EXPERIMENTAL: Metal backend (#441)

This is not a continuation of the Metal backend; this is simply bringing
the branch up to date and merging it as-is behind an experiment.

---------

Co-authored-by: Isaac Marovitz <isaacryu@icloud.com>
Co-authored-by: Samuliak <samuliak77@gmail.com>
Co-authored-by: SamoZ256 <96914946+SamoZ256@users.noreply.github.com>
Co-authored-by: Isaac Marovitz <42140194+IsaacMarovitz@users.noreply.github.com>
Co-authored-by: riperiperi <rhy3756547@hotmail.com>
Co-authored-by: Gabriel A <gab.dark.100@gmail.com>
This commit is contained in:
Evan Husted 2024-12-24 00:55:16 -06:00 committed by GitHub
parent 3094df54dd
commit 852823104f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
131 changed files with 14992 additions and 140 deletions

View file

@ -44,6 +44,7 @@
<PackageVersion Include="Gommon" Version="2.6.8" />
<PackageVersion Include="securifybv.ShellLink" Version="0.1.0" />
<PackageVersion Include="shaderc.net" Version="0.1.0" />
<PackageVersion Include="SharpMetal" Version="1.0.0-preview20" />
<PackageVersion Include="SharpZipLib" Version="1.4.2" />
<PackageVersion Include="Silk.NET.Vulkan" Version="2.21.0" />
<PackageVersion Include="Silk.NET.Vulkan.Extensions.EXT" Version="2.21.0" />

View file

@ -80,6 +80,10 @@ EndProject
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Ryujinx.Horizon.Kernel.Generators", "src\Ryujinx.Horizon.Kernel.Generators\Ryujinx.Horizon.Kernel.Generators.csproj", "{7F55A45D-4E1D-4A36-ADD3-87F29A285AA2}"
EndProject
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Ryujinx.HLE.Generators", "src\Ryujinx.HLE.Generators\Ryujinx.HLE.Generators.csproj", "{B575BCDE-2FD8-4A5D-8756-31CDD7FE81F0}"
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Ryujinx.Graphics.Metal", "src\Ryujinx.Graphics.Metal\Ryujinx.Graphics.Metal.csproj", "{C08931FA-1191-417A-864F-3882D93E683B}"
ProjectSection(ProjectDependencies) = postProject
{A602AE97-91A5-4608-8DF1-EBF4ED7A0B9E} = {A602AE97-91A5-4608-8DF1-EBF4ED7A0B9E}
EndProjectSection
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Solution Items", "Solution Items", "{36F870C1-3E5F-485F-B426-F0645AF78751}"
ProjectSection(SolutionItems) = preProject
@ -257,6 +261,10 @@ Global
{4A89A234-4F19-497D-A576-DDE8CDFC5B22}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{4A89A234-4F19-497D-A576-DDE8CDFC5B22}.Debug|Any CPU.Build.0 = Debug|Any CPU
{4A89A234-4F19-497D-A576-DDE8CDFC5B22}.Release|Any CPU.ActiveCfg = Release|Any CPU
{C08931FA-1191-417A-864F-3882D93E683B}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{C08931FA-1191-417A-864F-3882D93E683B}.Debug|Any CPU.Build.0 = Debug|Any CPU
{C08931FA-1191-417A-864F-3882D93E683B}.Release|Any CPU.ActiveCfg = Release|Any CPU
{C08931FA-1191-417A-864F-3882D93E683B}.Release|Any CPU.Build.0 = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE

View file

@ -6,7 +6,9 @@ namespace Ryujinx.Common.Configuration
[JsonConverter(typeof(TypedStringEnumConverter<GraphicsBackend>))]
public enum GraphicsBackend
{
Auto,
Vulkan,
OpenGl,
Metal
}
}

View file

@ -0,0 +1,18 @@
namespace Ryujinx.Graphics.GAL
{
public readonly struct ComputeSize
{
public readonly static ComputeSize VtgAsCompute = new ComputeSize(32, 32, 1);
public readonly int X;
public readonly int Y;
public readonly int Z;
public ComputeSize(int x, int y, int z)
{
X = x;
Y = y;
Z = z;
}
}
}

View file

@ -339,6 +339,84 @@ namespace Ryujinx.Graphics.GAL
return 1;
}
/// <summary>
/// Get bytes per element for this format.
/// </summary>
/// <param name="format">Texture format</param>
/// <returns>Byte size for an element of this format (pixel, vertex attribute, etc)</returns>
public static int GetBytesPerElement(this Format format)
{
int scalarSize = format.GetScalarSize();
switch (format)
{
case Format.R8G8Unorm:
case Format.R8G8Snorm:
case Format.R8G8Uint:
case Format.R8G8Sint:
case Format.R8G8Uscaled:
case Format.R8G8Sscaled:
case Format.R16G16Float:
case Format.R16G16Unorm:
case Format.R16G16Snorm:
case Format.R16G16Uint:
case Format.R16G16Sint:
case Format.R16G16Uscaled:
case Format.R16G16Sscaled:
case Format.R32G32Float:
case Format.R32G32Uint:
case Format.R32G32Sint:
case Format.R32G32Uscaled:
case Format.R32G32Sscaled:
return 2 * scalarSize;
case Format.R8G8B8Unorm:
case Format.R8G8B8Snorm:
case Format.R8G8B8Uint:
case Format.R8G8B8Sint:
case Format.R8G8B8Uscaled:
case Format.R8G8B8Sscaled:
case Format.R16G16B16Float:
case Format.R16G16B16Unorm:
case Format.R16G16B16Snorm:
case Format.R16G16B16Uint:
case Format.R16G16B16Sint:
case Format.R16G16B16Uscaled:
case Format.R16G16B16Sscaled:
case Format.R32G32B32Float:
case Format.R32G32B32Uint:
case Format.R32G32B32Sint:
case Format.R32G32B32Uscaled:
case Format.R32G32B32Sscaled:
return 3 * scalarSize;
case Format.R8G8B8A8Unorm:
case Format.R8G8B8A8Snorm:
case Format.R8G8B8A8Uint:
case Format.R8G8B8A8Sint:
case Format.R8G8B8A8Srgb:
case Format.R8G8B8A8Uscaled:
case Format.R8G8B8A8Sscaled:
case Format.B8G8R8A8Unorm:
case Format.B8G8R8A8Srgb:
case Format.R16G16B16A16Float:
case Format.R16G16B16A16Unorm:
case Format.R16G16B16A16Snorm:
case Format.R16G16B16A16Uint:
case Format.R16G16B16A16Sint:
case Format.R16G16B16A16Uscaled:
case Format.R16G16B16A16Sscaled:
case Format.R32G32B32A32Float:
case Format.R32G32B32A32Uint:
case Format.R32G32B32A32Sint:
case Format.R32G32B32A32Uscaled:
case Format.R32G32B32A32Sscaled:
return 4 * scalarSize;
}
return scalarSize;
}
/// <summary>
/// Checks if the texture format is a depth or depth-stencil format.
/// </summary>

View file

@ -4,23 +4,22 @@ namespace Ryujinx.Graphics.GAL
{
public int FragmentOutputMap { get; }
public ResourceLayout ResourceLayout { get; }
public ComputeSize ComputeLocalSize { get; }
public ProgramPipelineState? State { get; }
public bool FromCache { get; set; }
public ShaderInfo(int fragmentOutputMap, ResourceLayout resourceLayout, ProgramPipelineState state, bool fromCache = false)
public ShaderInfo(
int fragmentOutputMap,
ResourceLayout resourceLayout,
ComputeSize computeLocalSize,
ProgramPipelineState? state,
bool fromCache = false)
{
FragmentOutputMap = fragmentOutputMap;
ResourceLayout = resourceLayout;
ComputeLocalSize = computeLocalSize;
State = state;
FromCache = fromCache;
}
public ShaderInfo(int fragmentOutputMap, ResourceLayout resourceLayout, bool fromCache = false)
{
FragmentOutputMap = fragmentOutputMap;
ResourceLayout = resourceLayout;
State = null;
FromCache = fromCache;
}
}
}

View file

@ -11,8 +11,6 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed.ComputeDraw
/// </summary>
class VtgAsComputeContext : IDisposable
{
private const int DummyBufferSize = 16;
private readonly GpuContext _context;
/// <summary>
@ -48,7 +46,7 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed.ComputeDraw
1,
1,
1,
1,
format.GetBytesPerElement(),
format,
DepthStencilMode.Depth,
Target.TextureBuffer,
@ -521,21 +519,6 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed.ComputeDraw
return new BufferRange(_geometryIndexDataBuffer.Handle, offset, size, write);
}
/// <summary>
/// Gets the range for a dummy 16 bytes buffer, filled with zeros.
/// </summary>
/// <returns>Dummy buffer range</returns>
public BufferRange GetDummyBufferRange()
{
if (_dummyBuffer == BufferHandle.Null)
{
_dummyBuffer = _context.Renderer.CreateBuffer(DummyBufferSize, BufferAccess.DeviceMemory);
_context.Renderer.Pipeline.ClearBuffer(_dummyBuffer, 0, DummyBufferSize, 0);
}
return new BufferRange(_dummyBuffer, 0, DummyBufferSize);
}
/// <summary>
/// Gets the range for a sequential index buffer, with ever incrementing index values.
/// </summary>

View file

@ -147,7 +147,6 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed.ComputeDraw
{
_vacContext.VertexInfoBufferUpdater.SetVertexStride(index, 0, componentsCount);
_vacContext.VertexInfoBufferUpdater.SetVertexOffset(index, 0, 0);
SetDummyBufferTexture(_vertexAsCompute.Reservations, index, format);
continue;
}
@ -163,15 +162,12 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed.ComputeDraw
{
_vacContext.VertexInfoBufferUpdater.SetVertexStride(index, 0, componentsCount);
_vacContext.VertexInfoBufferUpdater.SetVertexOffset(index, 0, 0);
SetDummyBufferTexture(_vertexAsCompute.Reservations, index, format);
continue;
}
int vbStride = vertexBuffer.UnpackStride();
ulong vbSize = GetVertexBufferSize(address, endAddress.Pack(), vbStride, _indexed, instanced, _firstVertex, _count);
ulong oldVbSize = vbSize;
ulong attributeOffset = (ulong)vertexAttrib.UnpackOffset();
int componentSize = format.GetScalarSize();
@ -345,20 +341,6 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed.ComputeDraw
return maxOutputVertices / verticesPerPrimitive;
}
/// <summary>
/// Binds a dummy buffer as vertex buffer into a buffer texture.
/// </summary>
/// <param name="reservations">Shader resource binding reservations</param>
/// <param name="index">Buffer texture index</param>
/// <param name="format">Buffer texture format</param>
private readonly void SetDummyBufferTexture(ResourceReservations reservations, int index, Format format)
{
ITexture bufferTexture = _vacContext.EnsureBufferTexture(index + 2, format);
bufferTexture.SetStorage(_vacContext.GetDummyBufferRange());
_context.Renderer.Pipeline.SetTextureAndSampler(ShaderStage.Compute, reservations.GetVertexBufferTextureBinding(index), bufferTexture, null);
}
/// <summary>
/// Binds a vertex buffer into a buffer texture.
/// </summary>

View file

@ -324,6 +324,11 @@ namespace Ryujinx.Graphics.Gpu.Shader.DiskCache
bool loadHostCache = header.CodeGenVersion == CodeGenVersion;
if (context.Capabilities.Api == TargetApi.Metal)
{
loadHostCache = false;
}
int programIndex = 0;
DataEntry entry = new();
@ -392,7 +397,8 @@ namespace Ryujinx.Graphics.Gpu.Shader.DiskCache
context,
shaders,
specState.PipelineState,
specState.TransformFeedbackDescriptors != null);
specState.TransformFeedbackDescriptors != null,
specState.ComputeState.GetLocalSize());
IProgram hostProgram;
@ -629,8 +635,11 @@ namespace Ryujinx.Graphics.Gpu.Shader.DiskCache
return;
}
if (context.Capabilities.Api != TargetApi.Metal)
{
WriteHostCode(context, hostCode, program.Shaders, streams, timestamp);
}
}
/// <summary>
/// Clears all content from the guest cache files.

View file

@ -490,7 +490,12 @@ namespace Ryujinx.Graphics.Gpu.Shader.DiskCache
{
ShaderSource[] shaderSources = new ShaderSource[compilation.TranslatedStages.Length];
ShaderInfoBuilder shaderInfoBuilder = new(_context, compilation.SpecializationState.TransformFeedbackDescriptors != null);
ref GpuChannelComputeState computeState = ref compilation.SpecializationState.ComputeState;
ShaderInfoBuilder shaderInfoBuilder = new(
_context,
compilation.SpecializationState.TransformFeedbackDescriptors != null,
computeLocalSize: computeState.GetLocalSize());
for (int index = 0; index < compilation.TranslatedStages.Length; index++)
{

View file

@ -16,7 +16,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
private readonly GpuAccessorState _state;
private readonly int _stageIndex;
private readonly bool _compute;
private readonly bool _isVulkan;
private readonly bool _isOpenGL;
private readonly bool _hasGeometryShader;
private readonly bool _supportsQuads;
@ -38,7 +38,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
_channel = channel;
_state = state;
_stageIndex = stageIndex;
_isVulkan = context.Capabilities.Api == TargetApi.Vulkan;
_isOpenGL = context.Capabilities.Api == TargetApi.OpenGL;
_hasGeometryShader = hasGeometryShader;
_supportsQuads = context.Capabilities.SupportsQuads;
@ -116,10 +116,10 @@ namespace Ryujinx.Graphics.Gpu.Shader
public GpuGraphicsState QueryGraphicsState()
{
return _state.GraphicsState.CreateShaderGraphicsState(
!_isVulkan,
_isOpenGL,
_supportsQuads,
_hasGeometryShader,
_isVulkan || _state.GraphicsState.YNegateEnabled);
!_isOpenGL || _state.GraphicsState.YNegateEnabled);
}
/// <inheritdoc/>

View file

@ -55,7 +55,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
{
int binding;
if (_context.Capabilities.Api == TargetApi.Vulkan)
if (_context.Capabilities.Api != TargetApi.OpenGL)
{
binding = GetBindingFromIndex(index, _context.Capabilities.MaximumUniformBuffersPerStage, "Uniform buffer");
}
@ -71,7 +71,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
{
int binding;
if (_context.Capabilities.Api == TargetApi.Vulkan)
if (_context.Capabilities.Api != TargetApi.OpenGL)
{
if (count == 1)
{
@ -103,7 +103,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
{
int binding;
if (_context.Capabilities.Api == TargetApi.Vulkan)
if (_context.Capabilities.Api != TargetApi.OpenGL)
{
binding = GetBindingFromIndex(index, _context.Capabilities.MaximumStorageBuffersPerStage, "Storage buffer");
}
@ -119,7 +119,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
{
int binding;
if (_context.Capabilities.Api == TargetApi.Vulkan)
if (_context.Capabilities.Api != TargetApi.OpenGL)
{
if (count == 1)
{

View file

@ -1,3 +1,5 @@
using Ryujinx.Graphics.GAL;
namespace Ryujinx.Graphics.Gpu.Shader
{
/// <summary>
@ -61,5 +63,14 @@ namespace Ryujinx.Graphics.Gpu.Shader
SharedMemorySize = sharedMemorySize;
HasUnalignedStorageBuffer = hasUnalignedStorageBuffer;
}
/// <summary>
/// Gets the local group size of the shader in a GAL compatible struct.
/// </summary>
/// <returns>Local group size</returns>
public ComputeSize GetLocalSize()
{
return new ComputeSize(LocalSizeX, LocalSizeY, LocalSizeZ);
}
}
}

View file

@ -224,7 +224,10 @@ namespace Ryujinx.Graphics.Gpu.Shader
TranslatedShader translatedShader = TranslateShader(_dumper, channel, translatorContext, cachedGuestCode, asCompute: false);
ShaderSource[] shaderSourcesArray = new ShaderSource[] { CreateShaderSource(translatedShader.Program) };
ShaderInfo info = ShaderInfoBuilder.BuildForCompute(_context, translatedShader.Program.Info);
ShaderInfo info = ShaderInfoBuilder.BuildForCompute(
_context,
translatedShader.Program.Info,
computeState.GetLocalSize());
IProgram hostProgram = _context.Renderer.CreateProgram(shaderSourcesArray, info);
cpShader = new CachedShaderProgram(hostProgram, specState, translatedShader.Shader);
@ -425,7 +428,8 @@ namespace Ryujinx.Graphics.Gpu.Shader
TranslatorContext lastInVertexPipeline = geometryToCompute ? translatorContexts[4] ?? currentStage : currentStage;
program = lastInVertexPipeline.GenerateVertexPassthroughForCompute();
(program, ShaderProgramInfo vacInfo) = lastInVertexPipeline.GenerateVertexPassthroughForCompute();
infoBuilder.AddStageInfoVac(vacInfo);
}
else
{
@ -530,7 +534,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
private ShaderAsCompute CreateHostVertexAsComputeProgram(ShaderProgram program, TranslatorContext context, bool tfEnabled)
{
ShaderSource source = new(program.Code, program.BinaryCode, ShaderStage.Compute, program.Language);
ShaderInfo info = ShaderInfoBuilder.BuildForVertexAsCompute(_context, program.Info, tfEnabled);
ShaderInfo info = ShaderInfoBuilder.BuildForVertexAsCompute(_context, program.Info, context.GetVertexAsComputeInfo(), tfEnabled);
return new(_context.Renderer.CreateProgram(new[] { source }, info), program.Info, context.GetResourceReservations());
}
@ -822,16 +826,19 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <summary>
/// Creates shader translation options with the requested graphics API and flags.
/// The shader language is choosen based on the current configuration and graphics API.
/// The shader language is chosen based on the current configuration and graphics API.
/// </summary>
/// <param name="api">Target graphics API</param>
/// <param name="flags">Translation flags</param>
/// <returns>Translation options</returns>
private static TranslationOptions CreateTranslationOptions(TargetApi api, TranslationFlags flags)
{
TargetLanguage lang = GraphicsConfig.EnableSpirvCompilationOnVulkan && api == TargetApi.Vulkan
? TargetLanguage.Spirv
: TargetLanguage.Glsl;
TargetLanguage lang = api switch
{
TargetApi.OpenGL => TargetLanguage.Glsl,
TargetApi.Vulkan => GraphicsConfig.EnableSpirvCompilationOnVulkan ? TargetLanguage.Spirv : TargetLanguage.Glsl,
TargetApi.Metal => TargetLanguage.Msl,
};
return new TranslationOptions(lang, api, flags);
}

View file

@ -22,6 +22,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
ResourceStages.Geometry;
private readonly GpuContext _context;
private readonly ComputeSize _computeLocalSize;
private int _fragmentOutputMap;
@ -39,9 +40,11 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <param name="context">GPU context that owns the shaders that will be added to the builder</param>
/// <param name="tfEnabled">Indicates if the graphics shader is used with transform feedback enabled</param>
/// <param name="vertexAsCompute">Indicates that the vertex shader will be emulated on a compute shader</param>
public ShaderInfoBuilder(GpuContext context, bool tfEnabled, bool vertexAsCompute = false)
/// <param name="computeLocalSize">Indicates the local thread size for a compute shader</param>
public ShaderInfoBuilder(GpuContext context, bool tfEnabled, bool vertexAsCompute = false, ComputeSize computeLocalSize = default)
{
_context = context;
_computeLocalSize = computeLocalSize;
_fragmentOutputMap = -1;
@ -95,7 +98,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
private void PopulateDescriptorAndUsages(ResourceStages stages, ResourceType type, int setIndex, int start, int count, bool write = false)
{
AddDescriptor(stages, type, setIndex, start, count);
AddUsage(stages, type, setIndex, start, count, write);
// AddUsage(stages, type, setIndex, start, count, write);
}
/// <summary>
@ -159,6 +162,25 @@ namespace Ryujinx.Graphics.Gpu.Shader
AddUsage(info.Images, stages, isImage: true);
}
public void AddStageInfoVac(ShaderProgramInfo info)
{
ResourceStages stages = info.Stage switch
{
ShaderStage.Compute => ResourceStages.Compute,
ShaderStage.Vertex => ResourceStages.Vertex,
ShaderStage.TessellationControl => ResourceStages.TessellationControl,
ShaderStage.TessellationEvaluation => ResourceStages.TessellationEvaluation,
ShaderStage.Geometry => ResourceStages.Geometry,
ShaderStage.Fragment => ResourceStages.Fragment,
_ => ResourceStages.None,
};
AddUsage(info.CBuffers, stages, isStorage: false);
AddUsage(info.SBuffers, stages, isStorage: true);
AddUsage(info.Textures, stages, isImage: false);
AddUsage(info.Images, stages, isImage: true);
}
/// <summary>
/// Adds a resource descriptor to the list of descriptors.
/// </summary>
@ -361,14 +383,7 @@ namespace Ryujinx.Graphics.Gpu.Shader
ResourceLayout resourceLayout = new(descriptors.AsReadOnly(), usages.AsReadOnly());
if (pipeline.HasValue)
{
return new ShaderInfo(_fragmentOutputMap, resourceLayout, pipeline.Value, fromCache);
}
else
{
return new ShaderInfo(_fragmentOutputMap, resourceLayout, fromCache);
}
return new ShaderInfo(_fragmentOutputMap, resourceLayout, _computeLocalSize, pipeline, fromCache);
}
/// <summary>
@ -378,14 +393,16 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <param name="programs">Shaders from the disk cache</param>
/// <param name="pipeline">Optional pipeline for background compilation</param>
/// <param name="tfEnabled">Indicates if the graphics shader is used with transform feedback enabled</param>
/// <param name="computeLocalSize">Compute local thread size</param>
/// <returns>Shader information</returns>
public static ShaderInfo BuildForCache(
GpuContext context,
IEnumerable<CachedShaderStage> programs,
ProgramPipelineState? pipeline,
bool tfEnabled)
bool tfEnabled,
ComputeSize computeLocalSize)
{
ShaderInfoBuilder builder = new(context, tfEnabled);
ShaderInfoBuilder builder = new(context, tfEnabled, computeLocalSize: computeLocalSize);
foreach (CachedShaderStage program in programs)
{
@ -403,11 +420,12 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// </summary>
/// <param name="context">GPU context that owns the shader</param>
/// <param name="info">Compute shader information</param>
/// <param name="computeLocalSize">Compute local thread size</param>
/// <param name="fromCache">True if the compute shader comes from a disk cache, false otherwise</param>
/// <returns>Shader information</returns>
public static ShaderInfo BuildForCompute(GpuContext context, ShaderProgramInfo info, bool fromCache = false)
public static ShaderInfo BuildForCompute(GpuContext context, ShaderProgramInfo info, ComputeSize computeLocalSize, bool fromCache = false)
{
ShaderInfoBuilder builder = new(context, tfEnabled: false, vertexAsCompute: false);
ShaderInfoBuilder builder = new(context, tfEnabled: false, vertexAsCompute: false, computeLocalSize: computeLocalSize);
builder.AddStageInfo(info);
@ -422,10 +440,11 @@ namespace Ryujinx.Graphics.Gpu.Shader
/// <param name="tfEnabled">Indicates if the graphics shader is used with transform feedback enabled</param>
/// <param name="fromCache">True if the compute shader comes from a disk cache, false otherwise</param>
/// <returns>Shader information</returns>
public static ShaderInfo BuildForVertexAsCompute(GpuContext context, ShaderProgramInfo info, bool tfEnabled, bool fromCache = false)
public static ShaderInfo BuildForVertexAsCompute(GpuContext context, ShaderProgramInfo info, ShaderProgramInfo info2, bool tfEnabled, bool fromCache = false)
{
ShaderInfoBuilder builder = new(context, tfEnabled, vertexAsCompute: true);
ShaderInfoBuilder builder = new(context, tfEnabled, vertexAsCompute: true, computeLocalSize: ComputeSize.VtgAsCompute);
builder.AddStageInfoVac(info2);
builder.AddStageInfo(info, vertexAsCompute: true);
return builder.Build(null, fromCache);

