Ryujinx_GreemDev/Ryujinx.HLE/HOS/Kernel/KProcessCapabilities.cs

311 lines
No EOL
9.2 KiB
C#

using Ryujinx.Common;
namespace Ryujinx.HLE.HOS.Kernel
{
class KProcessCapabilities
{
public byte[] SvcAccessMask { get; private set; }
public byte[] IrqAccessMask { get; private set; }
public long AllowedCpuCoresMask { get; private set; }
public long AllowedThreadPriosMask { get; private set; }
public int DebuggingFlags { get; private set; }
public int HandleTableSize { get; private set; }
public int KernelReleaseVersion { get; private set; }
public int ApplicationType { get; private set; }
public KProcessCapabilities()
{
SvcAccessMask = new byte[0x10];
IrqAccessMask = new byte[0x80];
}
public KernelResult InitializeForKernel(int[] Caps, KMemoryManager MemoryManager)
{
AllowedCpuCoresMask = 0xf;
AllowedThreadPriosMask = -1;
DebuggingFlags &= ~3;
KernelReleaseVersion = KProcess.KernelVersionPacked;
return Parse(Caps, MemoryManager);
}
public KernelResult InitializeForUser(int[] Caps, KMemoryManager MemoryManager)
{
return Parse(Caps, MemoryManager);
}
private KernelResult Parse(int[] Caps, KMemoryManager MemoryManager)
{
int Mask0 = 0;
int Mask1 = 0;
for (int Index = 0; Index < Caps.Length; Index++)
{
int Cap = Caps[Index];
if (((Cap + 1) & ~Cap) != 0x40)
{
KernelResult Result = ParseCapability(Cap, ref Mask0, ref Mask1, MemoryManager);
if (Result != KernelResult.Success)
{
return Result;
}
}
else
{
if ((uint)Index + 1 >= Caps.Length)
{
return KernelResult.InvalidCombination;
}
int PrevCap = Cap;
Cap = Caps[++Index];
if (((Cap + 1) & ~Cap) != 0x40)
{
return KernelResult.InvalidCombination;
}
if ((Cap & 0x78000000) != 0)
{
return KernelResult.MaximumExceeded;
}
if ((Cap & 0x7ffff80) == 0)
{
return KernelResult.InvalidSize;
}
long Address = ((long)(uint)PrevCap << 5) & 0xffffff000;
long Size = ((long)(uint)Cap << 5) & 0xfffff000;
if (((ulong)(Address + Size - 1) >> 36) != 0)
{
return KernelResult.InvalidAddress;
}
MemoryPermission Perm = (PrevCap >> 31) != 0
? MemoryPermission.Read
: MemoryPermission.ReadAndWrite;
KernelResult Result;
if ((Cap >> 31) != 0)
{
Result = MemoryManager.MapNormalMemory(Address, Size, Perm);
}
else
{
Result = MemoryManager.MapIoMemory(Address, Size, Perm);
}
if (Result != KernelResult.Success)
{
return Result;
}
}
}
return KernelResult.Success;
}
private KernelResult ParseCapability(int Cap, ref int Mask0, ref int Mask1, KMemoryManager MemoryManager)
{
int Code = (Cap + 1) & ~Cap;
if (Code == 1)
{
return KernelResult.InvalidCapability;
}
else if (Code == 0)
{
return KernelResult.Success;
}
int CodeMask = 1 << (32 - BitUtils.CountLeadingZeros32(Code + 1));
//Check if the property was already set.
if (((Mask0 & CodeMask) & 0x1e008) != 0)
{
return KernelResult.InvalidCombination;
}
Mask0 |= CodeMask;
switch (Code)
{
case 8:
{
if (AllowedCpuCoresMask != 0 || AllowedThreadPriosMask != 0)
{
return KernelResult.InvalidCapability;
}
int LowestCpuCore = (Cap >> 16) & 0xff;
int HighestCpuCore = (Cap >> 24) & 0xff;
if (LowestCpuCore > HighestCpuCore)
{
return KernelResult.InvalidCombination;
}
int HighestThreadPrio = (Cap >> 4) & 0x3f;
int LowestThreadPrio = (Cap >> 10) & 0x3f;
if (LowestThreadPrio > HighestThreadPrio)
{
return KernelResult.InvalidCombination;
}
if (HighestCpuCore >= KScheduler.CpuCoresCount)
{
return KernelResult.InvalidCpuCore;
}
AllowedCpuCoresMask = GetMaskFromMinMax(LowestCpuCore, HighestCpuCore);
AllowedThreadPriosMask = GetMaskFromMinMax(LowestThreadPrio, HighestThreadPrio);
break;
}
case 0x10:
{
int Slot = (Cap >> 29) & 7;
int SvcSlotMask = 1 << Slot;
if ((Mask1 & SvcSlotMask) != 0)
{
return KernelResult.InvalidCombination;
}
Mask1 |= SvcSlotMask;
int SvcMask = (Cap >> 5) & 0xffffff;
int BaseSvc = Slot * 24;
for (int Index = 0; Index < 24; Index++)
{
if (((SvcMask >> Index) & 1) == 0)
{
continue;
}
int SvcId = BaseSvc + Index;
if (SvcId > 0x7f)
{
return KernelResult.MaximumExceeded;
}
SvcAccessMask[SvcId / 8] |= (byte)(1 << (SvcId & 7));
}
break;
}
case 0x80:
{
long Address = ((long)(uint)Cap << 4) & 0xffffff000;
MemoryManager.MapIoMemory(Address, KMemoryManager.PageSize, MemoryPermission.ReadAndWrite);
break;
}
case 0x800:
{
//TODO: GIC distributor check.
int Irq0 = (Cap >> 12) & 0x3ff;
int Irq1 = (Cap >> 22) & 0x3ff;
if (Irq0 != 0x3ff)
{
IrqAccessMask[Irq0 / 8] |= (byte)(1 << (Irq0 & 7));
}
if (Irq1 != 0x3ff)
{
IrqAccessMask[Irq1 / 8] |= (byte)(1 << (Irq1 & 7));
}
break;
}
case 0x2000:
{
int ApplicationType = Cap >> 14;
if ((uint)ApplicationType > 7)
{
return KernelResult.ReservedValue;
}
this.ApplicationType = ApplicationType;
break;
}
case 0x4000:
{
//Note: This check is bugged on kernel too, we are just replicating the bug here.
if ((KernelReleaseVersion >> 17) != 0 || Cap < 0x80000)
{
return KernelResult.ReservedValue;
}
KernelReleaseVersion = Cap;
break;
}
case 0x8000:
{
int HandleTableSize = Cap >> 26;
if ((uint)HandleTableSize > 0x3ff)
{
return KernelResult.ReservedValue;
}
this.HandleTableSize = HandleTableSize;
break;
}
case 0x10000:
{
int DebuggingFlags = Cap >> 19;
if ((uint)DebuggingFlags > 3)
{
return KernelResult.ReservedValue;
}
this.DebuggingFlags &= ~3;
this.DebuggingFlags |= DebuggingFlags;
break;
}
default: return KernelResult.InvalidCapability;
}
return KernelResult.Success;
}
private static long GetMaskFromMinMax(int Min, int Max)
{
int Range = Max - Min + 1;
long Mask = (1L << Range) - 1;
return Mask << Min;
}
}
}