C3;
u32 CipherKey[8];
Nb=nb;
Nk=nk;
/* Nr is number of rounds */
if (Nb>=Nk) Nr=6+Nb;
else Nr=6+Nk;
C1=1;
if (Nb<8) {
C2=2;
C3=3;
} else {
C2=3;
C3=4;
}
/* pre-calculate forward and reverse increments */
for (m=j=0;j<nb;j++,m+=3) {
fi[m]=(j+C1)%nb;
fi[m+1]=(j+C2)%nb;
fi[m+2]=(j+C3)%nb;
ri[m]=(nb+j-C1)%nb;
ri[m+1]=(nb+j-C2)%nb;
ri[m+2]=(nb+j-C3)%nb;
}
N=Nb*(Nr+1);
for (i=j=0;i<Nk;i++,j+=4) {
CipherKey[i]=pack((u8 *)&key[j]);
}
for (i=0;i<Nk;i++) fkey[i]=CipherKey[i];
for (j=Nk,k=0;j<N;j+=Nk,k++) {
fkey[j]=fkey[j-Nk]^SubByte(ROTL24(fkey[j-1]))^rco[k];
if (Nk<=6) {
for (i=1;i<Nk && (i+j)<N;i++)
fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
} else {
for (i=1;i<4 &&(i+j)<N;i++)
fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
if ((j+4)<N) fkey[j+4]=fkey[j+4-Nk]^SubByte(fkey[j+3]);
for (i=5;i<Nk && (i+j)<N;i++)
fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
}
}
/* now for the expanded decrypt key in reverse order */
for (j=0;j<Nb;j++) rkey[j+N-Nb]=fkey[j];
for (i=Nb;i<N-Nb;i+=Nb) {
k=N-Nb-i;
for (j=0;j<Nb;j++) rkey[k+j]=InvMixCol(fkey[i+j]);
}
for (j=N-Nb;j<N;j++) rkey[j-N+Nb]=fkey[j];
}
/* There is an obvious time/space trade-off possible here. *
* Instead of just one ftable[], I could have 4, the other *
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
void encrypt(char *buff) {
int i,j,k,m;
u32 a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4) {
a[i]=pack((u8 *)&buff[j]);
a[i]^=fkey[i];
}
k=Nb;
x=a;
y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++) { /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of fi[] */
for (m=j=0;j<Nb;j++,m+=3) { /* deal with each 32-bit element of the State */
/* This is the time-critical bit */
y[j]=fkey[k++]^ftable[(u8)x[j]]^
ROTL8(ftable[(u8)(x[fi[m]]>>8)])^
ROTL16(ftable[(u8)(x[fi[m+1]]>>16)])^
ROTL24(ftable[x[fi[m+2]]>>24]);
}
t=x;
x=y;
y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3) {
y[j]=fkey[k++]^(u32)fbsub[(u8)x[j]]^
ROTL8((u32)fbsub[(u8)(x[fi[m]]>>8)])^
ROTL16((u32)fbsub[(u8)(x[fi[m+1]]>>16)])^
ROTL24((u32)fbsub[x[fi[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4) {
unpack(y[i],(u8 *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
void decrypt(char *buff) {
int i,j,k,m;
u32 a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4) {
a[i]=pack((u8 *)&buff[j]);
a[i]^=rkey[i];
}
k=Nb;
x=a;
y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++) { /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of ri[] */
for (m=j=0;j<Nb;j++,m+=3) { /* This is the time-critical bit */
y[j]=rkey[k++]^rtable[(u8)x[j]]^
ROTL8(rtable[(u8)(x[ri[m]]>>8)])^
ROTL16(rtable[(u8)(x[ri[m+1]]>>16)])^
ROTL24(rtable[x[ri[m+2]]>>24]);
}
t=x;
x=y;
y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3) {
y[j]=rkey[k++]^(u32)rbsub[(u8)x[j]]^
ROTL8((u32)rbsub[(u8)(x[ri[m]]>>8)])^
ROTL16((u32)rbsub[(u8)(x[ri[m+1]]>>16)])^
ROTL24((u32)rbsub[x[ri[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4) {
unpack(y[i],(u8 *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
void aes_set_key(u8 *key) {
gentables();
gkey(4, 4,(char*) key);
}
// CBC mode decryption
void aes_decrypt(u8 *iv, u8 *inbuf, u8 *outbuf, unsigned long long len) {
u8 block[16];
unsigned int blockno = 0, i;
//printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) {
unsigned int fraction;
if (blockno == (len / sizeof(block))) { // last block
fraction = len % sizeof(block);
if (fraction == 0) break;
memset(block, 0, sizeof(block));
} else fraction = 16;
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
decrypt((char*)block);
u8 *ctext_ptr;
if (blockno == 0) ctext_ptr = iv;
else ctext_ptr = inbuf + (blockno-1) * sizeof(block);
for (i=0; i < fraction; i++)
outbuf[blockno * sizeof(block) + i] =
ctext_ptr[i] ^ block[i];
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
}
// CBC mode encryption
void aes_encrypt(u8 *iv, u8 *inbuf, u8 *outbuf, unsigned long long len) {
u8 block[16];
unsigned int blockno = 0, i;
// debug_printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len);
for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) {
unsigned int fraction;
if (blockno == (len / sizeof(block))) { // last block
fraction = len % sizeof(block);
if (fraction == 0) break;
memset(block, 0, sizeof(block));
} else fraction = 16;
// debug_printf("block %d: fraction = %d\n", blockno, fraction);
memcpy(block, inbuf + blockno * sizeof(block), fraction);
for (i=0; i < fraction; i++)
block[i] = inbuf[blockno * sizeof(block) + i] ^ iv[i];
encrypt((char*)block);
memcpy(iv, block, sizeof(block));
memcpy(outbuf + blockno * sizeof(block), block, sizeof(block));
// debug_printf("Block %d output: ", blockno);
// hexdump(outbuf + blockno*sizeof(block), 16);
}
}