View file

@ -0,0 +1,146 @@
using System;
using System.Diagnostics;
using System.Runtime.Versioning;
using System.Threading;
namespace Ryujinx.Graphics.Metal
{
interface IAuto
{
bool HasCommandBufferDependency(CommandBufferScoped cbs);
void IncrementReferenceCount();
void DecrementReferenceCount(int cbIndex);
void DecrementReferenceCount();
}
interface IAutoPrivate : IAuto
{
void AddCommandBufferDependencies(CommandBufferScoped cbs);
}
[SupportedOSPlatform("macos")]
class Auto<T> : IAutoPrivate, IDisposable where T : IDisposable
{
private int _referenceCount;
private T _value;
private readonly BitMap _cbOwnership;
private readonly MultiFenceHolder _waitable;
private bool _disposed;
private bool _destroyed;
public Auto(T value)
{
_referenceCount = 1;
_value = value;
_cbOwnership = new BitMap(CommandBufferPool.MaxCommandBuffers);
}
public Auto(T value, MultiFenceHolder waitable) : this(value)
{
_waitable = waitable;
}
public T Get(CommandBufferScoped cbs, int offset, int size, bool write = false)
{
_waitable?.AddBufferUse(cbs.CommandBufferIndex, offset, size, write);
return Get(cbs);
}
public T GetUnsafe()
{
return _value;
}
public T Get(CommandBufferScoped cbs)
{
if (!_destroyed)
{
AddCommandBufferDependencies(cbs);
}
return _value;
}
public bool HasCommandBufferDependency(CommandBufferScoped cbs)
{
return _cbOwnership.IsSet(cbs.CommandBufferIndex);
}
public bool HasRentedCommandBufferDependency(CommandBufferPool cbp)
{
return _cbOwnership.AnySet();
}
public void AddCommandBufferDependencies(CommandBufferScoped cbs)
{
// We don't want to add a reference to this object to the command buffer
// more than once, so if we detect that the command buffer already has ownership
// of this object, then we can just return without doing anything else.
if (_cbOwnership.Set(cbs.CommandBufferIndex))
{
if (_waitable != null)
{
cbs.AddWaitable(_waitable);
}
cbs.AddDependant(this);
}
}
public bool TryIncrementReferenceCount()
{
int lastValue;
do
{
lastValue = _referenceCount;
if (lastValue == 0)
{
return false;
}
}
while (Interlocked.CompareExchange(ref _referenceCount, lastValue + 1, lastValue) != lastValue);
return true;
}
public void IncrementReferenceCount()
{
if (Interlocked.Increment(ref _referenceCount) == 1)
{
Interlocked.Decrement(ref _referenceCount);
throw new InvalidOperationException("Attempted to increment the reference count of an object that was already destroyed.");
}
}
public void DecrementReferenceCount(int cbIndex)
{
_cbOwnership.Clear(cbIndex);
DecrementReferenceCount();
}
public void DecrementReferenceCount()
{
if (Interlocked.Decrement(ref _referenceCount) == 0)
{
_value.Dispose();
_value = default;
_destroyed = true;
}
Debug.Assert(_referenceCount >= 0);
}
public void Dispose()
{
if (!_disposed)
{
DecrementReferenceCount();
_disposed = true;
}
}
}
}

View file

@ -0,0 +1,107 @@
using SharpMetal.Metal;
using System;
using System.Collections.Generic;
using System.Runtime.Versioning;
using System.Threading;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class BackgroundResource : IDisposable
{
private readonly MetalRenderer _renderer;
private CommandBufferPool _pool;
private PersistentFlushBuffer _flushBuffer;
public BackgroundResource(MetalRenderer renderer)
{
_renderer = renderer;
}
public CommandBufferPool GetPool()
{
if (_pool == null)
{
MTLCommandQueue queue = _renderer.BackgroundQueue;
_pool = new CommandBufferPool(queue, true);
_pool.Initialize(null); // TODO: Proper encoder factory for background render/compute
}
return _pool;
}
public PersistentFlushBuffer GetFlushBuffer()
{
_flushBuffer ??= new PersistentFlushBuffer(_renderer);
return _flushBuffer;
}
public void Dispose()
{
_pool?.Dispose();
_flushBuffer?.Dispose();
}
}
[SupportedOSPlatform("macos")]
class BackgroundResources : IDisposable
{
private readonly MetalRenderer _renderer;
private readonly Dictionary<Thread, BackgroundResource> _resources;
public BackgroundResources(MetalRenderer renderer)
{
_renderer = renderer;
_resources = new Dictionary<Thread, BackgroundResource>();
}
private void Cleanup()
{
lock (_resources)
{
foreach (KeyValuePair<Thread, BackgroundResource> tuple in _resources)
{
if (!tuple.Key.IsAlive)
{
tuple.Value.Dispose();
_resources.Remove(tuple.Key);
}
}
}
}
public BackgroundResource Get()
{
Thread thread = Thread.CurrentThread;
lock (_resources)
{
if (!_resources.TryGetValue(thread, out BackgroundResource resource))
{
Cleanup();
resource = new BackgroundResource(_renderer);
_resources[thread] = resource;
}
return resource;
}
}
public void Dispose()
{
lock (_resources)
{
foreach (var resource in _resources.Values)
{
resource.Dispose();
}
}
}
}
}

View file

@ -0,0 +1,157 @@
namespace Ryujinx.Graphics.Metal
{
readonly struct BitMap
{
public const int IntSize = 64;
private const int IntShift = 6;
private const int IntMask = IntSize - 1;
private readonly long[] _masks;
public BitMap(int count)
{
_masks = new long[(count + IntMask) / IntSize];
}
public bool AnySet()
{
for (int i = 0; i < _masks.Length; i++)
{
if (_masks[i] != 0)
{
return true;
}
}
return false;
}
public bool IsSet(int bit)
{
int wordIndex = bit >> IntShift;
int wordBit = bit & IntMask;
long wordMask = 1L << wordBit;
return (_masks[wordIndex] & wordMask) != 0;
}
public bool IsSet(int start, int end)
{
if (start == end)
{
return IsSet(start);
}
int startIndex = start >> IntShift;
int startBit = start & IntMask;
long startMask = -1L << startBit;
int endIndex = end >> IntShift;
int endBit = end & IntMask;
long endMask = (long)(ulong.MaxValue >> (IntMask - endBit));
if (startIndex == endIndex)
{
return (_masks[startIndex] & startMask & endMask) != 0;
}
if ((_masks[startIndex] & startMask) != 0)
{
return true;
}
for (int i = startIndex + 1; i < endIndex; i++)
{
if (_masks[i] != 0)
{
return true;
}
}
if ((_masks[endIndex] & endMask) != 0)
{
return true;
}
return false;
}
public bool Set(int bit)
{
int wordIndex = bit >> IntShift;
int wordBit = bit & IntMask;
long wordMask = 1L << wordBit;
if ((_masks[wordIndex] & wordMask) != 0)
{
return false;
}
_masks[wordIndex] |= wordMask;
return true;
}
public void SetRange(int start, int end)
{
if (start == end)
{
Set(start);
return;
}
int startIndex = start >> IntShift;
int startBit = start & IntMask;
long startMask = -1L << startBit;
int endIndex = end >> IntShift;
int endBit = end & IntMask;
long endMask = (long)(ulong.MaxValue >> (IntMask - endBit));
if (startIndex == endIndex)
{
_masks[startIndex] |= startMask & endMask;
}
else
{
_masks[startIndex] |= startMask;
for (int i = startIndex + 1; i < endIndex; i++)
{
_masks[i] |= -1;
}
_masks[endIndex] |= endMask;
}
}
public void Clear(int bit)
{
int wordIndex = bit >> IntShift;
int wordBit = bit & IntMask;
long wordMask = 1L << wordBit;
_masks[wordIndex] &= ~wordMask;
}
public void Clear()
{
for (int i = 0; i < _masks.Length; i++)
{
_masks[i] = 0;
}
}
public void ClearInt(int start, int end)
{
for (int i = start; i <= end; i++)
{
_masks[i] = 0;
}
}
}
}

View file

@ -0,0 +1,385 @@
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
using System.Threading;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class BufferHolder : IDisposable
{
private CacheByRange<BufferHolder> _cachedConvertedBuffers;
public int Size { get; }
private readonly IntPtr _map;
private readonly MetalRenderer _renderer;
private readonly Pipeline _pipeline;
private readonly MultiFenceHolder _waitable;
private readonly Auto<DisposableBuffer> _buffer;
private readonly ReaderWriterLockSlim _flushLock;
private FenceHolder _flushFence;
private int _flushWaiting;
public BufferHolder(MetalRenderer renderer, Pipeline pipeline, MTLBuffer buffer, int size)
{
_renderer = renderer;
_pipeline = pipeline;
_map = buffer.Contents;
_waitable = new MultiFenceHolder(size);
_buffer = new Auto<DisposableBuffer>(new(buffer), _waitable);
_flushLock = new ReaderWriterLockSlim();
Size = size;
}
public Auto<DisposableBuffer> GetBuffer()
{
return _buffer;
}
public Auto<DisposableBuffer> GetBuffer(bool isWrite)
{
if (isWrite)
{
SignalWrite(0, Size);
}
return _buffer;
}
public Auto<DisposableBuffer> GetBuffer(int offset, int size, bool isWrite)
{
if (isWrite)
{
SignalWrite(offset, size);
}
return _buffer;
}
public void SignalWrite(int offset, int size)
{
if (offset == 0 && size == Size)
{
_cachedConvertedBuffers.Clear();
}
else
{
_cachedConvertedBuffers.ClearRange(offset, size);
}
}
private void ClearFlushFence()
{
// Assumes _flushLock is held as writer.
if (_flushFence != null)
{
if (_flushWaiting == 0)
{
_flushFence.Put();
}
_flushFence = null;
}
}
private void WaitForFlushFence()
{
if (_flushFence == null)
{
return;
}
// If storage has changed, make sure the fence has been reached so that the data is in place.
_flushLock.ExitReadLock();
_flushLock.EnterWriteLock();
if (_flushFence != null)
{
var fence = _flushFence;
Interlocked.Increment(ref _flushWaiting);
// Don't wait in the lock.
_flushLock.ExitWriteLock();
fence.Wait();
_flushLock.EnterWriteLock();
if (Interlocked.Decrement(ref _flushWaiting) == 0)
{
fence.Put();
}
_flushFence = null;
}
// Assumes the _flushLock is held as reader, returns in same state.
_flushLock.ExitWriteLock();
_flushLock.EnterReadLock();
}
public PinnedSpan<byte> GetData(int offset, int size)
{
_flushLock.EnterReadLock();
WaitForFlushFence();
Span<byte> result;
if (_map != IntPtr.Zero)
{
result = GetDataStorage(offset, size);
// Need to be careful here, the buffer can't be unmapped while the data is being used.
_buffer.IncrementReferenceCount();
_flushLock.ExitReadLock();
return PinnedSpan<byte>.UnsafeFromSpan(result, _buffer.DecrementReferenceCount);
}
throw new InvalidOperationException("The buffer is not mapped");
}
public unsafe Span<byte> GetDataStorage(int offset, int size)
{
int mappingSize = Math.Min(size, Size - offset);
if (_map != IntPtr.Zero)
{
return new Span<byte>((void*)(_map + offset), mappingSize);
}
throw new InvalidOperationException("The buffer is not mapped.");
}
public unsafe void SetData(int offset, ReadOnlySpan<byte> data, CommandBufferScoped? cbs = null, bool allowCbsWait = true)
{
int dataSize = Math.Min(data.Length, Size - offset);
if (dataSize == 0)
{
return;
}
if (_map != IntPtr.Zero)
{
// If persistently mapped, set the data directly if the buffer is not currently in use.
bool isRented = _buffer.HasRentedCommandBufferDependency(_renderer.CommandBufferPool);
// If the buffer is rented, take a little more time and check if the use overlaps this handle.
bool needsFlush = isRented && _waitable.IsBufferRangeInUse(offset, dataSize, false);
if (!needsFlush)
{
WaitForFences(offset, dataSize);
data[..dataSize].CopyTo(new Span<byte>((void*)(_map + offset), dataSize));
SignalWrite(offset, dataSize);
return;
}
}
if (cbs != null &&
cbs.Value.Encoders.CurrentEncoderType == EncoderType.Render &&
!(_buffer.HasCommandBufferDependency(cbs.Value) &&
_waitable.IsBufferRangeInUse(cbs.Value.CommandBufferIndex, offset, dataSize)))
{
// If the buffer hasn't been used on the command buffer yet, try to preload the data.
// This avoids ending and beginning render passes on each buffer data upload.
cbs = _pipeline.GetPreloadCommandBuffer();
}
if (allowCbsWait)
{
_renderer.BufferManager.StagingBuffer.PushData(_renderer.CommandBufferPool, cbs, this, offset, data);
}
else
{
bool rentCbs = cbs == null;
if (rentCbs)
{
cbs = _renderer.CommandBufferPool.Rent();
}
if (!_renderer.BufferManager.StagingBuffer.TryPushData(cbs.Value, this, offset, data))
{
// Need to do a slow upload.
BufferHolder srcHolder = _renderer.BufferManager.Create(dataSize);
srcHolder.SetDataUnchecked(0, data);
var srcBuffer = srcHolder.GetBuffer();
var dstBuffer = this.GetBuffer(true);
Copy(cbs.Value, srcBuffer, dstBuffer, 0, offset, dataSize);
srcHolder.Dispose();
}
if (rentCbs)
{
cbs.Value.Dispose();
}
}
}
public unsafe void SetDataUnchecked(int offset, ReadOnlySpan<byte> data)
{
int dataSize = Math.Min(data.Length, Size - offset);
if (dataSize == 0)
{
return;
}
if (_map != IntPtr.Zero)
{
data[..dataSize].CopyTo(new Span<byte>((void*)(_map + offset), dataSize));
}
}
public void SetDataUnchecked<T>(int offset, ReadOnlySpan<T> data) where T : unmanaged
{
SetDataUnchecked(offset, MemoryMarshal.AsBytes(data));
}
public static void Copy(
CommandBufferScoped cbs,
Auto<DisposableBuffer> src,
Auto<DisposableBuffer> dst,
int srcOffset,
int dstOffset,
int size,
bool registerSrcUsage = true)
{
var srcBuffer = registerSrcUsage ? src.Get(cbs, srcOffset, size).Value : src.GetUnsafe().Value;
var dstbuffer = dst.Get(cbs, dstOffset, size, true).Value;
cbs.Encoders.EnsureBlitEncoder().CopyFromBuffer(
srcBuffer,
(ulong)srcOffset,
dstbuffer,
(ulong)dstOffset,
(ulong)size);
}
public void WaitForFences()
{
_waitable.WaitForFences();
}
public void WaitForFences(int offset, int size)
{
_waitable.WaitForFences(offset, size);
}
private bool BoundToRange(int offset, ref int size)
{
if (offset >= Size)
{
return false;
}
size = Math.Min(Size - offset, size);
return true;
}
public Auto<DisposableBuffer> GetBufferI8ToI16(CommandBufferScoped cbs, int offset, int size)
{
if (!BoundToRange(offset, ref size))
{
return null;
}
var key = new I8ToI16CacheKey(_renderer);
if (!_cachedConvertedBuffers.TryGetValue(offset, size, key, out var holder))
{
holder = _renderer.BufferManager.Create((size * 2 + 3) & ~3);
_renderer.HelperShader.ConvertI8ToI16(cbs, this, holder, offset, size);
key.SetBuffer(holder.GetBuffer());
_cachedConvertedBuffers.Add(offset, size, key, holder);
}
return holder.GetBuffer();
}
public Auto<DisposableBuffer> GetBufferTopologyConversion(CommandBufferScoped cbs, int offset, int size, IndexBufferPattern pattern, int indexSize)
{
if (!BoundToRange(offset, ref size))
{
return null;
}
var key = new TopologyConversionCacheKey(_renderer, pattern, indexSize);
if (!_cachedConvertedBuffers.TryGetValue(offset, size, key, out var holder))
{
// The destination index size is always I32.
int indexCount = size / indexSize;
int convertedCount = pattern.GetConvertedCount(indexCount);
holder = _renderer.BufferManager.Create(convertedCount * 4);
_renderer.HelperShader.ConvertIndexBuffer(cbs, this, holder, pattern, indexSize, offset, indexCount);
key.SetBuffer(holder.GetBuffer());
_cachedConvertedBuffers.Add(offset, size, key, holder);
}
return holder.GetBuffer();
}
public bool TryGetCachedConvertedBuffer(int offset, int size, ICacheKey key, out BufferHolder holder)
{
return _cachedConvertedBuffers.TryGetValue(offset, size, key, out holder);
}
public void AddCachedConvertedBuffer(int offset, int size, ICacheKey key, BufferHolder holder)
{
_cachedConvertedBuffers.Add(offset, size, key, holder);
}
public void AddCachedConvertedBufferDependency(int offset, int size, ICacheKey key, Dependency dependency)
{
_cachedConvertedBuffers.AddDependency(offset, size, key, dependency);
}
public void RemoveCachedConvertedBuffer(int offset, int size, ICacheKey key)
{
_cachedConvertedBuffers.Remove(offset, size, key);
}
public void Dispose()
{
_pipeline.FlushCommandsIfWeightExceeding(_buffer, (ulong)Size);
_buffer.Dispose();
_cachedConvertedBuffers.Dispose();
_flushLock.EnterWriteLock();
ClearFlushFence();
_flushLock.ExitWriteLock();
}
}
}

View file

@ -0,0 +1,237 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
readonly struct ScopedTemporaryBuffer : IDisposable
{
private readonly BufferManager _bufferManager;
private readonly bool _isReserved;
public readonly BufferRange Range;
public readonly BufferHolder Holder;
public BufferHandle Handle => Range.Handle;
public int Offset => Range.Offset;
public ScopedTemporaryBuffer(BufferManager bufferManager, BufferHolder holder, BufferHandle handle, int offset, int size, bool isReserved)
{
_bufferManager = bufferManager;
Range = new BufferRange(handle, offset, size);
Holder = holder;
_isReserved = isReserved;
}
public void Dispose()
{
if (!_isReserved)
{
_bufferManager.Delete(Range.Handle);
}
}
}
[SupportedOSPlatform("macos")]
class BufferManager : IDisposable
{
private readonly IdList<BufferHolder> _buffers;
private readonly MTLDevice _device;
private readonly MetalRenderer _renderer;
private readonly Pipeline _pipeline;
public int BufferCount { get; private set; }
public StagingBuffer StagingBuffer { get; }
public BufferManager(MTLDevice device, MetalRenderer renderer, Pipeline pipeline)
{
_device = device;
_renderer = renderer;
_pipeline = pipeline;
_buffers = new IdList<BufferHolder>();
StagingBuffer = new StagingBuffer(_renderer, this);
}
public BufferHandle Create(nint pointer, int size)
{
// TODO: This is the wrong Metal method, we need no-copy which SharpMetal isn't giving us.
var buffer = _device.NewBuffer(pointer, (ulong)size, MTLResourceOptions.ResourceStorageModeShared);
if (buffer == IntPtr.Zero)
{
Logger.Error?.PrintMsg(LogClass.Gpu, $"Failed to create buffer with size 0x{size:X}, and pointer 0x{pointer:X}.");
return BufferHandle.Null;
}
var holder = new BufferHolder(_renderer, _pipeline, buffer, size);
BufferCount++;
ulong handle64 = (uint)_buffers.Add(holder);
return Unsafe.As<ulong, BufferHandle>(ref handle64);
}
public BufferHandle CreateWithHandle(int size)
{
return CreateWithHandle(size, out _);
}
public BufferHandle CreateWithHandle(int size, out BufferHolder holder)
{
holder = Create(size);
if (holder == null)
{
return BufferHandle.Null;
}
BufferCount++;
ulong handle64 = (uint)_buffers.Add(holder);
return Unsafe.As<ulong, BufferHandle>(ref handle64);
}
public ScopedTemporaryBuffer ReserveOrCreate(CommandBufferScoped cbs, int size)
{
StagingBufferReserved? result = StagingBuffer.TryReserveData(cbs, size);
if (result.HasValue)
{
return new ScopedTemporaryBuffer(this, result.Value.Buffer, StagingBuffer.Handle, result.Value.Offset, result.Value.Size, true);
}
else
{
// Create a temporary buffer.
BufferHandle handle = CreateWithHandle(size, out BufferHolder holder);
return new ScopedTemporaryBuffer(this, holder, handle, 0, size, false);
}
}
public BufferHolder Create(int size)
{
var buffer = _device.NewBuffer((ulong)size, MTLResourceOptions.ResourceStorageModeShared);
if (buffer != IntPtr.Zero)
{
return new BufferHolder(_renderer, _pipeline, buffer, size);
}
Logger.Error?.PrintMsg(LogClass.Gpu, $"Failed to create buffer with size 0x{size:X}.");
return null;
}
public Auto<DisposableBuffer> GetBuffer(BufferHandle handle, bool isWrite, out int size)
{
if (TryGetBuffer(handle, out var holder))
{
size = holder.Size;
return holder.GetBuffer(isWrite);
}
size = 0;
return null;
}
public Auto<DisposableBuffer> GetBuffer(BufferHandle handle, int offset, int size, bool isWrite)
{
if (TryGetBuffer(handle, out var holder))
{
return holder.GetBuffer(offset, size, isWrite);
}
return null;
}
public Auto<DisposableBuffer> GetBuffer(BufferHandle handle, bool isWrite)
{
if (TryGetBuffer(handle, out var holder))
{
return holder.GetBuffer(isWrite);
}
return null;
}
public Auto<DisposableBuffer> GetBufferI8ToI16(CommandBufferScoped cbs, BufferHandle handle, int offset, int size)
{
if (TryGetBuffer(handle, out var holder))
{
return holder.GetBufferI8ToI16(cbs, offset, size);
}
return null;
}
public Auto<DisposableBuffer> GetBufferTopologyConversion(CommandBufferScoped cbs, BufferHandle handle, int offset, int size, IndexBufferPattern pattern, int indexSize)
{
if (TryGetBuffer(handle, out var holder))
{
return holder.GetBufferTopologyConversion(cbs, offset, size, pattern, indexSize);
}
return null;
}
public PinnedSpan<byte> GetData(BufferHandle handle, int offset, int size)
{
if (TryGetBuffer(handle, out var holder))
{
return holder.GetData(offset, size);
}
return new PinnedSpan<byte>();
}
public void SetData<T>(BufferHandle handle, int offset, ReadOnlySpan<T> data) where T : unmanaged
{
SetData(handle, offset, MemoryMarshal.Cast<T, byte>(data), null);
}
public void SetData(BufferHandle handle, int offset, ReadOnlySpan<byte> data, CommandBufferScoped? cbs)
{
if (TryGetBuffer(handle, out var holder))
{
holder.SetData(offset, data, cbs);
}
}
public void Delete(BufferHandle handle)
{
if (TryGetBuffer(handle, out var holder))
{
holder.Dispose();
_buffers.Remove((int)Unsafe.As<BufferHandle, ulong>(ref handle));
}
}
private bool TryGetBuffer(BufferHandle handle, out BufferHolder holder)
{
return _buffers.TryGetValue((int)Unsafe.As<BufferHandle, ulong>(ref handle), out holder);
}
public void Dispose()
{
StagingBuffer.Dispose();
foreach (var buffer in _buffers)
{
buffer.Dispose();
}
}
}
}

View file

@ -0,0 +1,85 @@
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
internal class BufferUsageBitmap
{
private readonly BitMap _bitmap;
private readonly int _size;
private readonly int _granularity;
private readonly int _bits;
private readonly int _writeBitOffset;
private readonly int _intsPerCb;
private readonly int _bitsPerCb;
public BufferUsageBitmap(int size, int granularity)
{
_size = size;
_granularity = granularity;
// There are two sets of bits - one for read tracking, and the other for write.
int bits = (size + (granularity - 1)) / granularity;
_writeBitOffset = bits;
_bits = bits << 1;
_intsPerCb = (_bits + (BitMap.IntSize - 1)) / BitMap.IntSize;
_bitsPerCb = _intsPerCb * BitMap.IntSize;
_bitmap = new BitMap(_bitsPerCb * CommandBufferPool.MaxCommandBuffers);
}
public void Add(int cbIndex, int offset, int size, bool write)
{
if (size == 0)
{
return;
}
// Some usages can be out of bounds (vertex buffer on amd), so bound if necessary.
if (offset + size > _size)
{
size = _size - offset;
}
int cbBase = cbIndex * _bitsPerCb + (write ? _writeBitOffset : 0);
int start = cbBase + offset / _granularity;
int end = cbBase + (offset + size - 1) / _granularity;
_bitmap.SetRange(start, end);
}
public bool OverlapsWith(int cbIndex, int offset, int size, bool write = false)
{
if (size == 0)
{
return false;
}
int cbBase = cbIndex * _bitsPerCb + (write ? _writeBitOffset : 0);
int start = cbBase + offset / _granularity;
int end = cbBase + (offset + size - 1) / _granularity;
return _bitmap.IsSet(start, end);
}
public bool OverlapsWith(int offset, int size, bool write)
{
for (int i = 0; i < CommandBufferPool.MaxCommandBuffers; i++)
{
if (OverlapsWith(i, offset, size, write))
{
return true;
}
}
return false;
}
public void Clear(int cbIndex)
{
_bitmap.ClearInt(cbIndex * _intsPerCb, (cbIndex + 1) * _intsPerCb - 1);
}
}
}

View file

@ -0,0 +1,294 @@
using System;
using System.Collections.Generic;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
interface ICacheKey : IDisposable
{
bool KeyEqual(ICacheKey other);
}
[SupportedOSPlatform("macos")]
struct I8ToI16CacheKey : ICacheKey
{
// Used to notify the pipeline that bindings have invalidated on dispose.
// private readonly MetalRenderer _renderer;
// private Auto<DisposableBuffer> _buffer;
public I8ToI16CacheKey(MetalRenderer renderer)
{
// _renderer = renderer;
// _buffer = null;
}
public readonly bool KeyEqual(ICacheKey other)
{
return other is I8ToI16CacheKey;
}
public readonly void SetBuffer(Auto<DisposableBuffer> buffer)
{
// _buffer = buffer;
}
public readonly void Dispose()
{
// TODO: Tell pipeline buffer is dirty!
// _renderer.PipelineInternal.DirtyIndexBuffer(_buffer);
}
}
[SupportedOSPlatform("macos")]
readonly struct TopologyConversionCacheKey : ICacheKey
{
private readonly IndexBufferPattern _pattern;
private readonly int _indexSize;
// Used to notify the pipeline that bindings have invalidated on dispose.
// private readonly MetalRenderer _renderer;
// private Auto<DisposableBuffer> _buffer;
public TopologyConversionCacheKey(MetalRenderer renderer, IndexBufferPattern pattern, int indexSize)
{
// _renderer = renderer;
// _buffer = null;
_pattern = pattern;
_indexSize = indexSize;
}
public readonly bool KeyEqual(ICacheKey other)
{
return other is TopologyConversionCacheKey entry &&
entry._pattern == _pattern &&
entry._indexSize == _indexSize;
}
public void SetBuffer(Auto<DisposableBuffer> buffer)
{
// _buffer = buffer;
}
public readonly void Dispose()
{
// TODO: Tell pipeline buffer is dirty!
// _renderer.PipelineInternal.DirtyVertexBuffer(_buffer);
}
}
[SupportedOSPlatform("macos")]
readonly struct Dependency
{
private readonly BufferHolder _buffer;
private readonly int _offset;
private readonly int _size;
private readonly ICacheKey _key;
public Dependency(BufferHolder buffer, int offset, int size, ICacheKey key)
{
_buffer = buffer;
_offset = offset;
_size = size;
_key = key;
}
public void RemoveFromOwner()
{
_buffer.RemoveCachedConvertedBuffer(_offset, _size, _key);
}
}
[SupportedOSPlatform("macos")]
struct CacheByRange<T> where T : IDisposable
{
private struct Entry
{
public readonly ICacheKey Key;
public readonly T Value;
public List<Dependency> DependencyList;
public Entry(ICacheKey key, T value)
{
Key = key;
Value = value;
DependencyList = null;
}
public readonly void InvalidateDependencies()
{
if (DependencyList != null)
{
foreach (Dependency dependency in DependencyList)
{
dependency.RemoveFromOwner();
}
DependencyList.Clear();
}
}
}
private Dictionary<ulong, List<Entry>> _ranges;
public void Add(int offset, int size, ICacheKey key, T value)
{
List<Entry> entries = GetEntries(offset, size);
entries.Add(new Entry(key, value));
}
public void AddDependency(int offset, int size, ICacheKey key, Dependency dependency)
{
List<Entry> entries = GetEntries(offset, size);
for (int i = 0; i < entries.Count; i++)
{
Entry entry = entries[i];
if (entry.Key.KeyEqual(key))
{
if (entry.DependencyList == null)
{
entry.DependencyList = new List<Dependency>();
entries[i] = entry;
}
entry.DependencyList.Add(dependency);
break;
}
}
}
public void Remove(int offset, int size, ICacheKey key)
{
List<Entry> entries = GetEntries(offset, size);
for (int i = 0; i < entries.Count; i++)
{
Entry entry = entries[i];
if (entry.Key.KeyEqual(key))
{
entries.RemoveAt(i--);
DestroyEntry(entry);
}
}
if (entries.Count == 0)
{
_ranges.Remove(PackRange(offset, size));
}
}
public bool TryGetValue(int offset, int size, ICacheKey key, out T value)
{
List<Entry> entries = GetEntries(offset, size);
foreach (Entry entry in entries)
{
if (entry.Key.KeyEqual(key))
{
value = entry.Value;
return true;
}
}
value = default;
return false;
}
public void Clear()
{
if (_ranges != null)
{
foreach (List<Entry> entries in _ranges.Values)
{
foreach (Entry entry in entries)
{
DestroyEntry(entry);
}
}
_ranges.Clear();
_ranges = null;
}
}
public readonly void ClearRange(int offset, int size)
{
if (_ranges != null && _ranges.Count > 0)
{
int end = offset + size;
List<ulong> toRemove = null;
foreach (KeyValuePair<ulong, List<Entry>> range in _ranges)
{
(int rOffset, int rSize) = UnpackRange(range.Key);
int rEnd = rOffset + rSize;
if (rEnd > offset && rOffset < end)
{
List<Entry> entries = range.Value;
foreach (Entry entry in entries)
{
DestroyEntry(entry);
}
(toRemove ??= new List<ulong>()).Add(range.Key);
}
}
if (toRemove != null)
{
foreach (ulong range in toRemove)
{
_ranges.Remove(range);
}
}
}
}
private List<Entry> GetEntries(int offset, int size)
{
_ranges ??= new Dictionary<ulong, List<Entry>>();
ulong key = PackRange(offset, size);
if (!_ranges.TryGetValue(key, out List<Entry> value))
{
value = new List<Entry>();
_ranges.Add(key, value);
}
return value;
}
private static void DestroyEntry(Entry entry)
{
entry.Key.Dispose();
entry.Value?.Dispose();
entry.InvalidateDependencies();
}
private static ulong PackRange(int offset, int size)
{
return (uint)offset | ((ulong)size << 32);
}
private static (int offset, int size) UnpackRange(ulong range)
{
return ((int)range, (int)(range >> 32));
}
public void Dispose()
{
Clear();
}
}
}

View file

@ -0,0 +1,170 @@
using Ryujinx.Graphics.Metal;
using SharpMetal.Metal;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.Versioning;
interface IEncoderFactory
{
MTLRenderCommandEncoder CreateRenderCommandEncoder();
MTLComputeCommandEncoder CreateComputeCommandEncoder();
}
/// <summary>
/// Tracks active encoder object for a command buffer.
/// </summary>
[SupportedOSPlatform("macos")]
class CommandBufferEncoder
{
public EncoderType CurrentEncoderType { get; private set; } = EncoderType.None;
public MTLBlitCommandEncoder BlitEncoder => new(CurrentEncoder.Value);
public MTLComputeCommandEncoder ComputeEncoder => new(CurrentEncoder.Value);
public MTLRenderCommandEncoder RenderEncoder => new(CurrentEncoder.Value);
internal MTLCommandEncoder? CurrentEncoder { get; private set; }
private MTLCommandBuffer _commandBuffer;
private IEncoderFactory _encoderFactory;
public void Initialize(MTLCommandBuffer commandBuffer, IEncoderFactory encoderFactory)
{
_commandBuffer = commandBuffer;
_encoderFactory = encoderFactory;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public MTLRenderCommandEncoder EnsureRenderEncoder()
{
if (CurrentEncoderType != EncoderType.Render)
{
return BeginRenderPass();
}
return RenderEncoder;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public MTLBlitCommandEncoder EnsureBlitEncoder()
{
if (CurrentEncoderType != EncoderType.Blit)
{
return BeginBlitPass();
}
return BlitEncoder;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public MTLComputeCommandEncoder EnsureComputeEncoder()
{
if (CurrentEncoderType != EncoderType.Compute)
{
return BeginComputePass();
}
return ComputeEncoder;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool TryGetRenderEncoder(out MTLRenderCommandEncoder encoder)
{
if (CurrentEncoderType != EncoderType.Render)
{
encoder = default;
return false;
}
encoder = RenderEncoder;
return true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool TryGetBlitEncoder(out MTLBlitCommandEncoder encoder)
{
if (CurrentEncoderType != EncoderType.Blit)
{
encoder = default;
return false;
}
encoder = BlitEncoder;
return true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool TryGetComputeEncoder(out MTLComputeCommandEncoder encoder)
{
if (CurrentEncoderType != EncoderType.Compute)
{
encoder = default;
return false;
}
encoder = ComputeEncoder;
return true;
}
public void EndCurrentPass()
{
if (CurrentEncoder != null)
{
switch (CurrentEncoderType)
{
case EncoderType.Blit:
BlitEncoder.EndEncoding();
CurrentEncoder = null;
break;
case EncoderType.Compute:
ComputeEncoder.EndEncoding();
CurrentEncoder = null;
break;
case EncoderType.Render:
RenderEncoder.EndEncoding();
CurrentEncoder = null;
break;
default:
throw new InvalidOperationException();
}
CurrentEncoderType = EncoderType.None;
}
}
private MTLRenderCommandEncoder BeginRenderPass()
{
EndCurrentPass();
var renderCommandEncoder = _encoderFactory.CreateRenderCommandEncoder();
CurrentEncoder = renderCommandEncoder;
CurrentEncoderType = EncoderType.Render;
return renderCommandEncoder;
}
private MTLBlitCommandEncoder BeginBlitPass()
{
EndCurrentPass();
using var descriptor = new MTLBlitPassDescriptor();
var blitCommandEncoder = _commandBuffer.BlitCommandEncoder(descriptor);
CurrentEncoder = blitCommandEncoder;
CurrentEncoderType = EncoderType.Blit;
return blitCommandEncoder;
}
private MTLComputeCommandEncoder BeginComputePass()
{
EndCurrentPass();
var computeCommandEncoder = _encoderFactory.CreateComputeCommandEncoder();
CurrentEncoder = computeCommandEncoder;
CurrentEncoderType = EncoderType.Compute;
return computeCommandEncoder;
}
}

View file

@ -0,0 +1,289 @@
using SharpMetal.Metal;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.Versioning;
using System.Threading;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class CommandBufferPool : IDisposable
{
public const int MaxCommandBuffers = 16;
private readonly int _totalCommandBuffers;
private readonly int _totalCommandBuffersMask;
private readonly MTLCommandQueue _queue;
private readonly Thread _owner;
private IEncoderFactory _defaultEncoderFactory;
public bool OwnedByCurrentThread => _owner == Thread.CurrentThread;
[SupportedOSPlatform("macos")]
private struct ReservedCommandBuffer
{
public bool InUse;
public bool InConsumption;
public int SubmissionCount;
public MTLCommandBuffer CommandBuffer;
public CommandBufferEncoder Encoders;
public FenceHolder Fence;
public List<IAuto> Dependants;
public List<MultiFenceHolder> Waitables;
public void Use(MTLCommandQueue queue, IEncoderFactory stateManager)
{
MTLCommandBufferDescriptor descriptor = new();
#if DEBUG
descriptor.ErrorOptions = MTLCommandBufferErrorOption.EncoderExecutionStatus;
#endif
CommandBuffer = queue.CommandBuffer(descriptor);
Fence = new FenceHolder(CommandBuffer);
Encoders.Initialize(CommandBuffer, stateManager);
InUse = true;
}
public void Initialize()
{
Dependants = new List<IAuto>();
Waitables = new List<MultiFenceHolder>();
Encoders = new CommandBufferEncoder();
}
}
private readonly ReservedCommandBuffer[] _commandBuffers;
private readonly int[] _queuedIndexes;
private int _queuedIndexesPtr;
private int _queuedCount;
private int _inUseCount;
public CommandBufferPool(MTLCommandQueue queue, bool isLight = false)
{
_queue = queue;
_owner = Thread.CurrentThread;
_totalCommandBuffers = isLight ? 2 : MaxCommandBuffers;
_totalCommandBuffersMask = _totalCommandBuffers - 1;
_commandBuffers = new ReservedCommandBuffer[_totalCommandBuffers];
_queuedIndexes = new int[_totalCommandBuffers];
_queuedIndexesPtr = 0;
_queuedCount = 0;
}
public void Initialize(IEncoderFactory encoderFactory)
{
_defaultEncoderFactory = encoderFactory;
for (int i = 0; i < _totalCommandBuffers; i++)
{
_commandBuffers[i].Initialize();
WaitAndDecrementRef(i);
}
}
public void AddDependant(int cbIndex, IAuto dependant)
{
dependant.IncrementReferenceCount();
_commandBuffers[cbIndex].Dependants.Add(dependant);
}
public void AddWaitable(MultiFenceHolder waitable)
{
lock (_commandBuffers)
{
for (int i = 0; i < _totalCommandBuffers; i++)
{
ref var entry = ref _commandBuffers[i];
if (entry.InConsumption)
{
AddWaitable(i, waitable);
}
}
}
}
public void AddInUseWaitable(MultiFenceHolder waitable)
{
lock (_commandBuffers)
{
for (int i = 0; i < _totalCommandBuffers; i++)
{
ref var entry = ref _commandBuffers[i];
if (entry.InUse)
{
AddWaitable(i, waitable);
}
}
}
}
public void AddWaitable(int cbIndex, MultiFenceHolder waitable)
{
ref var entry = ref _commandBuffers[cbIndex];
if (waitable.AddFence(cbIndex, entry.Fence))
{
entry.Waitables.Add(waitable);
}
}
public bool IsFenceOnRentedCommandBuffer(FenceHolder fence)
{
lock (_commandBuffers)
{
for (int i = 0; i < _totalCommandBuffers; i++)
{
ref var entry = ref _commandBuffers[i];
if (entry.InUse && entry.Fence == fence)
{
return true;
}
}
}
return false;
}
public FenceHolder GetFence(int cbIndex)
{
return _commandBuffers[cbIndex].Fence;
}
public int GetSubmissionCount(int cbIndex)
{
return _commandBuffers[cbIndex].SubmissionCount;
}
private int FreeConsumed(bool wait)
{
int freeEntry = 0;
while (_queuedCount > 0)
{
int index = _queuedIndexes[_queuedIndexesPtr];
ref var entry = ref _commandBuffers[index];
if (wait || !entry.InConsumption || entry.Fence.IsSignaled())
{
WaitAndDecrementRef(index);
wait = false;
freeEntry = index;
_queuedCount--;
_queuedIndexesPtr = (_queuedIndexesPtr + 1) % _totalCommandBuffers;
}
else
{
break;
}
}
return freeEntry;
}
public CommandBufferScoped ReturnAndRent(CommandBufferScoped cbs)
{
Return(cbs);
return Rent();
}
public CommandBufferScoped Rent()
{
lock (_commandBuffers)
{
int cursor = FreeConsumed(_inUseCount + _queuedCount == _totalCommandBuffers);
for (int i = 0; i < _totalCommandBuffers; i++)
{
ref var entry = ref _commandBuffers[cursor];
if (!entry.InUse && !entry.InConsumption)
{
entry.Use(_queue, _defaultEncoderFactory);
_inUseCount++;
return new CommandBufferScoped(this, entry.CommandBuffer, entry.Encoders, cursor);
}
cursor = (cursor + 1) & _totalCommandBuffersMask;
}
}
throw new InvalidOperationException($"Out of command buffers (In use: {_inUseCount}, queued: {_queuedCount}, total: {_totalCommandBuffers})");
}
public void Return(CommandBufferScoped cbs)
{
// Ensure the encoder is committed.
cbs.Encoders.EndCurrentPass();
lock (_commandBuffers)
{
int cbIndex = cbs.CommandBufferIndex;
ref var entry = ref _commandBuffers[cbIndex];
Debug.Assert(entry.InUse);
Debug.Assert(entry.CommandBuffer.NativePtr == cbs.CommandBuffer.NativePtr);
entry.InUse = false;
entry.InConsumption = true;
entry.SubmissionCount++;
_inUseCount--;
var commandBuffer = entry.CommandBuffer;
commandBuffer.Commit();
int ptr = (_queuedIndexesPtr + _queuedCount) % _totalCommandBuffers;
_queuedIndexes[ptr] = cbIndex;
_queuedCount++;
}
}
private void WaitAndDecrementRef(int cbIndex)
{
ref var entry = ref _commandBuffers[cbIndex];
if (entry.InConsumption)
{
entry.Fence.Wait();
entry.InConsumption = false;
}
foreach (var dependant in entry.Dependants)
{
dependant.DecrementReferenceCount(cbIndex);
}
foreach (var waitable in entry.Waitables)
{
waitable.RemoveFence(cbIndex);
waitable.RemoveBufferUses(cbIndex);
}
entry.Dependants.Clear();
entry.Waitables.Clear();
entry.Fence?.Dispose();
}
public void Dispose()
{
for (int i = 0; i < _totalCommandBuffers; i++)
{
WaitAndDecrementRef(i);
}
}
}
}

View file

@ -0,0 +1,43 @@
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
readonly struct CommandBufferScoped : IDisposable
{
private readonly CommandBufferPool _pool;
public MTLCommandBuffer CommandBuffer { get; }
public CommandBufferEncoder Encoders { get; }
public int CommandBufferIndex { get; }
public CommandBufferScoped(CommandBufferPool pool, MTLCommandBuffer commandBuffer, CommandBufferEncoder encoders, int commandBufferIndex)
{
_pool = pool;
CommandBuffer = commandBuffer;
Encoders = encoders;
CommandBufferIndex = commandBufferIndex;
}
public void AddDependant(IAuto dependant)
{
_pool.AddDependant(CommandBufferIndex, dependant);
}
public void AddWaitable(MultiFenceHolder waitable)
{
_pool.AddWaitable(CommandBufferIndex, waitable);
}
public FenceHolder GetFence()
{
return _pool.GetFence(CommandBufferIndex);
}
public void Dispose()
{
_pool?.Return(this);
}
}
}

View file

@ -0,0 +1,41 @@
namespace Ryujinx.Graphics.Metal
{
static class Constants
{
public const int MaxShaderStages = 5;
public const int MaxVertexBuffers = 16;
public const int MaxUniformBuffersPerStage = 18;
public const int MaxStorageBuffersPerStage = 16;
public const int MaxTexturesPerStage = 64;
public const int MaxImagesPerStage = 16;
public const int MaxUniformBufferBindings = MaxUniformBuffersPerStage * MaxShaderStages;
public const int MaxStorageBufferBindings = MaxStorageBuffersPerStage * MaxShaderStages;
public const int MaxTextureBindings = MaxTexturesPerStage * MaxShaderStages;
public const int MaxImageBindings = MaxImagesPerStage * MaxShaderStages;
public const int MaxColorAttachments = 8;
public const int MaxViewports = 16;
// TODO: Check this value
public const int MaxVertexAttributes = 31;
public const int MinResourceAlignment = 16;
// Must match constants set in shader generation
public const uint ZeroBufferIndex = MaxVertexBuffers;
public const uint BaseSetIndex = MaxVertexBuffers + 1;
public const uint ConstantBuffersIndex = BaseSetIndex;
public const uint StorageBuffersIndex = BaseSetIndex + 1;
public const uint TexturesIndex = BaseSetIndex + 2;
public const uint ImagesIndex = BaseSetIndex + 3;
public const uint ConstantBuffersSetIndex = 0;
public const uint StorageBuffersSetIndex = 1;
public const uint TexturesSetIndex = 2;
public const uint ImagesSetIndex = 3;
public const uint MaximumBufferArgumentTableEntries = 31;
public const uint MaximumExtraSets = MaximumBufferArgumentTableEntries - ImagesIndex;
}
}

View file

@ -0,0 +1,22 @@
using Ryujinx.Graphics.GAL;
namespace Ryujinx.Graphics.Metal
{
class CounterEvent : ICounterEvent
{
public CounterEvent()
{
Invalid = false;
}
public bool Invalid { get; set; }
public bool ReserveForHostAccess()
{
return true;
}
public void Flush() { }
public void Dispose() { }
}
}

View file

@ -0,0 +1,68 @@
using Ryujinx.Graphics.Metal.State;
using SharpMetal.Metal;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class DepthStencilCache : StateCache<MTLDepthStencilState, DepthStencilUid, DepthStencilUid>
{
private readonly MTLDevice _device;
public DepthStencilCache(MTLDevice device)
{
_device = device;
}
protected override DepthStencilUid GetHash(DepthStencilUid descriptor)
{
return descriptor;
}
protected override MTLDepthStencilState CreateValue(DepthStencilUid descriptor)
{
// Create descriptors
ref StencilUid frontUid = ref descriptor.FrontFace;
using var frontFaceStencil = new MTLStencilDescriptor
{
StencilFailureOperation = frontUid.StencilFailureOperation,
DepthFailureOperation = frontUid.DepthFailureOperation,
DepthStencilPassOperation = frontUid.DepthStencilPassOperation,
StencilCompareFunction = frontUid.StencilCompareFunction,
ReadMask = frontUid.ReadMask,
WriteMask = frontUid.WriteMask
};
ref StencilUid backUid = ref descriptor.BackFace;
using var backFaceStencil = new MTLStencilDescriptor
{
StencilFailureOperation = backUid.StencilFailureOperation,
DepthFailureOperation = backUid.DepthFailureOperation,
DepthStencilPassOperation = backUid.DepthStencilPassOperation,
StencilCompareFunction = backUid.StencilCompareFunction,
ReadMask = backUid.ReadMask,
WriteMask = backUid.WriteMask
};
var mtlDescriptor = new MTLDepthStencilDescriptor
{
DepthCompareFunction = descriptor.DepthCompareFunction,
DepthWriteEnabled = descriptor.DepthWriteEnabled
};
if (descriptor.StencilTestEnabled)
{
mtlDescriptor.BackFaceStencil = backFaceStencil;
mtlDescriptor.FrontFaceStencil = frontFaceStencil;
}
using (mtlDescriptor)
{
return _device.NewDepthStencilState(mtlDescriptor);
}
}
}
}

View file

@ -0,0 +1,26 @@
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
readonly struct DisposableBuffer : IDisposable
{
public MTLBuffer Value { get; }
public DisposableBuffer(MTLBuffer buffer)
{
Value = buffer;
}
public void Dispose()
{
if (Value != IntPtr.Zero)
{
Value.SetPurgeableState(MTLPurgeableState.Empty);
Value.Dispose();
}
}
}
}

View file

@ -0,0 +1,22 @@
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
readonly struct DisposableSampler : IDisposable
{
public MTLSamplerState Value { get; }
public DisposableSampler(MTLSamplerState sampler)
{
Value = sampler;
}
public void Dispose()
{
Value.Dispose();
}
}
}

View file

@ -0,0 +1,10 @@
using System;
namespace Ryujinx.Graphics.Metal.Effects
{
internal interface IPostProcessingEffect : IDisposable
{
const int LocalGroupSize = 64;
Texture Run(Texture view, int width, int height);
}
}

View file

@ -0,0 +1,18 @@
using Ryujinx.Graphics.GAL;
using System;
namespace Ryujinx.Graphics.Metal.Effects
{
internal interface IScalingFilter : IDisposable
{
float Level { get; set; }
void Run(
Texture view,
Texture destinationTexture,
Format format,
int width,
int height,
Extents2D source,
Extents2D destination);
}
}

View file

@ -0,0 +1,63 @@
using SharpMetal.Metal;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Metal
{
public struct RenderEncoderBindings
{
public List<Resource> Resources = new();
public List<BufferResource> VertexBuffers = new();
public List<BufferResource> FragmentBuffers = new();
public RenderEncoderBindings() { }
public readonly void Clear()
{
Resources.Clear();
VertexBuffers.Clear();
FragmentBuffers.Clear();
}
}
public struct ComputeEncoderBindings
{
public List<Resource> Resources = new();
public List<BufferResource> Buffers = new();
public ComputeEncoderBindings() { }
public readonly void Clear()
{
Resources.Clear();
Buffers.Clear();
}
}
public struct BufferResource
{
public MTLBuffer Buffer;
public ulong Offset;
public ulong Binding;
public BufferResource(MTLBuffer buffer, ulong offset, ulong binding)
{
Buffer = buffer;
Offset = offset;
Binding = binding;
}
}
public struct Resource
{
public MTLResource MtlResource;
public MTLResourceUsage ResourceUsage;
public MTLRenderStages Stages;
public Resource(MTLResource resource, MTLResourceUsage resourceUsage, MTLRenderStages stages)
{
MtlResource = resource;
ResourceUsage = resourceUsage;
Stages = stages;
}
}
}

View file

@ -0,0 +1,206 @@
using Ryujinx.Common.Memory;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Metal.State;
using Ryujinx.Graphics.Shader;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[Flags]
enum DirtyFlags
{
None = 0,
RenderPipeline = 1 << 0,
ComputePipeline = 1 << 1,
DepthStencil = 1 << 2,
DepthClamp = 1 << 3,
DepthBias = 1 << 4,
CullMode = 1 << 5,
FrontFace = 1 << 6,
StencilRef = 1 << 7,
Viewports = 1 << 8,
Scissors = 1 << 9,
Uniforms = 1 << 10,
Storages = 1 << 11,
Textures = 1 << 12,
Images = 1 << 13,
ArgBuffers = Uniforms | Storages | Textures | Images,
RenderAll = RenderPipeline | DepthStencil | DepthClamp | DepthBias | CullMode | FrontFace | StencilRef | Viewports | Scissors | ArgBuffers,
ComputeAll = ComputePipeline | ArgBuffers,
All = RenderAll | ComputeAll,
}
record struct BufferRef
{
public Auto<DisposableBuffer> Buffer;
public BufferRange? Range;
public BufferRef(Auto<DisposableBuffer> buffer)
{
Buffer = buffer;
}
public BufferRef(Auto<DisposableBuffer> buffer, ref BufferRange range)
{
Buffer = buffer;
Range = range;
}
}
record struct TextureRef
{
public ShaderStage Stage;
public TextureBase Storage;
public Auto<DisposableSampler> Sampler;
public Format ImageFormat;
public TextureRef(ShaderStage stage, TextureBase storage, Auto<DisposableSampler> sampler)
{
Stage = stage;
Storage = storage;
Sampler = sampler;
}
}
record struct ImageRef
{
public ShaderStage Stage;
public Texture Storage;
public ImageRef(ShaderStage stage, Texture storage)
{
Stage = stage;
Storage = storage;
}
}
struct PredrawState
{
public MTLCullMode CullMode;
public DepthStencilUid DepthStencilUid;
public PrimitiveTopology Topology;
public MTLViewport[] Viewports;
}
struct RenderTargetCopy
{
public MTLScissorRect[] Scissors;
public Texture DepthStencil;
public Texture[] RenderTargets;
}
[SupportedOSPlatform("macos")]
class EncoderState
{
public Program RenderProgram = null;
public Program ComputeProgram = null;
public PipelineState Pipeline;
public DepthStencilUid DepthStencilUid;
public readonly record struct ArrayRef<T>(ShaderStage Stage, T Array);
public readonly BufferRef[] UniformBufferRefs = new BufferRef[Constants.MaxUniformBufferBindings];
public readonly BufferRef[] StorageBufferRefs = new BufferRef[Constants.MaxStorageBufferBindings];
public readonly TextureRef[] TextureRefs = new TextureRef[Constants.MaxTextureBindings * 2];
public readonly ImageRef[] ImageRefs = new ImageRef[Constants.MaxImageBindings * 2];
public ArrayRef<TextureArray>[] TextureArrayRefs = [];
public ArrayRef<ImageArray>[] ImageArrayRefs = [];
public ArrayRef<TextureArray>[] TextureArrayExtraRefs = [];
public ArrayRef<ImageArray>[] ImageArrayExtraRefs = [];
public IndexBufferState IndexBuffer = default;
public MTLDepthClipMode DepthClipMode = MTLDepthClipMode.Clip;
public float DepthBias;
public float SlopeScale;
public float Clamp;
public int BackRefValue = 0;
public int FrontRefValue = 0;
public PrimitiveTopology Topology = PrimitiveTopology.Triangles;
public MTLCullMode CullMode = MTLCullMode.None;
public MTLWinding Winding = MTLWinding.CounterClockwise;
public bool CullBoth = false;
public MTLViewport[] Viewports = new MTLViewport[Constants.MaxViewports];
public MTLScissorRect[] Scissors = new MTLScissorRect[Constants.MaxViewports];
// Changes to attachments take recreation!
public Texture DepthStencil;
public Texture[] RenderTargets = new Texture[Constants.MaxColorAttachments];
public ITexture PreMaskDepthStencil = default;
public ITexture[] PreMaskRenderTargets;
public bool FramebufferUsingColorWriteMask;
public Array8<ColorBlendStateUid> StoredBlend;
public ColorF BlendColor = new();
public readonly VertexBufferState[] VertexBuffers = new VertexBufferState[Constants.MaxVertexBuffers];
public readonly VertexAttribDescriptor[] VertexAttribs = new VertexAttribDescriptor[Constants.MaxVertexAttributes];
// Dirty flags
public DirtyFlags Dirty = DirtyFlags.None;
// Only to be used for present
public bool ClearLoadAction = false;
public RenderEncoderBindings RenderEncoderBindings = new();
public ComputeEncoderBindings ComputeEncoderBindings = new();
public EncoderState()
{
Pipeline.Initialize();
DepthStencilUid.DepthCompareFunction = MTLCompareFunction.Always;
}
public RenderTargetCopy InheritForClear(EncoderState other, bool depth, int singleIndex = -1)
{
// Inherit render target related information without causing a render encoder split.
var oldState = new RenderTargetCopy
{
Scissors = other.Scissors,
RenderTargets = other.RenderTargets,
DepthStencil = other.DepthStencil
};
Scissors = other.Scissors;
RenderTargets = other.RenderTargets;
DepthStencil = other.DepthStencil;
Pipeline.ColorBlendAttachmentStateCount = other.Pipeline.ColorBlendAttachmentStateCount;
Pipeline.Internal.ColorBlendState = other.Pipeline.Internal.ColorBlendState;
Pipeline.DepthStencilFormat = other.Pipeline.DepthStencilFormat;
ref var blendStates = ref Pipeline.Internal.ColorBlendState;
// Mask out irrelevant attachments.
for (int i = 0; i < blendStates.Length; i++)
{
if (depth || (singleIndex != -1 && singleIndex != i))
{
blendStates[i].WriteMask = MTLColorWriteMask.None;
}
}
return oldState;
}
public void Restore(RenderTargetCopy copy)
{
Scissors = copy.Scissors;
RenderTargets = copy.RenderTargets;
DepthStencil = copy.DepthStencil;
Pipeline.Internal.ResetColorState();
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,293 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
static class EnumConversion
{
public static MTLSamplerAddressMode Convert(this AddressMode mode)
{
return mode switch
{
AddressMode.Clamp => MTLSamplerAddressMode.ClampToEdge, // TODO: Should be clamp.
AddressMode.Repeat => MTLSamplerAddressMode.Repeat,
AddressMode.MirrorClamp => MTLSamplerAddressMode.MirrorClampToEdge, // TODO: Should be mirror clamp.
AddressMode.MirroredRepeat => MTLSamplerAddressMode.MirrorRepeat,
AddressMode.ClampToBorder => MTLSamplerAddressMode.ClampToBorderColor,
AddressMode.ClampToEdge => MTLSamplerAddressMode.ClampToEdge,
AddressMode.MirrorClampToEdge => MTLSamplerAddressMode.MirrorClampToEdge,
AddressMode.MirrorClampToBorder => MTLSamplerAddressMode.ClampToBorderColor, // TODO: Should be mirror clamp to border.
_ => LogInvalidAndReturn(mode, nameof(AddressMode), MTLSamplerAddressMode.ClampToEdge) // TODO: Should be clamp.
};
}
public static MTLBlendFactor Convert(this BlendFactor factor)
{
return factor switch
{
BlendFactor.Zero or BlendFactor.ZeroGl => MTLBlendFactor.Zero,
BlendFactor.One or BlendFactor.OneGl => MTLBlendFactor.One,
BlendFactor.SrcColor or BlendFactor.SrcColorGl => MTLBlendFactor.SourceColor,
BlendFactor.OneMinusSrcColor or BlendFactor.OneMinusSrcColorGl => MTLBlendFactor.OneMinusSourceColor,
BlendFactor.SrcAlpha or BlendFactor.SrcAlphaGl => MTLBlendFactor.SourceAlpha,
BlendFactor.OneMinusSrcAlpha or BlendFactor.OneMinusSrcAlphaGl => MTLBlendFactor.OneMinusSourceAlpha,
BlendFactor.DstAlpha or BlendFactor.DstAlphaGl => MTLBlendFactor.DestinationAlpha,
BlendFactor.OneMinusDstAlpha or BlendFactor.OneMinusDstAlphaGl => MTLBlendFactor.OneMinusDestinationAlpha,
BlendFactor.DstColor or BlendFactor.DstColorGl => MTLBlendFactor.DestinationColor,
BlendFactor.OneMinusDstColor or BlendFactor.OneMinusDstColorGl => MTLBlendFactor.OneMinusDestinationColor,
BlendFactor.SrcAlphaSaturate or BlendFactor.SrcAlphaSaturateGl => MTLBlendFactor.SourceAlphaSaturated,
BlendFactor.Src1Color or BlendFactor.Src1ColorGl => MTLBlendFactor.Source1Color,
BlendFactor.OneMinusSrc1Color or BlendFactor.OneMinusSrc1ColorGl => MTLBlendFactor.OneMinusSource1Color,
BlendFactor.Src1Alpha or BlendFactor.Src1AlphaGl => MTLBlendFactor.Source1Alpha,
BlendFactor.OneMinusSrc1Alpha or BlendFactor.OneMinusSrc1AlphaGl => MTLBlendFactor.OneMinusSource1Alpha,
BlendFactor.ConstantColor => MTLBlendFactor.BlendColor,
BlendFactor.OneMinusConstantColor => MTLBlendFactor.OneMinusBlendColor,
BlendFactor.ConstantAlpha => MTLBlendFactor.BlendAlpha,
BlendFactor.OneMinusConstantAlpha => MTLBlendFactor.OneMinusBlendAlpha,
_ => LogInvalidAndReturn(factor, nameof(BlendFactor), MTLBlendFactor.Zero)
};
}
public static MTLBlendOperation Convert(this BlendOp op)
{
return op switch
{
BlendOp.Add or BlendOp.AddGl => MTLBlendOperation.Add,
BlendOp.Subtract or BlendOp.SubtractGl => MTLBlendOperation.Subtract,
BlendOp.ReverseSubtract or BlendOp.ReverseSubtractGl => MTLBlendOperation.ReverseSubtract,
BlendOp.Minimum => MTLBlendOperation.Min,
BlendOp.Maximum => MTLBlendOperation.Max,
_ => LogInvalidAndReturn(op, nameof(BlendOp), MTLBlendOperation.Add)
};
}
public static MTLCompareFunction Convert(this CompareOp op)
{
return op switch
{
CompareOp.Never or CompareOp.NeverGl => MTLCompareFunction.Never,
CompareOp.Less or CompareOp.LessGl => MTLCompareFunction.Less,
CompareOp.Equal or CompareOp.EqualGl => MTLCompareFunction.Equal,
CompareOp.LessOrEqual or CompareOp.LessOrEqualGl => MTLCompareFunction.LessEqual,
CompareOp.Greater or CompareOp.GreaterGl => MTLCompareFunction.Greater,
CompareOp.NotEqual or CompareOp.NotEqualGl => MTLCompareFunction.NotEqual,
CompareOp.GreaterOrEqual or CompareOp.GreaterOrEqualGl => MTLCompareFunction.GreaterEqual,
CompareOp.Always or CompareOp.AlwaysGl => MTLCompareFunction.Always,
_ => LogInvalidAndReturn(op, nameof(CompareOp), MTLCompareFunction.Never)
};
}
public static MTLCullMode Convert(this Face face)
{
return face switch
{
Face.Back => MTLCullMode.Back,
Face.Front => MTLCullMode.Front,
Face.FrontAndBack => MTLCullMode.None,
_ => LogInvalidAndReturn(face, nameof(Face), MTLCullMode.Back)
};
}
public static MTLWinding Convert(this FrontFace frontFace)
{
// The viewport is flipped vertically, therefore we need to switch the winding order as well
return frontFace switch
{
FrontFace.Clockwise => MTLWinding.CounterClockwise,
FrontFace.CounterClockwise => MTLWinding.Clockwise,
_ => LogInvalidAndReturn(frontFace, nameof(FrontFace), MTLWinding.Clockwise)
};
}
public static MTLIndexType Convert(this IndexType type)
{
return type switch
{
IndexType.UShort => MTLIndexType.UInt16,
IndexType.UInt => MTLIndexType.UInt32,
_ => LogInvalidAndReturn(type, nameof(IndexType), MTLIndexType.UInt16)
};
}
public static MTLLogicOperation Convert(this LogicalOp op)
{
return op switch
{
LogicalOp.Clear => MTLLogicOperation.Clear,
LogicalOp.And => MTLLogicOperation.And,
LogicalOp.AndReverse => MTLLogicOperation.AndReverse,
LogicalOp.Copy => MTLLogicOperation.Copy,
LogicalOp.AndInverted => MTLLogicOperation.AndInverted,
LogicalOp.Noop => MTLLogicOperation.Noop,
LogicalOp.Xor => MTLLogicOperation.Xor,
LogicalOp.Or => MTLLogicOperation.Or,
LogicalOp.Nor => MTLLogicOperation.Nor,
LogicalOp.Equiv => MTLLogicOperation.Equivalence,
LogicalOp.Invert => MTLLogicOperation.Invert,
LogicalOp.OrReverse => MTLLogicOperation.OrReverse,
LogicalOp.CopyInverted => MTLLogicOperation.CopyInverted,
LogicalOp.OrInverted => MTLLogicOperation.OrInverted,
LogicalOp.Nand => MTLLogicOperation.Nand,
LogicalOp.Set => MTLLogicOperation.Set,
_ => LogInvalidAndReturn(op, nameof(LogicalOp), MTLLogicOperation.And)
};
}
public static MTLSamplerMinMagFilter Convert(this MagFilter filter)
{
return filter switch
{
MagFilter.Nearest => MTLSamplerMinMagFilter.Nearest,
MagFilter.Linear => MTLSamplerMinMagFilter.Linear,
_ => LogInvalidAndReturn(filter, nameof(MagFilter), MTLSamplerMinMagFilter.Nearest)
};
}
public static (MTLSamplerMinMagFilter, MTLSamplerMipFilter) Convert(this MinFilter filter)
{
return filter switch
{
MinFilter.Nearest => (MTLSamplerMinMagFilter.Nearest, MTLSamplerMipFilter.Nearest),
MinFilter.Linear => (MTLSamplerMinMagFilter.Linear, MTLSamplerMipFilter.Linear),
MinFilter.NearestMipmapNearest => (MTLSamplerMinMagFilter.Nearest, MTLSamplerMipFilter.Nearest),
MinFilter.LinearMipmapNearest => (MTLSamplerMinMagFilter.Linear, MTLSamplerMipFilter.Nearest),
MinFilter.NearestMipmapLinear => (MTLSamplerMinMagFilter.Nearest, MTLSamplerMipFilter.Linear),
MinFilter.LinearMipmapLinear => (MTLSamplerMinMagFilter.Linear, MTLSamplerMipFilter.Linear),
_ => LogInvalidAndReturn(filter, nameof(MinFilter), (MTLSamplerMinMagFilter.Nearest, MTLSamplerMipFilter.Nearest))
};
}
public static MTLPrimitiveType Convert(this PrimitiveTopology topology)
{
return topology switch
{
PrimitiveTopology.Points => MTLPrimitiveType.Point,
PrimitiveTopology.Lines => MTLPrimitiveType.Line,
PrimitiveTopology.LineStrip => MTLPrimitiveType.LineStrip,
PrimitiveTopology.Triangles => MTLPrimitiveType.Triangle,
PrimitiveTopology.TriangleStrip => MTLPrimitiveType.TriangleStrip,
_ => LogInvalidAndReturn(topology, nameof(PrimitiveTopology), MTLPrimitiveType.Triangle)
};
}
public static MTLStencilOperation Convert(this StencilOp op)
{
return op switch
{
StencilOp.Keep or StencilOp.KeepGl => MTLStencilOperation.Keep,
StencilOp.Zero or StencilOp.ZeroGl => MTLStencilOperation.Zero,
StencilOp.Replace or StencilOp.ReplaceGl => MTLStencilOperation.Replace,
StencilOp.IncrementAndClamp or StencilOp.IncrementAndClampGl => MTLStencilOperation.IncrementClamp,
StencilOp.DecrementAndClamp or StencilOp.DecrementAndClampGl => MTLStencilOperation.DecrementClamp,
StencilOp.Invert or StencilOp.InvertGl => MTLStencilOperation.Invert,
StencilOp.IncrementAndWrap or StencilOp.IncrementAndWrapGl => MTLStencilOperation.IncrementWrap,
StencilOp.DecrementAndWrap or StencilOp.DecrementAndWrapGl => MTLStencilOperation.DecrementWrap,
_ => LogInvalidAndReturn(op, nameof(StencilOp), MTLStencilOperation.Keep)
};
}
public static MTLTextureType Convert(this Target target)
{
return target switch
{
Target.TextureBuffer => MTLTextureType.TextureBuffer,
Target.Texture1D => MTLTextureType.Type1D,
Target.Texture1DArray => MTLTextureType.Type1DArray,
Target.Texture2D => MTLTextureType.Type2D,
Target.Texture2DArray => MTLTextureType.Type2DArray,
Target.Texture2DMultisample => MTLTextureType.Type2DMultisample,
Target.Texture2DMultisampleArray => MTLTextureType.Type2DMultisampleArray,
Target.Texture3D => MTLTextureType.Type3D,
Target.Cubemap => MTLTextureType.Cube,
Target.CubemapArray => MTLTextureType.CubeArray,
_ => LogInvalidAndReturn(target, nameof(Target), MTLTextureType.Type2D)
};
}
public static MTLTextureSwizzle Convert(this SwizzleComponent swizzleComponent)
{
return swizzleComponent switch
{
SwizzleComponent.Zero => MTLTextureSwizzle.Zero,
SwizzleComponent.One => MTLTextureSwizzle.One,
SwizzleComponent.Red => MTLTextureSwizzle.Red,
SwizzleComponent.Green => MTLTextureSwizzle.Green,
SwizzleComponent.Blue => MTLTextureSwizzle.Blue,
SwizzleComponent.Alpha => MTLTextureSwizzle.Alpha,
_ => LogInvalidAndReturn(swizzleComponent, nameof(SwizzleComponent), MTLTextureSwizzle.Zero)
};
}
public static MTLVertexFormat Convert(this Format format)
{
return format switch
{
Format.R16Float => MTLVertexFormat.Half,
Format.R16G16Float => MTLVertexFormat.Half2,
Format.R16G16B16Float => MTLVertexFormat.Half3,
Format.R16G16B16A16Float => MTLVertexFormat.Half4,
Format.R32Float => MTLVertexFormat.Float,
Format.R32G32Float => MTLVertexFormat.Float2,
Format.R32G32B32Float => MTLVertexFormat.Float3,
Format.R11G11B10Float => MTLVertexFormat.FloatRG11B10,
Format.R32G32B32A32Float => MTLVertexFormat.Float4,
Format.R8Uint => MTLVertexFormat.UChar,
Format.R8G8Uint => MTLVertexFormat.UChar2,
Format.R8G8B8Uint => MTLVertexFormat.UChar3,
Format.R8G8B8A8Uint => MTLVertexFormat.UChar4,
Format.R16Uint => MTLVertexFormat.UShort,
Format.R16G16Uint => MTLVertexFormat.UShort2,
Format.R16G16B16Uint => MTLVertexFormat.UShort3,
Format.R16G16B16A16Uint => MTLVertexFormat.UShort4,
Format.R32Uint => MTLVertexFormat.UInt,
Format.R32G32Uint => MTLVertexFormat.UInt2,
Format.R32G32B32Uint => MTLVertexFormat.UInt3,
Format.R32G32B32A32Uint => MTLVertexFormat.UInt4,
Format.R8Sint => MTLVertexFormat.Char,
Format.R8G8Sint => MTLVertexFormat.Char2,
Format.R8G8B8Sint => MTLVertexFormat.Char3,
Format.R8G8B8A8Sint => MTLVertexFormat.Char4,
Format.R16Sint => MTLVertexFormat.Short,
Format.R16G16Sint => MTLVertexFormat.Short2,
Format.R16G16B16Sint => MTLVertexFormat.Short3,
Format.R16G16B16A16Sint => MTLVertexFormat.Short4,
Format.R32Sint => MTLVertexFormat.Int,
Format.R32G32Sint => MTLVertexFormat.Int2,
Format.R32G32B32Sint => MTLVertexFormat.Int3,
Format.R32G32B32A32Sint => MTLVertexFormat.Int4,
Format.R8Unorm => MTLVertexFormat.UCharNormalized,
Format.R8G8Unorm => MTLVertexFormat.UChar2Normalized,
Format.R8G8B8Unorm => MTLVertexFormat.UChar3Normalized,
Format.R8G8B8A8Unorm => MTLVertexFormat.UChar4Normalized,
Format.R16Unorm => MTLVertexFormat.UShortNormalized,
Format.R16G16Unorm => MTLVertexFormat.UShort2Normalized,
Format.R16G16B16Unorm => MTLVertexFormat.UShort3Normalized,
Format.R16G16B16A16Unorm => MTLVertexFormat.UShort4Normalized,
Format.R10G10B10A2Unorm => MTLVertexFormat.UInt1010102Normalized,
Format.R8Snorm => MTLVertexFormat.CharNormalized,
Format.R8G8Snorm => MTLVertexFormat.Char2Normalized,
Format.R8G8B8Snorm => MTLVertexFormat.Char3Normalized,
Format.R8G8B8A8Snorm => MTLVertexFormat.Char4Normalized,
Format.R16Snorm => MTLVertexFormat.ShortNormalized,
Format.R16G16Snorm => MTLVertexFormat.Short2Normalized,
Format.R16G16B16Snorm => MTLVertexFormat.Short3Normalized,
Format.R16G16B16A16Snorm => MTLVertexFormat.Short4Normalized,
Format.R10G10B10A2Snorm => MTLVertexFormat.Int1010102Normalized,
_ => LogInvalidAndReturn(format, nameof(Format), MTLVertexFormat.Float4)
};
}
private static T2 LogInvalidAndReturn<T1, T2>(T1 value, string name, T2 defaultValue = default)
{
Logger.Debug?.Print(LogClass.Gpu, $"Invalid {name} enum value: {value}.");
return defaultValue;
}
}
}

View file

@ -0,0 +1,77 @@
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
using System.Threading;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class FenceHolder : IDisposable
{
private MTLCommandBuffer _fence;
private int _referenceCount;
private bool _disposed;
public FenceHolder(MTLCommandBuffer fence)
{
_fence = fence;
_referenceCount = 1;
}
public MTLCommandBuffer GetUnsafe()
{
return _fence;
}
public bool TryGet(out MTLCommandBuffer fence)
{
int lastValue;
do
{
lastValue = _referenceCount;
if (lastValue == 0)
{
fence = default;
return false;
}
} while (Interlocked.CompareExchange(ref _referenceCount, lastValue + 1, lastValue) != lastValue);
fence = _fence;
return true;
}
public MTLCommandBuffer Get()
{
Interlocked.Increment(ref _referenceCount);
return _fence;
}
public void Put()
{
if (Interlocked.Decrement(ref _referenceCount) == 0)
{
_fence = default;
}
}
public void Wait()
{
_fence.WaitUntilCompleted();
}
public bool IsSignaled()
{
return _fence.Status == MTLCommandBufferStatus.Completed;
}
public void Dispose()
{
if (!_disposed)
{
Put();
_disposed = true;
}
}
}
}

View file

@ -0,0 +1,49 @@
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Metal
{
class FormatConverter
{
public static void ConvertD24S8ToD32FS8(Span<byte> output, ReadOnlySpan<byte> input)
{
const float UnormToFloat = 1f / 0xffffff;
Span<uint> outputUint = MemoryMarshal.Cast<byte, uint>(output);
ReadOnlySpan<uint> inputUint = MemoryMarshal.Cast<byte, uint>(input);
int i = 0;
for (; i < inputUint.Length; i++)
{
uint depthStencil = inputUint[i];
uint depth = depthStencil >> 8;
uint stencil = depthStencil & 0xff;
int j = i * 2;
outputUint[j] = (uint)BitConverter.SingleToInt32Bits(depth * UnormToFloat);
outputUint[j + 1] = stencil;
}
}
public static void ConvertD32FS8ToD24S8(Span<byte> output, ReadOnlySpan<byte> input)
{
Span<uint> outputUint = MemoryMarshal.Cast<byte, uint>(output);
ReadOnlySpan<uint> inputUint = MemoryMarshal.Cast<byte, uint>(input);
int i = 0;
for (; i < inputUint.Length; i += 2)
{
float depth = BitConverter.Int32BitsToSingle((int)inputUint[i]);
uint stencil = inputUint[i + 1];
uint depthStencil = (Math.Clamp((uint)(depth * 0xffffff), 0, 0xffffff) << 8) | (stencil & 0xff);
int j = i >> 1;
outputUint[j] = depthStencil;
}
}
}
}

View file

@ -0,0 +1,196 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
static class FormatTable
{
private static readonly MTLPixelFormat[] _table;
static FormatTable()
{
_table = new MTLPixelFormat[Enum.GetNames(typeof(Format)).Length];
Add(Format.R8Unorm, MTLPixelFormat.R8Unorm);
Add(Format.R8Snorm, MTLPixelFormat.R8Snorm);
Add(Format.R8Uint, MTLPixelFormat.R8Uint);
Add(Format.R8Sint, MTLPixelFormat.R8Sint);
Add(Format.R16Float, MTLPixelFormat.R16Float);
Add(Format.R16Unorm, MTLPixelFormat.R16Unorm);
Add(Format.R16Snorm, MTLPixelFormat.R16Snorm);
Add(Format.R16Uint, MTLPixelFormat.R16Uint);
Add(Format.R16Sint, MTLPixelFormat.R16Sint);
Add(Format.R32Float, MTLPixelFormat.R32Float);
Add(Format.R32Uint, MTLPixelFormat.R32Uint);
Add(Format.R32Sint, MTLPixelFormat.R32Sint);
Add(Format.R8G8Unorm, MTLPixelFormat.RG8Unorm);
Add(Format.R8G8Snorm, MTLPixelFormat.RG8Snorm);
Add(Format.R8G8Uint, MTLPixelFormat.RG8Uint);
Add(Format.R8G8Sint, MTLPixelFormat.RG8Sint);
Add(Format.R16G16Float, MTLPixelFormat.RG16Float);
Add(Format.R16G16Unorm, MTLPixelFormat.RG16Unorm);
Add(Format.R16G16Snorm, MTLPixelFormat.RG16Snorm);
Add(Format.R16G16Uint, MTLPixelFormat.RG16Uint);
Add(Format.R16G16Sint, MTLPixelFormat.RG16Sint);
Add(Format.R32G32Float, MTLPixelFormat.RG32Float);
Add(Format.R32G32Uint, MTLPixelFormat.RG32Uint);
Add(Format.R32G32Sint, MTLPixelFormat.RG32Sint);
// Add(Format.R8G8B8Unorm, MTLPixelFormat.R8G8B8Unorm);
// Add(Format.R8G8B8Snorm, MTLPixelFormat.R8G8B8Snorm);
// Add(Format.R8G8B8Uint, MTLPixelFormat.R8G8B8Uint);
// Add(Format.R8G8B8Sint, MTLPixelFormat.R8G8B8Sint);
// Add(Format.R16G16B16Float, MTLPixelFormat.R16G16B16Float);
// Add(Format.R16G16B16Unorm, MTLPixelFormat.R16G16B16Unorm);
// Add(Format.R16G16B16Snorm, MTLPixelFormat.R16G16B16SNorm);
// Add(Format.R16G16B16Uint, MTLPixelFormat.R16G16B16Uint);
// Add(Format.R16G16B16Sint, MTLPixelFormat.R16G16B16Sint);
// Add(Format.R32G32B32Float, MTLPixelFormat.R32G32B32Sfloat);
// Add(Format.R32G32B32Uint, MTLPixelFormat.R32G32B32Uint);
// Add(Format.R32G32B32Sint, MTLPixelFormat.R32G32B32Sint);
Add(Format.R8G8B8A8Unorm, MTLPixelFormat.RGBA8Unorm);
Add(Format.R8G8B8A8Snorm, MTLPixelFormat.RGBA8Snorm);
Add(Format.R8G8B8A8Uint, MTLPixelFormat.RGBA8Uint);
Add(Format.R8G8B8A8Sint, MTLPixelFormat.RGBA8Sint);
Add(Format.R16G16B16A16Float, MTLPixelFormat.RGBA16Float);
Add(Format.R16G16B16A16Unorm, MTLPixelFormat.RGBA16Unorm);
Add(Format.R16G16B16A16Snorm, MTLPixelFormat.RGBA16Snorm);
Add(Format.R16G16B16A16Uint, MTLPixelFormat.RGBA16Uint);
Add(Format.R16G16B16A16Sint, MTLPixelFormat.RGBA16Sint);
Add(Format.R32G32B32A32Float, MTLPixelFormat.RGBA32Float);
Add(Format.R32G32B32A32Uint, MTLPixelFormat.RGBA32Uint);
Add(Format.R32G32B32A32Sint, MTLPixelFormat.RGBA32Sint);
Add(Format.S8Uint, MTLPixelFormat.Stencil8);
Add(Format.D16Unorm, MTLPixelFormat.Depth16Unorm);
Add(Format.S8UintD24Unorm, MTLPixelFormat.Depth24UnormStencil8);
Add(Format.X8UintD24Unorm, MTLPixelFormat.Depth24UnormStencil8);
Add(Format.D32Float, MTLPixelFormat.Depth32Float);
Add(Format.D24UnormS8Uint, MTLPixelFormat.Depth24UnormStencil8);
Add(Format.D32FloatS8Uint, MTLPixelFormat.Depth32FloatStencil8);
Add(Format.R8G8B8A8Srgb, MTLPixelFormat.RGBA8UnormsRGB);
// Add(Format.R4G4Unorm, MTLPixelFormat.R4G4Unorm);
Add(Format.R4G4B4A4Unorm, MTLPixelFormat.RGBA8Unorm);
// Add(Format.R5G5B5X1Unorm, MTLPixelFormat.R5G5B5X1Unorm);
Add(Format.R5G5B5A1Unorm, MTLPixelFormat.BGR5A1Unorm);
Add(Format.R5G6B5Unorm, MTLPixelFormat.B5G6R5Unorm);
Add(Format.R10G10B10A2Unorm, MTLPixelFormat.RGB10A2Unorm);
Add(Format.R10G10B10A2Uint, MTLPixelFormat.RGB10A2Uint);
Add(Format.R11G11B10Float, MTLPixelFormat.RG11B10Float);
Add(Format.R9G9B9E5Float, MTLPixelFormat.RGB9E5Float);
Add(Format.Bc1RgbaUnorm, MTLPixelFormat.BC1RGBA);
Add(Format.Bc2Unorm, MTLPixelFormat.BC2RGBA);
Add(Format.Bc3Unorm, MTLPixelFormat.BC3RGBA);
Add(Format.Bc1RgbaSrgb, MTLPixelFormat.BC1RGBAsRGB);
Add(Format.Bc2Srgb, MTLPixelFormat.BC2RGBAsRGB);
Add(Format.Bc3Srgb, MTLPixelFormat.BC3RGBAsRGB);
Add(Format.Bc4Unorm, MTLPixelFormat.BC4RUnorm);
Add(Format.Bc4Snorm, MTLPixelFormat.BC4RSnorm);
Add(Format.Bc5Unorm, MTLPixelFormat.BC5RGUnorm);
Add(Format.Bc5Snorm, MTLPixelFormat.BC5RGSnorm);
Add(Format.Bc7Unorm, MTLPixelFormat.BC7RGBAUnorm);
Add(Format.Bc7Srgb, MTLPixelFormat.BC7RGBAUnormsRGB);
Add(Format.Bc6HSfloat, MTLPixelFormat.BC6HRGBFloat);
Add(Format.Bc6HUfloat, MTLPixelFormat.BC6HRGBUfloat);
Add(Format.Etc2RgbUnorm, MTLPixelFormat.ETC2RGB8);
// Add(Format.Etc2RgbaUnorm, MTLPixelFormat.ETC2RGBA8);
Add(Format.Etc2RgbPtaUnorm, MTLPixelFormat.ETC2RGB8A1);
Add(Format.Etc2RgbSrgb, MTLPixelFormat.ETC2RGB8sRGB);
// Add(Format.Etc2RgbaSrgb, MTLPixelFormat.ETC2RGBA8sRGB);
Add(Format.Etc2RgbPtaSrgb, MTLPixelFormat.ETC2RGB8A1sRGB);
// Add(Format.R8Uscaled, MTLPixelFormat.R8Uscaled);
// Add(Format.R8Sscaled, MTLPixelFormat.R8Sscaled);
// Add(Format.R16Uscaled, MTLPixelFormat.R16Uscaled);
// Add(Format.R16Sscaled, MTLPixelFormat.R16Sscaled);
// Add(Format.R32Uscaled, MTLPixelFormat.R32Uscaled);
// Add(Format.R32Sscaled, MTLPixelFormat.R32Sscaled);
// Add(Format.R8G8Uscaled, MTLPixelFormat.R8G8Uscaled);
// Add(Format.R8G8Sscaled, MTLPixelFormat.R8G8Sscaled);
// Add(Format.R16G16Uscaled, MTLPixelFormat.R16G16Uscaled);
// Add(Format.R16G16Sscaled, MTLPixelFormat.R16G16Sscaled);
// Add(Format.R32G32Uscaled, MTLPixelFormat.R32G32Uscaled);
// Add(Format.R32G32Sscaled, MTLPixelFormat.R32G32Sscaled);
// Add(Format.R8G8B8Uscaled, MTLPixelFormat.R8G8B8Uscaled);
// Add(Format.R8G8B8Sscaled, MTLPixelFormat.R8G8B8Sscaled);
// Add(Format.R16G16B16Uscaled, MTLPixelFormat.R16G16B16Uscaled);
// Add(Format.R16G16B16Sscaled, MTLPixelFormat.R16G16B16Sscaled);
// Add(Format.R32G32B32Uscaled, MTLPixelFormat.R32G32B32Uscaled);
// Add(Format.R32G32B32Sscaled, MTLPixelFormat.R32G32B32Sscaled);
// Add(Format.R8G8B8A8Uscaled, MTLPixelFormat.R8G8B8A8Uscaled);
// Add(Format.R8G8B8A8Sscaled, MTLPixelFormat.R8G8B8A8Sscaled);
// Add(Format.R16G16B16A16Uscaled, MTLPixelFormat.R16G16B16A16Uscaled);
// Add(Format.R16G16B16A16Sscaled, MTLPixelFormat.R16G16B16A16Sscaled);
// Add(Format.R32G32B32A32Uscaled, MTLPixelFormat.R32G32B32A32Uscaled);
// Add(Format.R32G32B32A32Sscaled, MTLPixelFormat.R32G32B32A32Sscaled);
// Add(Format.R10G10B10A2Snorm, MTLPixelFormat.A2B10G10R10SNormPack32);
// Add(Format.R10G10B10A2Sint, MTLPixelFormat.A2B10G10R10SintPack32);
// Add(Format.R10G10B10A2Uscaled, MTLPixelFormat.A2B10G10R10UscaledPack32);
// Add(Format.R10G10B10A2Sscaled, MTLPixelFormat.A2B10G10R10SscaledPack32);
Add(Format.Astc4x4Unorm, MTLPixelFormat.ASTC4x4LDR);
Add(Format.Astc5x4Unorm, MTLPixelFormat.ASTC5x4LDR);
Add(Format.Astc5x5Unorm, MTLPixelFormat.ASTC5x5LDR);
Add(Format.Astc6x5Unorm, MTLPixelFormat.ASTC6x5LDR);
Add(Format.Astc6x6Unorm, MTLPixelFormat.ASTC6x6LDR);
Add(Format.Astc8x5Unorm, MTLPixelFormat.ASTC8x5LDR);
Add(Format.Astc8x6Unorm, MTLPixelFormat.ASTC8x6LDR);
Add(Format.Astc8x8Unorm, MTLPixelFormat.ASTC8x8LDR);
Add(Format.Astc10x5Unorm, MTLPixelFormat.ASTC10x5LDR);
Add(Format.Astc10x6Unorm, MTLPixelFormat.ASTC10x6LDR);
Add(Format.Astc10x8Unorm, MTLPixelFormat.ASTC10x8LDR);
Add(Format.Astc10x10Unorm, MTLPixelFormat.ASTC10x10LDR);
Add(Format.Astc12x10Unorm, MTLPixelFormat.ASTC12x10LDR);
Add(Format.Astc12x12Unorm, MTLPixelFormat.ASTC12x12LDR);
Add(Format.Astc4x4Srgb, MTLPixelFormat.ASTC4x4sRGB);
Add(Format.Astc5x4Srgb, MTLPixelFormat.ASTC5x4sRGB);
Add(Format.Astc5x5Srgb, MTLPixelFormat.ASTC5x5sRGB);
Add(Format.Astc6x5Srgb, MTLPixelFormat.ASTC6x5sRGB);
Add(Format.Astc6x6Srgb, MTLPixelFormat.ASTC6x6sRGB);
Add(Format.Astc8x5Srgb, MTLPixelFormat.ASTC8x5sRGB);
Add(Format.Astc8x6Srgb, MTLPixelFormat.ASTC8x6sRGB);
Add(Format.Astc8x8Srgb, MTLPixelFormat.ASTC8x8sRGB);
Add(Format.Astc10x5Srgb, MTLPixelFormat.ASTC10x5sRGB);
Add(Format.Astc10x6Srgb, MTLPixelFormat.ASTC10x6sRGB);
Add(Format.Astc10x8Srgb, MTLPixelFormat.ASTC10x8sRGB);
Add(Format.Astc10x10Srgb, MTLPixelFormat.ASTC10x10sRGB);
Add(Format.Astc12x10Srgb, MTLPixelFormat.ASTC12x10sRGB);
Add(Format.Astc12x12Srgb, MTLPixelFormat.ASTC12x12sRGB);
Add(Format.B5G6R5Unorm, MTLPixelFormat.B5G6R5Unorm);
Add(Format.B5G5R5A1Unorm, MTLPixelFormat.BGR5A1Unorm);
Add(Format.A1B5G5R5Unorm, MTLPixelFormat.A1BGR5Unorm);
Add(Format.B8G8R8A8Unorm, MTLPixelFormat.BGRA8Unorm);
Add(Format.B8G8R8A8Srgb, MTLPixelFormat.BGRA8UnormsRGB);
}
private static void Add(Format format, MTLPixelFormat mtlFormat)
{
_table[(int)format] = mtlFormat;
}
public static MTLPixelFormat GetFormat(Format format)
{
var mtlFormat = _table[(int)format];
if (IsD24S8(format))
{
if (!MTLDevice.CreateSystemDefaultDevice().Depth24Stencil8PixelFormatSupported)
{
mtlFormat = MTLPixelFormat.Depth32FloatStencil8;
}
}
if (mtlFormat == MTLPixelFormat.Invalid)
{
Logger.Error?.PrintMsg(LogClass.Gpu, $"Format {format} is not supported by the host.");
}
return mtlFormat;
}
public static bool IsD24S8(Format format)
{
return format == Format.D24UnormS8Uint || format == Format.S8UintD24Unorm || format == Format.X8UintD24Unorm;
}
}
}

View file

@ -0,0 +1,82 @@
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Metal
{
static partial class HardwareInfoTools
{
private readonly static IntPtr _kCFAllocatorDefault = IntPtr.Zero;
private readonly static UInt32 _kCFStringEncodingASCII = 0x0600;
private const string IOKit = "/System/Library/Frameworks/IOKit.framework/IOKit";
private const string CoreFoundation = "/System/Library/Frameworks/CoreFoundation.framework/CoreFoundation";
[LibraryImport(IOKit, StringMarshalling = StringMarshalling.Utf8)]
private static partial IntPtr IOServiceMatching(string name);
[LibraryImport(IOKit)]
private static partial IntPtr IOServiceGetMatchingService(IntPtr mainPort, IntPtr matching);
[LibraryImport(IOKit)]
private static partial IntPtr IORegistryEntryCreateCFProperty(IntPtr entry, IntPtr key, IntPtr allocator, UInt32 options);
[LibraryImport(CoreFoundation, StringMarshalling = StringMarshalling.Utf8)]
private static partial IntPtr CFStringCreateWithCString(IntPtr allocator, string cString, UInt32 encoding);
[LibraryImport(CoreFoundation)]
[return: MarshalAs(UnmanagedType.U1)]
public static partial bool CFStringGetCString(IntPtr theString, IntPtr buffer, long bufferSizes, UInt32 encoding);
[LibraryImport(CoreFoundation)]
public static partial IntPtr CFDataGetBytePtr(IntPtr theData);
static string GetNameFromId(uint id)
{
return id switch
{
0x1002 => "AMD",
0x106B => "Apple",
0x10DE => "NVIDIA",
0x13B5 => "ARM",
0x8086 => "Intel",
_ => $"0x{id:X}"
};
}
public static string GetVendor()
{
var serviceDict = IOServiceMatching("IOGPU");
var service = IOServiceGetMatchingService(IntPtr.Zero, serviceDict);
var cfString = CFStringCreateWithCString(_kCFAllocatorDefault, "vendor-id", _kCFStringEncodingASCII);
var cfProperty = IORegistryEntryCreateCFProperty(service, cfString, _kCFAllocatorDefault, 0);
byte[] buffer = new byte[4];
var bufferPtr = CFDataGetBytePtr(cfProperty);
Marshal.Copy(bufferPtr, buffer, 0, buffer.Length);
var vendorId = BitConverter.ToUInt32(buffer);
return GetNameFromId(vendorId);
}
public static string GetModel()
{
var serviceDict = IOServiceMatching("IOGPU");
var service = IOServiceGetMatchingService(IntPtr.Zero, serviceDict);
var cfString = CFStringCreateWithCString(_kCFAllocatorDefault, "model", _kCFStringEncodingASCII);
var cfProperty = IORegistryEntryCreateCFProperty(service, cfString, _kCFAllocatorDefault, 0);
char[] buffer = new char[64];
IntPtr bufferPtr = Marshal.AllocHGlobal(buffer.Length);
if (CFStringGetCString(cfProperty, bufferPtr, buffer.Length, _kCFStringEncodingASCII))
{
var model = Marshal.PtrToStringUTF8(bufferPtr);
Marshal.FreeHGlobal(bufferPtr);
return model;
}
return "";
}
}
}

View file

@ -0,0 +1,143 @@
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
namespace Ryujinx.Graphics.Metal
{
interface IRefEquatable<T>
{
bool Equals(ref T other);
}
class HashTableSlim<TKey, TValue> where TKey : IRefEquatable<TKey>
{
private const int TotalBuckets = 16; // Must be power of 2
private const int TotalBucketsMask = TotalBuckets - 1;
private struct Entry
{
public int Hash;
public TKey Key;
public TValue Value;
}
private struct Bucket
{
public int Length;
public Entry[] Entries;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public readonly Span<Entry> AsSpan()
{
return Entries == null ? Span<Entry>.Empty : Entries.AsSpan(0, Length);
}
}
private readonly Bucket[] _hashTable = new Bucket[TotalBuckets];
public IEnumerable<TKey> Keys
{
get
{
foreach (Bucket bucket in _hashTable)
{
for (int i = 0; i < bucket.Length; i++)
{
yield return bucket.Entries[i].Key;
}
}
}
}
public IEnumerable<TValue> Values
{
get
{
foreach (Bucket bucket in _hashTable)
{
for (int i = 0; i < bucket.Length; i++)
{
yield return bucket.Entries[i].Value;
}
}
}
}
public void Add(ref TKey key, TValue value)
{
var entry = new Entry
{
Hash = key.GetHashCode(),
Key = key,
Value = value,
};
int hashCode = key.GetHashCode();
int bucketIndex = hashCode & TotalBucketsMask;
ref var bucket = ref _hashTable[bucketIndex];
if (bucket.Entries != null)
{
int index = bucket.Length;
if (index >= bucket.Entries.Length)
{
Array.Resize(ref bucket.Entries, index + 1);
}
bucket.Entries[index] = entry;
}
else
{
bucket.Entries = new[]
{
entry,
};
}
bucket.Length++;
}
public bool Remove(ref TKey key)
{
int hashCode = key.GetHashCode();
ref var bucket = ref _hashTable[hashCode & TotalBucketsMask];
var entries = bucket.AsSpan();
for (int i = 0; i < entries.Length; i++)
{
ref var entry = ref entries[i];
if (entry.Hash == hashCode && entry.Key.Equals(ref key))
{
entries[(i + 1)..].CopyTo(entries[i..]);
bucket.Length--;
return true;
}
}
return false;
}
public bool TryGetValue(ref TKey key, out TValue value)
{
int hashCode = key.GetHashCode();
var entries = _hashTable[hashCode & TotalBucketsMask].AsSpan();
for (int i = 0; i < entries.Length; i++)
{
ref var entry = ref entries[i];
if (entry.Hash == hashCode && entry.Key.Equals(ref key))
{
value = entry.Value;
return true;
}
}
value = default;
return false;
}
}
}

View file

@ -0,0 +1,868 @@
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Shader;
using Ryujinx.Graphics.Shader.Translation;
using SharpMetal.Metal;
using System;
using System.Collections.Generic;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class HelperShader : IDisposable
{
private const int ConvertElementsPerWorkgroup = 32 * 100; // Work group size of 32 times 100 elements.
private const string ShadersSourcePath = "/Ryujinx.Graphics.Metal/Shaders";
private readonly MetalRenderer _renderer;
private readonly Pipeline _pipeline;
private MTLDevice _device;
private readonly ISampler _samplerLinear;
private readonly ISampler _samplerNearest;
private readonly IProgram _programColorBlitF;
private readonly IProgram _programColorBlitI;
private readonly IProgram _programColorBlitU;
private readonly IProgram _programColorBlitMsF;
private readonly IProgram _programColorBlitMsI;
private readonly IProgram _programColorBlitMsU;
private readonly List<IProgram> _programsColorClearF = new();
private readonly List<IProgram> _programsColorClearI = new();
private readonly List<IProgram> _programsColorClearU = new();
private readonly IProgram _programDepthStencilClear;
private readonly IProgram _programStrideChange;
private readonly IProgram _programConvertD32S8ToD24S8;
private readonly IProgram _programConvertIndexBuffer;
private readonly IProgram _programDepthBlit;
private readonly IProgram _programDepthBlitMs;
private readonly IProgram _programStencilBlit;
private readonly IProgram _programStencilBlitMs;
private readonly EncoderState _helperShaderState = new();
public HelperShader(MTLDevice device, MetalRenderer renderer, Pipeline pipeline)
{
_device = device;
_renderer = renderer;
_pipeline = pipeline;
_samplerNearest = new SamplerHolder(renderer, _device, SamplerCreateInfo.Create(MinFilter.Nearest, MagFilter.Nearest));
_samplerLinear = new SamplerHolder(renderer, _device, SamplerCreateInfo.Create(MinFilter.Linear, MagFilter.Linear));
var blitResourceLayout = new ResourceLayoutBuilder()
.Add(ResourceStages.Vertex, ResourceType.UniformBuffer, 0)
.Add(ResourceStages.Fragment, ResourceType.TextureAndSampler, 0).Build();
var blitSource = ReadMsl("Blit.metal");
var blitSourceF = blitSource.Replace("FORMAT", "float", StringComparison.Ordinal);
_programColorBlitF = new Program(renderer, device, [
new ShaderSource(blitSourceF, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitSourceF, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var blitSourceI = blitSource.Replace("FORMAT", "int");
_programColorBlitI = new Program(renderer, device, [
new ShaderSource(blitSourceI, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitSourceI, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var blitSourceU = blitSource.Replace("FORMAT", "uint");
_programColorBlitU = new Program(renderer, device, [
new ShaderSource(blitSourceU, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitSourceU, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var blitMsSource = ReadMsl("BlitMs.metal");
var blitMsSourceF = blitMsSource.Replace("FORMAT", "float");
_programColorBlitMsF = new Program(renderer, device, [
new ShaderSource(blitMsSourceF, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitMsSourceF, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var blitMsSourceI = blitMsSource.Replace("FORMAT", "int");
_programColorBlitMsI = new Program(renderer, device, [
new ShaderSource(blitMsSourceI, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitMsSourceI, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var blitMsSourceU = blitMsSource.Replace("FORMAT", "uint");
_programColorBlitMsU = new Program(renderer, device, [
new ShaderSource(blitMsSourceU, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitMsSourceU, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var colorClearResourceLayout = new ResourceLayoutBuilder()
.Add(ResourceStages.Fragment, ResourceType.UniformBuffer, 0).Build();
var colorClearSource = ReadMsl("ColorClear.metal");
for (int i = 0; i < Constants.MaxColorAttachments; i++)
{
var crntSource = colorClearSource.Replace("COLOR_ATTACHMENT_INDEX", i.ToString()).Replace("FORMAT", "float");
_programsColorClearF.Add(new Program(renderer, device, [
new ShaderSource(crntSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(crntSource, ShaderStage.Vertex, TargetLanguage.Msl)
], colorClearResourceLayout));
}
for (int i = 0; i < Constants.MaxColorAttachments; i++)
{
var crntSource = colorClearSource.Replace("COLOR_ATTACHMENT_INDEX", i.ToString()).Replace("FORMAT", "int");
_programsColorClearI.Add(new Program(renderer, device, [
new ShaderSource(crntSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(crntSource, ShaderStage.Vertex, TargetLanguage.Msl)
], colorClearResourceLayout));
}
for (int i = 0; i < Constants.MaxColorAttachments; i++)
{
var crntSource = colorClearSource.Replace("COLOR_ATTACHMENT_INDEX", i.ToString()).Replace("FORMAT", "uint");
_programsColorClearU.Add(new Program(renderer, device, [
new ShaderSource(crntSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(crntSource, ShaderStage.Vertex, TargetLanguage.Msl)
], colorClearResourceLayout));
}
var depthStencilClearSource = ReadMsl("DepthStencilClear.metal");
_programDepthStencilClear = new Program(renderer, device, [
new ShaderSource(depthStencilClearSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(depthStencilClearSource, ShaderStage.Vertex, TargetLanguage.Msl)
], colorClearResourceLayout);
var strideChangeResourceLayout = new ResourceLayoutBuilder()
.Add(ResourceStages.Compute, ResourceType.UniformBuffer, 0)
.Add(ResourceStages.Compute, ResourceType.StorageBuffer, 1)
.Add(ResourceStages.Compute, ResourceType.StorageBuffer, 2, true).Build();
var strideChangeSource = ReadMsl("ChangeBufferStride.metal");
_programStrideChange = new Program(renderer, device, [
new ShaderSource(strideChangeSource, ShaderStage.Compute, TargetLanguage.Msl)
], strideChangeResourceLayout, new ComputeSize(64, 1, 1));
var convertD32S8ToD24S8ResourceLayout = new ResourceLayoutBuilder()
.Add(ResourceStages.Compute, ResourceType.UniformBuffer, 0)
.Add(ResourceStages.Compute, ResourceType.StorageBuffer, 1)
.Add(ResourceStages.Compute, ResourceType.StorageBuffer, 2, true).Build();
var convertD32S8ToD24S8Source = ReadMsl("ConvertD32S8ToD24S8.metal");
_programConvertD32S8ToD24S8 = new Program(renderer, device, [
new ShaderSource(convertD32S8ToD24S8Source, ShaderStage.Compute, TargetLanguage.Msl)
], convertD32S8ToD24S8ResourceLayout, new ComputeSize(64, 1, 1));
var convertIndexBufferLayout = new ResourceLayoutBuilder()
.Add(ResourceStages.Compute, ResourceType.StorageBuffer, 1)
.Add(ResourceStages.Compute, ResourceType.StorageBuffer, 2, true)
.Add(ResourceStages.Compute, ResourceType.StorageBuffer, 3).Build();
var convertIndexBufferSource = ReadMsl("ConvertIndexBuffer.metal");
_programConvertIndexBuffer = new Program(renderer, device, [
new ShaderSource(convertIndexBufferSource, ShaderStage.Compute, TargetLanguage.Msl)
], convertIndexBufferLayout, new ComputeSize(16, 1, 1));
var depthBlitSource = ReadMsl("DepthBlit.metal");
_programDepthBlit = new Program(renderer, device, [
new ShaderSource(depthBlitSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitSourceF, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var depthBlitMsSource = ReadMsl("DepthBlitMs.metal");
_programDepthBlitMs = new Program(renderer, device, [
new ShaderSource(depthBlitMsSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitSourceF, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var stencilBlitSource = ReadMsl("StencilBlit.metal");
_programStencilBlit = new Program(renderer, device, [
new ShaderSource(stencilBlitSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitSourceF, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
var stencilBlitMsSource = ReadMsl("StencilBlitMs.metal");
_programStencilBlitMs = new Program(renderer, device, [
new ShaderSource(stencilBlitMsSource, ShaderStage.Fragment, TargetLanguage.Msl),
new ShaderSource(blitSourceF, ShaderStage.Vertex, TargetLanguage.Msl)
], blitResourceLayout);
}
private static string ReadMsl(string fileName)
{
var msl = EmbeddedResources.ReadAllText(string.Join('/', ShadersSourcePath, fileName));
#pragma warning disable IDE0055 // Disable formatting
msl = msl.Replace("CONSTANT_BUFFERS_INDEX", $"{Constants.ConstantBuffersIndex}")
.Replace("STORAGE_BUFFERS_INDEX", $"{Constants.StorageBuffersIndex}")
.Replace("TEXTURES_INDEX", $"{Constants.TexturesIndex}")
.Replace("IMAGES_INDEX", $"{Constants.ImagesIndex}");
#pragma warning restore IDE0055
return msl;
}
public unsafe void BlitColor(
CommandBufferScoped cbs,
Texture src,
Texture dst,
Extents2D srcRegion,
Extents2D dstRegion,
bool linearFilter,
bool clear = false)
{
_pipeline.SwapState(_helperShaderState);
const int RegionBufferSize = 16;
var sampler = linearFilter ? _samplerLinear : _samplerNearest;
_pipeline.SetTextureAndSampler(ShaderStage.Fragment, 0, src, sampler);
Span<float> region = stackalloc float[RegionBufferSize / sizeof(float)];
region[0] = srcRegion.X1 / (float)src.Width;
region[1] = srcRegion.X2 / (float)src.Width;
region[2] = srcRegion.Y1 / (float)src.Height;
region[3] = srcRegion.Y2 / (float)src.Height;
if (dstRegion.X1 > dstRegion.X2)
{
(region[0], region[1]) = (region[1], region[0]);
}
if (dstRegion.Y1 > dstRegion.Y2)
{
(region[2], region[3]) = (region[3], region[2]);
}
using var buffer = _renderer.BufferManager.ReserveOrCreate(cbs, RegionBufferSize);
buffer.Holder.SetDataUnchecked<float>(buffer.Offset, region);
_pipeline.SetUniformBuffers([new BufferAssignment(0, buffer.Range)]);
var rect = new Rectangle<float>(
MathF.Min(dstRegion.X1, dstRegion.X2),
MathF.Min(dstRegion.Y1, dstRegion.Y2),
MathF.Abs(dstRegion.X2 - dstRegion.X1),
MathF.Abs(dstRegion.Y2 - dstRegion.Y1));
Span<Viewport> viewports = stackalloc Viewport[16];
viewports[0] = new Viewport(
rect,
ViewportSwizzle.PositiveX,
ViewportSwizzle.PositiveY,
ViewportSwizzle.PositiveZ,
ViewportSwizzle.PositiveW,
0f,
1f);
bool dstIsDepthOrStencil = dst.Info.Format.IsDepthOrStencil();
if (dstIsDepthOrStencil)
{
// TODO: Depth & stencil blit!
Logger.Warning?.PrintMsg(LogClass.Gpu, "Requested a depth or stencil blit!");
_pipeline.SwapState(null);
return;
}
var debugGroupName = "Blit Color ";
if (src.Info.Target.IsMultisample())
{
if (dst.Info.Format.IsSint())
{
debugGroupName += "MS Int";
_pipeline.SetProgram(_programColorBlitMsI);
}
else if (dst.Info.Format.IsUint())
{
debugGroupName += "MS UInt";
_pipeline.SetProgram(_programColorBlitMsU);
}
else
{
debugGroupName += "MS Float";
_pipeline.SetProgram(_programColorBlitMsF);
}
}
else
{
if (dst.Info.Format.IsSint())
{
debugGroupName += "Int";
_pipeline.SetProgram(_programColorBlitI);
}
else if (dst.Info.Format.IsUint())
{
debugGroupName += "UInt";
_pipeline.SetProgram(_programColorBlitU);
}
else
{
debugGroupName += "Float";
_pipeline.SetProgram(_programColorBlitF);
}
}
int dstWidth = dst.Width;
int dstHeight = dst.Height;
Span<Rectangle<int>> scissors = stackalloc Rectangle<int>[16];
scissors[0] = new Rectangle<int>(0, 0, dstWidth, dstHeight);
_pipeline.SetRenderTargets([dst], null);
_pipeline.SetScissors(scissors);
_pipeline.SetClearLoadAction(clear);
_pipeline.SetViewports(viewports);
_pipeline.SetPrimitiveTopology(PrimitiveTopology.TriangleStrip);
_pipeline.Draw(4, 1, 0, 0, debugGroupName);
// Cleanup
if (clear)
{
_pipeline.SetClearLoadAction(false);
}
// Restore previous state
_pipeline.SwapState(null);
}
public unsafe void BlitDepthStencil(
CommandBufferScoped cbs,
Texture src,
Texture dst,
Extents2D srcRegion,
Extents2D dstRegion)
{
_pipeline.SwapState(_helperShaderState);
const int RegionBufferSize = 16;
Span<float> region = stackalloc float[RegionBufferSize / sizeof(float)];
region[0] = srcRegion.X1 / (float)src.Width;
region[1] = srcRegion.X2 / (float)src.Width;
region[2] = srcRegion.Y1 / (float)src.Height;
region[3] = srcRegion.Y2 / (float)src.Height;
if (dstRegion.X1 > dstRegion.X2)
{
(region[0], region[1]) = (region[1], region[0]);
}
if (dstRegion.Y1 > dstRegion.Y2)
{
(region[2], region[3]) = (region[3], region[2]);
}
using var buffer = _renderer.BufferManager.ReserveOrCreate(cbs, RegionBufferSize);
buffer.Holder.SetDataUnchecked<float>(buffer.Offset, region);
_pipeline.SetUniformBuffers([new BufferAssignment(0, buffer.Range)]);
Span<Viewport> viewports = stackalloc Viewport[16];
var rect = new Rectangle<float>(
MathF.Min(dstRegion.X1, dstRegion.X2),
MathF.Min(dstRegion.Y1, dstRegion.Y2),
MathF.Abs(dstRegion.X2 - dstRegion.X1),
MathF.Abs(dstRegion.Y2 - dstRegion.Y1));
viewports[0] = new Viewport(
rect,
ViewportSwizzle.PositiveX,
ViewportSwizzle.PositiveY,
ViewportSwizzle.PositiveZ,
ViewportSwizzle.PositiveW,
0f,
1f);
int dstWidth = dst.Width;
int dstHeight = dst.Height;
Span<Rectangle<int>> scissors = stackalloc Rectangle<int>[16];
scissors[0] = new Rectangle<int>(0, 0, dstWidth, dstHeight);
_pipeline.SetRenderTargets([], dst);
_pipeline.SetScissors(scissors);
_pipeline.SetViewports(viewports);
_pipeline.SetPrimitiveTopology(PrimitiveTopology.TriangleStrip);
if (src.Info.Format is
Format.D16Unorm or
Format.D32Float or
Format.X8UintD24Unorm or
Format.D24UnormS8Uint or
Format.D32FloatS8Uint or
Format.S8UintD24Unorm)
{
var depthTexture = CreateDepthOrStencilView(src, DepthStencilMode.Depth);
BlitDepthStencilDraw(depthTexture, isDepth: true);
if (depthTexture != src)
{
depthTexture.Release();
}
}
if (src.Info.Format is
Format.S8Uint or
Format.D24UnormS8Uint or
Format.D32FloatS8Uint or
Format.S8UintD24Unorm)
{
var stencilTexture = CreateDepthOrStencilView(src, DepthStencilMode.Stencil);
BlitDepthStencilDraw(stencilTexture, isDepth: false);
if (stencilTexture != src)
{
stencilTexture.Release();
}
}
// Restore previous state
_pipeline.SwapState(null);
}
private static Texture CreateDepthOrStencilView(Texture depthStencilTexture, DepthStencilMode depthStencilMode)
{
if (depthStencilTexture.Info.DepthStencilMode == depthStencilMode)
{
return depthStencilTexture;
}
return (Texture)depthStencilTexture.CreateView(new TextureCreateInfo(
depthStencilTexture.Info.Width,
depthStencilTexture.Info.Height,
depthStencilTexture.Info.Depth,
depthStencilTexture.Info.Levels,
depthStencilTexture.Info.Samples,
depthStencilTexture.Info.BlockWidth,
depthStencilTexture.Info.BlockHeight,
depthStencilTexture.Info.BytesPerPixel,
depthStencilTexture.Info.Format,
depthStencilMode,
depthStencilTexture.Info.Target,
SwizzleComponent.Red,
SwizzleComponent.Green,
SwizzleComponent.Blue,
SwizzleComponent.Alpha), 0, 0);
}
private void BlitDepthStencilDraw(Texture src, bool isDepth)
{
// TODO: Check this https://github.com/Ryujinx/Ryujinx/pull/5003/
_pipeline.SetTextureAndSampler(ShaderStage.Fragment, 0, src, _samplerNearest);
string debugGroupName;
if (isDepth)
{
debugGroupName = "Depth Blit";
_pipeline.SetProgram(src.Info.Target.IsMultisample() ? _programDepthBlitMs : _programDepthBlit);
_pipeline.SetDepthTest(new DepthTestDescriptor(true, true, CompareOp.Always));
}
else
{
debugGroupName = "Stencil Blit";
_pipeline.SetProgram(src.Info.Target.IsMultisample() ? _programStencilBlitMs : _programStencilBlit);
_pipeline.SetStencilTest(CreateStencilTestDescriptor(true));
}
_pipeline.Draw(4, 1, 0, 0, debugGroupName);
if (isDepth)
{
_pipeline.SetDepthTest(new DepthTestDescriptor(false, false, CompareOp.Always));
}
else
{
_pipeline.SetStencilTest(CreateStencilTestDescriptor(false));
}
}
public unsafe void DrawTexture(
ITexture src,
ISampler srcSampler,
Extents2DF srcRegion,
Extents2DF dstRegion)
{
// Save current state
var state = _pipeline.SavePredrawState();
_pipeline.SetFaceCulling(false, Face.Front);
_pipeline.SetStencilTest(new StencilTestDescriptor());
_pipeline.SetDepthTest(new DepthTestDescriptor());
const int RegionBufferSize = 16;
_pipeline.SetTextureAndSampler(ShaderStage.Fragment, 0, src, srcSampler);
Span<float> region = stackalloc float[RegionBufferSize / sizeof(float)];
region[0] = srcRegion.X1 / src.Width;
region[1] = srcRegion.X2 / src.Width;
region[2] = srcRegion.Y1 / src.Height;
region[3] = srcRegion.Y2 / src.Height;
if (dstRegion.X1 > dstRegion.X2)
{
(region[0], region[1]) = (region[1], region[0]);
}
if (dstRegion.Y1 > dstRegion.Y2)
{
(region[2], region[3]) = (region[3], region[2]);
}
var bufferHandle = _renderer.BufferManager.CreateWithHandle(RegionBufferSize);
_renderer.BufferManager.SetData<float>(bufferHandle, 0, region);
_pipeline.SetUniformBuffers([new BufferAssignment(0, new BufferRange(bufferHandle, 0, RegionBufferSize))]);
Span<Viewport> viewports = stackalloc Viewport[16];
var rect = new Rectangle<float>(
MathF.Min(dstRegion.X1, dstRegion.X2),
MathF.Min(dstRegion.Y1, dstRegion.Y2),
MathF.Abs(dstRegion.X2 - dstRegion.X1),
MathF.Abs(dstRegion.Y2 - dstRegion.Y1));
viewports[0] = new Viewport(
rect,
ViewportSwizzle.PositiveX,
ViewportSwizzle.PositiveY,
ViewportSwizzle.PositiveZ,
ViewportSwizzle.PositiveW,
0f,
1f);
_pipeline.SetProgram(_programColorBlitF);
_pipeline.SetViewports(viewports);
_pipeline.SetPrimitiveTopology(PrimitiveTopology.TriangleStrip);
_pipeline.Draw(4, 1, 0, 0, "Draw Texture");
_renderer.BufferManager.Delete(bufferHandle);
// Restore previous state
_pipeline.RestorePredrawState(state);
}
public void ConvertI8ToI16(CommandBufferScoped cbs, BufferHolder src, BufferHolder dst, int srcOffset, int size)
{
ChangeStride(cbs, src, dst, srcOffset, size, 1, 2);
}
public unsafe void ChangeStride(
CommandBufferScoped cbs,
BufferHolder src,
BufferHolder dst,
int srcOffset,
int size,
int stride,
int newStride)
{
int elems = size / stride;
var srcBuffer = src.GetBuffer();
var dstBuffer = dst.GetBuffer();
const int ParamsBufferSize = 4 * sizeof(int);
// Save current state
_pipeline.SwapState(_helperShaderState);
Span<int> shaderParams = stackalloc int[ParamsBufferSize / sizeof(int)];
shaderParams[0] = stride;
shaderParams[1] = newStride;
shaderParams[2] = size;
shaderParams[3] = srcOffset;
using var buffer = _renderer.BufferManager.ReserveOrCreate(cbs, ParamsBufferSize);
buffer.Holder.SetDataUnchecked<int>(buffer.Offset, shaderParams);
_pipeline.SetUniformBuffers([new BufferAssignment(0, buffer.Range)]);
Span<Auto<DisposableBuffer>> sbRanges = new Auto<DisposableBuffer>[2];
sbRanges[0] = srcBuffer;
sbRanges[1] = dstBuffer;
_pipeline.SetStorageBuffers(1, sbRanges);
_pipeline.SetProgram(_programStrideChange);
_pipeline.DispatchCompute(1 + elems / ConvertElementsPerWorkgroup, 1, 1, "Change Stride");
// Restore previous state
_pipeline.SwapState(null);
}
public unsafe void ConvertD32S8ToD24S8(CommandBufferScoped cbs, BufferHolder src, Auto<DisposableBuffer> dstBuffer, int pixelCount, int dstOffset)
{
int inSize = pixelCount * 2 * sizeof(int);
var srcBuffer = src.GetBuffer();
const int ParamsBufferSize = sizeof(int) * 2;
// Save current state
_pipeline.SwapState(_helperShaderState);
Span<int> shaderParams = stackalloc int[2];
shaderParams[0] = pixelCount;
shaderParams[1] = dstOffset;
using var buffer = _renderer.BufferManager.ReserveOrCreate(cbs, ParamsBufferSize);
buffer.Holder.SetDataUnchecked<int>(buffer.Offset, shaderParams);
_pipeline.SetUniformBuffers([new BufferAssignment(0, buffer.Range)]);
Span<Auto<DisposableBuffer>> sbRanges = new Auto<DisposableBuffer>[2];
sbRanges[0] = srcBuffer;
sbRanges[1] = dstBuffer;
_pipeline.SetStorageBuffers(1, sbRanges);
_pipeline.SetProgram(_programConvertD32S8ToD24S8);
_pipeline.DispatchCompute(1 + inSize / ConvertElementsPerWorkgroup, 1, 1, "D32S8 to D24S8 Conversion");
// Restore previous state
_pipeline.SwapState(null);
}
public void ConvertIndexBuffer(
CommandBufferScoped cbs,
BufferHolder src,
BufferHolder dst,
IndexBufferPattern pattern,
int indexSize,
int srcOffset,
int indexCount)
{
// TODO: Support conversion with primitive restart enabled.
int primitiveCount = pattern.GetPrimitiveCount(indexCount);
int outputIndexSize = 4;
var srcBuffer = src.GetBuffer();
var dstBuffer = dst.GetBuffer();
const int ParamsBufferSize = 16 * sizeof(int);
// Save current state
_pipeline.SwapState(_helperShaderState);
Span<int> shaderParams = stackalloc int[ParamsBufferSize / sizeof(int)];
shaderParams[8] = pattern.PrimitiveVertices;
shaderParams[9] = pattern.PrimitiveVerticesOut;
shaderParams[10] = indexSize;
shaderParams[11] = outputIndexSize;
shaderParams[12] = pattern.BaseIndex;
shaderParams[13] = pattern.IndexStride;
shaderParams[14] = srcOffset;
shaderParams[15] = primitiveCount;
pattern.OffsetIndex.CopyTo(shaderParams[..pattern.OffsetIndex.Length]);
using var patternScoped = _renderer.BufferManager.ReserveOrCreate(cbs, ParamsBufferSize);
patternScoped.Holder.SetDataUnchecked<int>(patternScoped.Offset, shaderParams);
Span<Auto<DisposableBuffer>> sbRanges = new Auto<DisposableBuffer>[2];
sbRanges[0] = srcBuffer;
sbRanges[1] = dstBuffer;
_pipeline.SetStorageBuffers(1, sbRanges);
_pipeline.SetStorageBuffers([new BufferAssignment(3, patternScoped.Range)]);
_pipeline.SetProgram(_programConvertIndexBuffer);
_pipeline.DispatchCompute(BitUtils.DivRoundUp(primitiveCount, 16), 1, 1, "Convert Index Buffer");
// Restore previous state
_pipeline.SwapState(null);
}
public unsafe void ClearColor(
int index,
ReadOnlySpan<float> clearColor,
uint componentMask,
int dstWidth,
int dstHeight,
Format format)
{
// Keep original scissor
DirtyFlags clearFlags = DirtyFlags.All & (~DirtyFlags.Scissors);
// Save current state
EncoderState originalState = _pipeline.SwapState(_helperShaderState, clearFlags, false);
// Inherit some state without fully recreating render pipeline.
RenderTargetCopy save = _helperShaderState.InheritForClear(originalState, false, index);
const int ClearColorBufferSize = 16;
// TODO: Flush
using var buffer = _renderer.BufferManager.ReserveOrCreate(_pipeline.Cbs, ClearColorBufferSize);
buffer.Holder.SetDataUnchecked(buffer.Offset, clearColor);
_pipeline.SetUniformBuffers([new BufferAssignment(0, buffer.Range)]);
Span<Viewport> viewports = stackalloc Viewport[16];
// TODO: Set exact viewport!
viewports[0] = new Viewport(
new Rectangle<float>(0, 0, dstWidth, dstHeight),
ViewportSwizzle.PositiveX,
ViewportSwizzle.PositiveY,
ViewportSwizzle.PositiveZ,
ViewportSwizzle.PositiveW,
0f,
1f);
Span<uint> componentMasks = stackalloc uint[index + 1];
componentMasks[index] = componentMask;
var debugGroupName = "Clear Color ";
if (format.IsSint())
{
debugGroupName += "Int";
_pipeline.SetProgram(_programsColorClearI[index]);
}
else if (format.IsUint())
{
debugGroupName += "UInt";
_pipeline.SetProgram(_programsColorClearU[index]);
}
else
{
debugGroupName += "Float";
_pipeline.SetProgram(_programsColorClearF[index]);
}
_pipeline.SetBlendState(index, new BlendDescriptor());
_pipeline.SetFaceCulling(false, Face.Front);
_pipeline.SetDepthTest(new DepthTestDescriptor(false, false, CompareOp.Always));
_pipeline.SetRenderTargetColorMasks(componentMasks);
_pipeline.SetViewports(viewports);
_pipeline.SetPrimitiveTopology(PrimitiveTopology.TriangleStrip);
_pipeline.Draw(4, 1, 0, 0, debugGroupName);
// Restore previous state
_pipeline.SwapState(null, clearFlags, false);
_helperShaderState.Restore(save);
}
public unsafe void ClearDepthStencil(
float depthValue,
bool depthMask,
int stencilValue,
int stencilMask,
int dstWidth,
int dstHeight)
{
// Keep original scissor
DirtyFlags clearFlags = DirtyFlags.All & (~DirtyFlags.Scissors);
var helperScissors = _helperShaderState.Scissors;
// Save current state
EncoderState originalState = _pipeline.SwapState(_helperShaderState, clearFlags, false);
// Inherit some state without fully recreating render pipeline.
RenderTargetCopy save = _helperShaderState.InheritForClear(originalState, true);
const int ClearDepthBufferSize = 16;
using var buffer = _renderer.BufferManager.ReserveOrCreate(_pipeline.Cbs, ClearDepthBufferSize);
buffer.Holder.SetDataUnchecked(buffer.Offset, new ReadOnlySpan<float>(ref depthValue));
_pipeline.SetUniformBuffers([new BufferAssignment(0, buffer.Range)]);
Span<Viewport> viewports = stackalloc Viewport[1];
viewports[0] = new Viewport(
new Rectangle<float>(0, 0, dstWidth, dstHeight),
ViewportSwizzle.PositiveX,
ViewportSwizzle.PositiveY,
ViewportSwizzle.PositiveZ,
ViewportSwizzle.PositiveW,
0f,
1f);
_pipeline.SetProgram(_programDepthStencilClear);
_pipeline.SetFaceCulling(false, Face.Front);
_pipeline.SetPrimitiveTopology(PrimitiveTopology.TriangleStrip);
_pipeline.SetViewports(viewports);
_pipeline.SetDepthTest(new DepthTestDescriptor(true, depthMask, CompareOp.Always));
_pipeline.SetStencilTest(CreateStencilTestDescriptor(stencilMask != 0, stencilValue, 0xFF, stencilMask));
_pipeline.Draw(4, 1, 0, 0, "Clear Depth Stencil");
// Cleanup
_pipeline.SetDepthTest(new DepthTestDescriptor(false, false, CompareOp.Always));
_pipeline.SetStencilTest(CreateStencilTestDescriptor(false));
// Restore previous state
_pipeline.SwapState(null, clearFlags, false);
_helperShaderState.Restore(save);
}
private static StencilTestDescriptor CreateStencilTestDescriptor(
bool enabled,
int refValue = 0,
int compareMask = 0xff,
int writeMask = 0xff)
{
return new StencilTestDescriptor(
enabled,
CompareOp.Always,
StencilOp.Replace,
StencilOp.Replace,
StencilOp.Replace,
refValue,
compareMask,
writeMask,
CompareOp.Always,
StencilOp.Replace,
StencilOp.Replace,
StencilOp.Replace,
refValue,
compareMask,
writeMask);
}
public void Dispose()
{
_programColorBlitF.Dispose();
_programColorBlitI.Dispose();
_programColorBlitU.Dispose();
_programColorBlitMsF.Dispose();
_programColorBlitMsI.Dispose();
_programColorBlitMsU.Dispose();
foreach (var programColorClear in _programsColorClearF)
{
programColorClear.Dispose();
}
foreach (var programColorClear in _programsColorClearU)
{
programColorClear.Dispose();
}
foreach (var programColorClear in _programsColorClearI)
{
programColorClear.Dispose();
}
_programDepthStencilClear.Dispose();
_pipeline.Dispose();
_samplerLinear.Dispose();
_samplerNearest.Dispose();
}
}
}

View file

@ -0,0 +1,121 @@
using System;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Metal
{
class IdList<T> where T : class
{
private readonly List<T> _list;
private int _freeMin;
public IdList()
{
_list = new List<T>();
_freeMin = 0;
}
public int Add(T value)
{
int id;
int count = _list.Count;
id = _list.IndexOf(null, _freeMin);
if ((uint)id < (uint)count)
{
_list[id] = value;
}
else
{
id = count;
_freeMin = id + 1;
_list.Add(value);
}
return id + 1;
}
public void Remove(int id)
{
id--;
int count = _list.Count;
if ((uint)id >= (uint)count)
{
return;
}
if (id + 1 == count)
{
// Trim unused items.
int removeIndex = id;
while (removeIndex > 0 && _list[removeIndex - 1] == null)
{
removeIndex--;
}
_list.RemoveRange(removeIndex, count - removeIndex);
if (_freeMin > removeIndex)
{
_freeMin = removeIndex;
}
}
else
{
_list[id] = null;
if (_freeMin > id)
{
_freeMin = id;
}
}
}
public bool TryGetValue(int id, out T value)
{
id--;
try
{
if ((uint)id < (uint)_list.Count)
{
value = _list[id];
return value != null;
}
value = null;
return false;
}
catch (ArgumentOutOfRangeException)
{
value = null;
return false;
}
catch (IndexOutOfRangeException)
{
value = null;
return false;
}
}
public void Clear()
{
_list.Clear();
_freeMin = 0;
}
public IEnumerator<T> GetEnumerator()
{
for (int i = 0; i < _list.Count; i++)
{
if (_list[i] != null)
{
yield return _list[i];
}
}
}
}
}

View file

@ -0,0 +1,74 @@
using Ryujinx.Graphics.GAL;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
internal class ImageArray : IImageArray
{
private readonly TextureRef[] _textureRefs;
private readonly TextureBuffer[] _bufferTextureRefs;
private readonly bool _isBuffer;
private readonly Pipeline _pipeline;
public ImageArray(int size, bool isBuffer, Pipeline pipeline)
{
if (isBuffer)
{
_bufferTextureRefs = new TextureBuffer[size];
}
else
{
_textureRefs = new TextureRef[size];
}
_isBuffer = isBuffer;
_pipeline = pipeline;
}
public void SetImages(int index, ITexture[] images)
{
for (int i = 0; i < images.Length; i++)
{
ITexture image = images[i];
if (image is TextureBuffer textureBuffer)
{
_bufferTextureRefs[index + i] = textureBuffer;
}
else if (image is Texture texture)
{
_textureRefs[index + i].Storage = texture;
}
else if (!_isBuffer)
{
_textureRefs[index + i].Storage = null;
}
else
{
_bufferTextureRefs[index + i] = null;
}
}
SetDirty();
}
public TextureRef[] GetTextureRefs()
{
return _textureRefs;
}
public TextureBuffer[] GetBufferTextureRefs()
{
return _bufferTextureRefs;
}
private void SetDirty()
{
_pipeline.DirtyImages();
}
public void Dispose() { }
}
}

View file

@ -0,0 +1,118 @@
using Ryujinx.Graphics.GAL;
using System;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
internal class IndexBufferPattern : IDisposable
{
public int PrimitiveVertices { get; }
public int PrimitiveVerticesOut { get; }
public int BaseIndex { get; }
public int[] OffsetIndex { get; }
public int IndexStride { get; }
public bool RepeatStart { get; }
private readonly MetalRenderer _renderer;
private int _currentSize;
private BufferHandle _repeatingBuffer;
public IndexBufferPattern(MetalRenderer renderer,
int primitiveVertices,
int primitiveVerticesOut,
int baseIndex,
int[] offsetIndex,
int indexStride,
bool repeatStart)
{
PrimitiveVertices = primitiveVertices;
PrimitiveVerticesOut = primitiveVerticesOut;
BaseIndex = baseIndex;
OffsetIndex = offsetIndex;
IndexStride = indexStride;
RepeatStart = repeatStart;
_renderer = renderer;
}
public int GetPrimitiveCount(int vertexCount)
{
return Math.Max(0, (vertexCount - BaseIndex) / IndexStride);
}
public int GetConvertedCount(int indexCount)
{
int primitiveCount = GetPrimitiveCount(indexCount);
return primitiveCount * OffsetIndex.Length;
}
public BufferHandle GetRepeatingBuffer(int vertexCount, out int indexCount)
{
int primitiveCount = GetPrimitiveCount(vertexCount);
indexCount = primitiveCount * PrimitiveVerticesOut;
int expectedSize = primitiveCount * OffsetIndex.Length;
if (expectedSize <= _currentSize && _repeatingBuffer != BufferHandle.Null)
{
return _repeatingBuffer;
}
// Expand the repeating pattern to the number of requested primitives.
BufferHandle newBuffer = _renderer.BufferManager.CreateWithHandle(expectedSize * sizeof(int));
// Copy the old data to the new one.
if (_repeatingBuffer != BufferHandle.Null)
{
_renderer.Pipeline.CopyBuffer(_repeatingBuffer, newBuffer, 0, 0, _currentSize * sizeof(int));
_renderer.BufferManager.Delete(_repeatingBuffer);
}
_repeatingBuffer = newBuffer;
// Add the additional repeats on top.
int newPrimitives = primitiveCount;
int oldPrimitives = (_currentSize) / OffsetIndex.Length;
int[] newData;
newPrimitives -= oldPrimitives;
newData = new int[expectedSize - _currentSize];
int outOffset = 0;
int index = oldPrimitives * IndexStride + BaseIndex;
for (int i = 0; i < newPrimitives; i++)
{
if (RepeatStart)
{
// Used for triangle fan
newData[outOffset++] = 0;
}
for (int j = RepeatStart ? 1 : 0; j < OffsetIndex.Length; j++)
{
newData[outOffset++] = index + OffsetIndex[j];
}
index += IndexStride;
}
_renderer.SetBufferData(newBuffer, _currentSize * sizeof(int), MemoryMarshal.Cast<int, byte>(newData));
_currentSize = expectedSize;
return newBuffer;
}
public void Dispose()
{
if (_repeatingBuffer != BufferHandle.Null)
{
_renderer.BufferManager.Delete(_repeatingBuffer);
_repeatingBuffer = BufferHandle.Null;
}
}
}
}

View file

@ -0,0 +1,103 @@
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
readonly internal struct IndexBufferState
{
public static IndexBufferState Null => new(BufferHandle.Null, 0, 0);
private readonly int _offset;
private readonly int _size;
private readonly IndexType _type;
private readonly BufferHandle _handle;
public IndexBufferState(BufferHandle handle, int offset, int size, IndexType type = IndexType.UInt)
{
_handle = handle;
_offset = offset;
_size = size;
_type = type;
}
public (MTLBuffer, int, MTLIndexType) GetIndexBuffer(MetalRenderer renderer, CommandBufferScoped cbs)
{
Auto<DisposableBuffer> autoBuffer;
int offset, size;
MTLIndexType type;
if (_type == IndexType.UByte)
{
// Index type is not supported. Convert to I16.
autoBuffer = renderer.BufferManager.GetBufferI8ToI16(cbs, _handle, _offset, _size);
type = MTLIndexType.UInt16;
offset = 0;
size = _size * 2;
}
else
{
autoBuffer = renderer.BufferManager.GetBuffer(_handle, false, out int bufferSize);
if (_offset >= bufferSize)
{
autoBuffer = null;
}
type = _type.Convert();
offset = _offset;
size = _size;
}
if (autoBuffer != null)
{
DisposableBuffer buffer = autoBuffer.Get(cbs, offset, size);
return (buffer.Value, offset, type);
}
return (new MTLBuffer(IntPtr.Zero), 0, MTLIndexType.UInt16);
}
public (MTLBuffer, int, MTLIndexType) GetConvertedIndexBuffer(
MetalRenderer renderer,
CommandBufferScoped cbs,
int firstIndex,
int indexCount,
int convertedCount,
IndexBufferPattern pattern)
{
// Convert the index buffer using the given pattern.
int indexSize = GetIndexSize();
int firstIndexOffset = firstIndex * indexSize;
var autoBuffer = renderer.BufferManager.GetBufferTopologyConversion(cbs, _handle, _offset + firstIndexOffset, indexCount * indexSize, pattern, indexSize);
int size = convertedCount * 4;
if (autoBuffer != null)
{
DisposableBuffer buffer = autoBuffer.Get(cbs, 0, size);
return (buffer.Value, 0, MTLIndexType.UInt32);
}
return (new MTLBuffer(IntPtr.Zero), 0, MTLIndexType.UInt32);
}
private int GetIndexSize()
{
return _type switch
{
IndexType.UInt => 4,
IndexType.UShort => 2,
_ => 1,
};
}
}
}

View file

@ -0,0 +1,309 @@
using Ryujinx.Common.Configuration;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Shader.Translation;
using SharpMetal.Metal;
using SharpMetal.QuartzCore;
using System;
using System.Collections.Generic;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
public sealed class MetalRenderer : IRenderer
{
public const int TotalSets = 4;
private readonly MTLDevice _device;
private readonly MTLCommandQueue _queue;
private readonly Func<CAMetalLayer> _getMetalLayer;
private Pipeline _pipeline;
private Window _window;
public uint ProgramCount { get; set; } = 0;
public event EventHandler<ScreenCaptureImageInfo> ScreenCaptured;
public bool PreferThreading => true;
public IPipeline Pipeline => _pipeline;
public IWindow Window => _window;
internal MTLCommandQueue BackgroundQueue { get; private set; }
internal HelperShader HelperShader { get; private set; }
internal BufferManager BufferManager { get; private set; }
internal CommandBufferPool CommandBufferPool { get; private set; }
internal BackgroundResources BackgroundResources { get; private set; }
internal Action<Action> InterruptAction { get; private set; }
internal SyncManager SyncManager { get; private set; }
internal HashSet<Program> Programs { get; }
internal HashSet<SamplerHolder> Samplers { get; }
public MetalRenderer(Func<CAMetalLayer> metalLayer)
{
_device = MTLDevice.CreateSystemDefaultDevice();
Programs = new HashSet<Program>();
Samplers = new HashSet<SamplerHolder>();
if (_device.ArgumentBuffersSupport != MTLArgumentBuffersTier.Tier2)
{
throw new NotSupportedException("Metal backend requires Tier 2 Argument Buffer support.");
}
_queue = _device.NewCommandQueue(CommandBufferPool.MaxCommandBuffers + 1);
BackgroundQueue = _device.NewCommandQueue(CommandBufferPool.MaxCommandBuffers);
_getMetalLayer = metalLayer;
}
public void Initialize(GraphicsDebugLevel logLevel)
{
var layer = _getMetalLayer();
layer.Device = _device;
layer.FramebufferOnly = false;
CommandBufferPool = new CommandBufferPool(_queue);
_window = new Window(this, layer);
_pipeline = new Pipeline(_device, this);
BufferManager = new BufferManager(_device, this, _pipeline);
_pipeline.InitEncoderStateManager(BufferManager);
BackgroundResources = new BackgroundResources(this);
HelperShader = new HelperShader(_device, this, _pipeline);
SyncManager = new SyncManager(this);
}
public void BackgroundContextAction(Action action, bool alwaysBackground = false)
{
// GetData methods should be thread safe, so we can call this directly.
// Texture copy (scaled) may also happen in here, so that should also be thread safe.
action();
}
public BufferHandle CreateBuffer(int size, BufferAccess access)
{
return BufferManager.CreateWithHandle(size);
}
public BufferHandle CreateBuffer(IntPtr pointer, int size)
{
return BufferManager.Create(pointer, size);
}
public BufferHandle CreateBufferSparse(ReadOnlySpan<BufferRange> storageBuffers)
{
throw new NotImplementedException();
}
public IImageArray CreateImageArray(int size, bool isBuffer)
{
return new ImageArray(size, isBuffer, _pipeline);
}
public IProgram CreateProgram(ShaderSource[] shaders, ShaderInfo info)
{
ProgramCount++;
return new Program(this, _device, shaders, info.ResourceLayout, info.ComputeLocalSize);
}
public ISampler CreateSampler(SamplerCreateInfo info)
{
return new SamplerHolder(this, _device, info);
}
public ITexture CreateTexture(TextureCreateInfo info)
{
if (info.Target == Target.TextureBuffer)
{
return new TextureBuffer(_device, this, _pipeline, info);
}
return new Texture(_device, this, _pipeline, info);
}
public ITextureArray CreateTextureArray(int size, bool isBuffer)
{
return new TextureArray(size, isBuffer, _pipeline);
}
public bool PrepareHostMapping(IntPtr address, ulong size)
{
// TODO: Metal Host Mapping
return false;
}
public void CreateSync(ulong id, bool strict)
{
SyncManager.Create(id, strict);
}
public void DeleteBuffer(BufferHandle buffer)
{
BufferManager.Delete(buffer);
}
public PinnedSpan<byte> GetBufferData(BufferHandle buffer, int offset, int size)
{
return BufferManager.GetData(buffer, offset, size);
}
public Capabilities GetCapabilities()
{
// TODO: Finalize these values
return new Capabilities(
api: TargetApi.Metal,
vendorName: HardwareInfoTools.GetVendor(),
SystemMemoryType.UnifiedMemory,
hasFrontFacingBug: false,
hasVectorIndexingBug: false,
needsFragmentOutputSpecialization: true,
reduceShaderPrecision: true,
supportsAstcCompression: true,
supportsBc123Compression: true,
supportsBc45Compression: true,
supportsBc67Compression: true,
supportsEtc2Compression: true,
supports3DTextureCompression: true,
supportsBgraFormat: true,
supportsR4G4Format: false,
supportsR4G4B4A4Format: true,
supportsScaledVertexFormats: false,
supportsSnormBufferTextureFormat: true,
supportsSparseBuffer: false,
supports5BitComponentFormat: true,
supportsBlendEquationAdvanced: false,
supportsFragmentShaderInterlock: true,
supportsFragmentShaderOrderingIntel: false,
supportsGeometryShader: false,
supportsGeometryShaderPassthrough: false,
supportsTransformFeedback: false,
supportsImageLoadFormatted: false,
supportsLayerVertexTessellation: false,
supportsMismatchingViewFormat: true,
supportsCubemapView: true,
supportsNonConstantTextureOffset: false,
supportsQuads: false,
supportsSeparateSampler: true,
supportsShaderBallot: false,
supportsShaderBarrierDivergence: false,
supportsShaderFloat64: false,
supportsTextureGatherOffsets: false,
supportsTextureShadowLod: false,
supportsVertexStoreAndAtomics: false,
supportsViewportIndexVertexTessellation: false,
supportsViewportMask: false,
supportsViewportSwizzle: false,
supportsIndirectParameters: true,
supportsDepthClipControl: false,
uniformBufferSetIndex: (int)Constants.ConstantBuffersSetIndex,
storageBufferSetIndex: (int)Constants.StorageBuffersSetIndex,
textureSetIndex: (int)Constants.TexturesSetIndex,
imageSetIndex: (int)Constants.ImagesSetIndex,
extraSetBaseIndex: TotalSets,
maximumExtraSets: (int)Constants.MaximumExtraSets,
maximumUniformBuffersPerStage: Constants.MaxUniformBuffersPerStage,
maximumStorageBuffersPerStage: Constants.MaxStorageBuffersPerStage,
maximumTexturesPerStage: Constants.MaxTexturesPerStage,
maximumImagesPerStage: Constants.MaxImagesPerStage,
maximumComputeSharedMemorySize: (int)_device.MaxThreadgroupMemoryLength,
maximumSupportedAnisotropy: 16,
shaderSubgroupSize: 256,
storageBufferOffsetAlignment: 16,
textureBufferOffsetAlignment: 16,
gatherBiasPrecision: 0,
maximumGpuMemory: 0
);
}
public ulong GetCurrentSync()
{
return SyncManager.GetCurrent();
}
public HardwareInfo GetHardwareInfo()
{
return new HardwareInfo(HardwareInfoTools.GetVendor(), HardwareInfoTools.GetModel(), "Apple");
}
public IProgram LoadProgramBinary(byte[] programBinary, bool hasFragmentShader, ShaderInfo info)
{
throw new NotImplementedException();
}
public void SetBufferData(BufferHandle buffer, int offset, ReadOnlySpan<byte> data)
{
BufferManager.SetData(buffer, offset, data, _pipeline.Cbs);
}
public void UpdateCounters()
{
// https://developer.apple.com/documentation/metal/gpu_counters_and_counter_sample_buffers/creating_a_counter_sample_buffer_to_store_a_gpu_s_counter_data_during_a_pass?language=objc
}
public void PreFrame()
{
SyncManager.Cleanup();
}
public ICounterEvent ReportCounter(CounterType type, EventHandler<ulong> resultHandler, float divisor, bool hostReserved)
{
// https://developer.apple.com/documentation/metal/gpu_counters_and_counter_sample_buffers/creating_a_counter_sample_buffer_to_store_a_gpu_s_counter_data_during_a_pass?language=objc
var counterEvent = new CounterEvent();
resultHandler?.Invoke(counterEvent, type == CounterType.SamplesPassed ? (ulong)1 : 0);
return counterEvent;
}
public void ResetCounter(CounterType type)
{
// https://developer.apple.com/documentation/metal/gpu_counters_and_counter_sample_buffers/creating_a_counter_sample_buffer_to_store_a_gpu_s_counter_data_during_a_pass?language=objc
}
public void WaitSync(ulong id)
{
SyncManager.Wait(id);
}
public void FlushAllCommands()
{
_pipeline.FlushCommandsImpl();
}
public void RegisterFlush()
{
SyncManager.RegisterFlush();
// Periodically free unused regions of the staging buffer to avoid doing it all at once.
BufferManager.StagingBuffer.FreeCompleted();
}
public void SetInterruptAction(Action<Action> interruptAction)
{
InterruptAction = interruptAction;
}
public void Screenshot()
{
// TODO: Screenshots
}
public void Dispose()
{
BackgroundResources.Dispose();
foreach (var program in Programs)
{
program.Dispose();
}
foreach (var sampler in Samplers)
{
sampler.Dispose();
}
_pipeline.Dispose();
_window.Dispose();
}
}
}

View file

@ -0,0 +1,262 @@
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
/// <summary>
/// Holder for multiple host GPU fences.
/// </summary>
[SupportedOSPlatform("macos")]
class MultiFenceHolder
{
private const int BufferUsageTrackingGranularity = 4096;
private readonly FenceHolder[] _fences;
private readonly BufferUsageBitmap _bufferUsageBitmap;
/// <summary>
/// Creates a new instance of the multiple fence holder.
/// </summary>
public MultiFenceHolder()
{
_fences = new FenceHolder[CommandBufferPool.MaxCommandBuffers];
}
/// <summary>
/// Creates a new instance of the multiple fence holder, with a given buffer size in mind.
/// </summary>
/// <param name="size">Size of the buffer</param>
public MultiFenceHolder(int size)
{
_fences = new FenceHolder[CommandBufferPool.MaxCommandBuffers];
_bufferUsageBitmap = new BufferUsageBitmap(size, BufferUsageTrackingGranularity);
}
/// <summary>
/// Adds read/write buffer usage information to the uses list.
/// </summary>
/// <param name="cbIndex">Index of the command buffer where the buffer is used</param>
/// <param name="offset">Offset of the buffer being used</param>
/// <param name="size">Size of the buffer region being used, in bytes</param>
/// <param name="write">Whether the access is a write or not</param>
public void AddBufferUse(int cbIndex, int offset, int size, bool write)
{
_bufferUsageBitmap.Add(cbIndex, offset, size, false);
if (write)
{
_bufferUsageBitmap.Add(cbIndex, offset, size, true);
}
}
/// <summary>
/// Removes all buffer usage information for a given command buffer.
/// </summary>
/// <param name="cbIndex">Index of the command buffer where the buffer is used</param>
public void RemoveBufferUses(int cbIndex)
{
_bufferUsageBitmap?.Clear(cbIndex);
}
/// <summary>
/// Checks if a given range of a buffer is being used by a command buffer still being processed by the GPU.
/// </summary>
/// <param name="cbIndex">Index of the command buffer where the buffer is used</param>
/// <param name="offset">Offset of the buffer being used</param>
/// <param name="size">Size of the buffer region being used, in bytes</param>
/// <returns>True if in use, false otherwise</returns>
public bool IsBufferRangeInUse(int cbIndex, int offset, int size)
{
return _bufferUsageBitmap.OverlapsWith(cbIndex, offset, size);
}
/// <summary>
/// Checks if a given range of a buffer is being used by any command buffer still being processed by the GPU.
/// </summary>
/// <param name="offset">Offset of the buffer being used</param>
/// <param name="size">Size of the buffer region being used, in bytes</param>
/// <param name="write">True if only write usages should count</param>
/// <returns>True if in use, false otherwise</returns>
public bool IsBufferRangeInUse(int offset, int size, bool write)
{
return _bufferUsageBitmap.OverlapsWith(offset, size, write);
}
/// <summary>
/// Adds a fence to the holder.
/// </summary>
/// <param name="cbIndex">Command buffer index of the command buffer that owns the fence</param>
/// <param name="fence">Fence to be added</param>
/// <returns>True if the command buffer's previous fence value was null</returns>
public bool AddFence(int cbIndex, FenceHolder fence)
{
ref FenceHolder fenceRef = ref _fences[cbIndex];
if (fenceRef == null)
{
fenceRef = fence;
return true;
}
return false;
}
/// <summary>
/// Removes a fence from the holder.
/// </summary>
/// <param name="cbIndex">Command buffer index of the command buffer that owns the fence</param>
public void RemoveFence(int cbIndex)
{
_fences[cbIndex] = null;
}
/// <summary>
/// Determines if a fence referenced on the given command buffer.
/// </summary>
/// <param name="cbIndex">Index of the command buffer to check if it's used</param>
/// <returns>True if referenced, false otherwise</returns>
public bool HasFence(int cbIndex)
{
return _fences[cbIndex] != null;
}
/// <summary>
/// Wait until all the fences on the holder are signaled.
/// </summary>
public void WaitForFences()
{
WaitForFencesImpl(0, 0, true);
}
/// <summary>
/// Wait until all the fences on the holder with buffer uses overlapping the specified range are signaled.
/// </summary>
/// <param name="offset">Start offset of the buffer range</param>
/// <param name="size">Size of the buffer range in bytes</param>
public void WaitForFences(int offset, int size)
{
WaitForFencesImpl(offset, size, true);
}
/// <summary>
/// Wait until all the fences on the holder with buffer uses overlapping the specified range are signaled.
/// </summary>
// TODO: Add a proper timeout!
public bool WaitForFences(bool indefinite)
{
return WaitForFencesImpl(0, 0, indefinite);
}
/// <summary>
/// Wait until all the fences on the holder with buffer uses overlapping the specified range are signaled.
/// </summary>
/// <param name="offset">Start offset of the buffer range</param>
/// <param name="size">Size of the buffer range in bytes</param>
/// <param name="indefinite">Indicates if this should wait indefinitely</param>
/// <returns>True if all fences were signaled before the timeout expired, false otherwise</returns>
private bool WaitForFencesImpl(int offset, int size, bool indefinite)
{
Span<FenceHolder> fenceHolders = new FenceHolder[CommandBufferPool.MaxCommandBuffers];
int count = size != 0 ? GetOverlappingFences(fenceHolders, offset, size) : GetFences(fenceHolders);
Span<MTLCommandBuffer> fences = stackalloc MTLCommandBuffer[count];
int fenceCount = 0;
for (int i = 0; i < count; i++)
{
if (fenceHolders[i].TryGet(out MTLCommandBuffer fence))
{
fences[fenceCount] = fence;
if (fenceCount < i)
{
fenceHolders[fenceCount] = fenceHolders[i];
}
fenceCount++;
}
}
if (fenceCount == 0)
{
return true;
}
bool signaled = true;
if (indefinite)
{
foreach (var fence in fences)
{
fence.WaitUntilCompleted();
}
}
else
{
foreach (var fence in fences)
{
if (fence.Status != MTLCommandBufferStatus.Completed)
{
signaled = false;
}
}
}
for (int i = 0; i < fenceCount; i++)
{
fenceHolders[i].Put();
}
return signaled;
}
/// <summary>
/// Gets fences to wait for.
/// </summary>
/// <param name="storage">Span to store fences in</param>
/// <returns>Number of fences placed in storage</returns>
private int GetFences(Span<FenceHolder> storage)
{
int count = 0;
for (int i = 0; i < _fences.Length; i++)
{
var fence = _fences[i];
if (fence != null)
{
storage[count++] = fence;
}
}
return count;
}
/// <summary>
/// Gets fences to wait for use of a given buffer region.
/// </summary>
/// <param name="storage">Span to store overlapping fences in</param>
/// <param name="offset">Offset of the range</param>
/// <param name="size">Size of the range in bytes</param>
/// <returns>Number of fences for the specified region placed in storage</returns>
private int GetOverlappingFences(Span<FenceHolder> storage, int offset, int size)
{
int count = 0;
for (int i = 0; i < _fences.Length; i++)
{
var fence = _fences[i];
if (fence != null && _bufferUsageBitmap.OverlapsWith(i, offset, size))
{
storage[count++] = fence;
}
}
return count;
}
}
}

View file

@ -0,0 +1,99 @@
using Ryujinx.Graphics.GAL;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
internal class PersistentFlushBuffer : IDisposable
{
private readonly MetalRenderer _renderer;
private BufferHolder _flushStorage;
public PersistentFlushBuffer(MetalRenderer renderer)
{
_renderer = renderer;
}
private BufferHolder ResizeIfNeeded(int size)
{
var flushStorage = _flushStorage;
if (flushStorage == null || size > _flushStorage.Size)
{
flushStorage?.Dispose();
flushStorage = _renderer.BufferManager.Create(size);
_flushStorage = flushStorage;
}
return flushStorage;
}
public Span<byte> GetBufferData(CommandBufferPool cbp, BufferHolder buffer, int offset, int size)
{
var flushStorage = ResizeIfNeeded(size);
Auto<DisposableBuffer> srcBuffer;
using (var cbs = cbp.Rent())
{
srcBuffer = buffer.GetBuffer();
var dstBuffer = flushStorage.GetBuffer();
if (srcBuffer.TryIncrementReferenceCount())
{
BufferHolder.Copy(cbs, srcBuffer, dstBuffer, offset, 0, size, registerSrcUsage: false);
}
else
{
// Source buffer is no longer alive, don't copy anything to flush storage.
srcBuffer = null;
}
}
flushStorage.WaitForFences();
srcBuffer?.DecrementReferenceCount();
return flushStorage.GetDataStorage(0, size);
}
public Span<byte> GetTextureData(CommandBufferPool cbp, Texture view, int size)
{
TextureCreateInfo info = view.Info;
var flushStorage = ResizeIfNeeded(size);
using (var cbs = cbp.Rent())
{
var buffer = flushStorage.GetBuffer().Get(cbs).Value;
var image = view.GetHandle();
view.CopyFromOrToBuffer(cbs, buffer, image, size, true, 0, 0, info.GetLayers(), info.Levels, singleSlice: false);
}
flushStorage.WaitForFences();
return flushStorage.GetDataStorage(0, size);
}
public Span<byte> GetTextureData(CommandBufferPool cbp, Texture view, int size, int layer, int level)
{
var flushStorage = ResizeIfNeeded(size);
using (var cbs = cbp.Rent())
{
var buffer = flushStorage.GetBuffer().Get(cbs).Value;
var image = view.GetHandle();
view.CopyFromOrToBuffer(cbs, buffer, image, size, true, layer, level, 1, 1, singleSlice: true);
}
flushStorage.WaitForFences();
return flushStorage.GetDataStorage(0, size);
}
public void Dispose()
{
_flushStorage.Dispose();
}
}
}

View file

@ -0,0 +1,877 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Shader;
using SharpMetal.Foundation;
using SharpMetal.Metal;
using SharpMetal.QuartzCore;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
public enum EncoderType
{
Blit,
Compute,
Render,
None
}
[SupportedOSPlatform("macos")]
class Pipeline : IPipeline, IEncoderFactory, IDisposable
{
private const ulong MinByteWeightForFlush = 256 * 1024 * 1024; // MiB
private readonly MTLDevice _device;
private readonly MetalRenderer _renderer;
private EncoderStateManager _encoderStateManager;
private ulong _byteWeight;
public MTLCommandBuffer CommandBuffer;
public IndexBufferPattern QuadsToTrisPattern;
public IndexBufferPattern TriFanToTrisPattern;
internal CommandBufferScoped? PreloadCbs { get; private set; }
internal CommandBufferScoped Cbs { get; private set; }
internal CommandBufferEncoder Encoders => Cbs.Encoders;
internal EncoderType CurrentEncoderType => Encoders.CurrentEncoderType;
public Pipeline(MTLDevice device, MetalRenderer renderer)
{
_device = device;
_renderer = renderer;
renderer.CommandBufferPool.Initialize(this);
CommandBuffer = (Cbs = _renderer.CommandBufferPool.Rent()).CommandBuffer;
}
internal void InitEncoderStateManager(BufferManager bufferManager)
{
_encoderStateManager = new EncoderStateManager(_device, bufferManager, this);
QuadsToTrisPattern = new IndexBufferPattern(_renderer, 4, 6, 0, [0, 1, 2, 0, 2, 3], 4, false);
TriFanToTrisPattern = new IndexBufferPattern(_renderer, 3, 3, 2, [int.MinValue, -1, 0], 1, true);
}
public EncoderState SwapState(EncoderState state, DirtyFlags flags = DirtyFlags.All, bool endRenderPass = true)
{
if (endRenderPass && CurrentEncoderType == EncoderType.Render)
{
EndCurrentPass();
}
return _encoderStateManager.SwapState(state, flags);
}
public PredrawState SavePredrawState()
{
return _encoderStateManager.SavePredrawState();
}
public void RestorePredrawState(PredrawState state)
{
_encoderStateManager.RestorePredrawState(state);
}
public void SetClearLoadAction(bool clear)
{
_encoderStateManager.SetClearLoadAction(clear);
}
public MTLRenderCommandEncoder GetOrCreateRenderEncoder(bool forDraw = false)
{
// Mark all state as dirty to ensure it is set on the new encoder
if (Cbs.Encoders.CurrentEncoderType != EncoderType.Render)
{
_encoderStateManager.SignalRenderDirty();
}
if (forDraw)
{
_encoderStateManager.RenderResourcesPrepass();
}
MTLRenderCommandEncoder renderCommandEncoder = Cbs.Encoders.EnsureRenderEncoder();
if (forDraw)
{
_encoderStateManager.RebindRenderState(renderCommandEncoder);
}
return renderCommandEncoder;
}
public MTLBlitCommandEncoder GetOrCreateBlitEncoder()
{
return Cbs.Encoders.EnsureBlitEncoder();
}
public MTLComputeCommandEncoder GetOrCreateComputeEncoder(bool forDispatch = false)
{
// Mark all state as dirty to ensure it is set on the new encoder
if (Cbs.Encoders.CurrentEncoderType != EncoderType.Compute)
{
_encoderStateManager.SignalComputeDirty();
}
if (forDispatch)
{
_encoderStateManager.ComputeResourcesPrepass();
}
MTLComputeCommandEncoder computeCommandEncoder = Cbs.Encoders.EnsureComputeEncoder();
if (forDispatch)
{
_encoderStateManager.RebindComputeState(computeCommandEncoder);
}
return computeCommandEncoder;
}
public void EndCurrentPass()
{
Cbs.Encoders.EndCurrentPass();
}
public MTLRenderCommandEncoder CreateRenderCommandEncoder()
{
return _encoderStateManager.CreateRenderCommandEncoder();
}
public MTLComputeCommandEncoder CreateComputeCommandEncoder()
{
return _encoderStateManager.CreateComputeCommandEncoder();
}
public void Present(CAMetalDrawable drawable, Texture src, Extents2D srcRegion, Extents2D dstRegion, bool isLinear)
{
// TODO: Clean this up
var textureInfo = new TextureCreateInfo((int)drawable.Texture.Width, (int)drawable.Texture.Height, (int)drawable.Texture.Depth, (int)drawable.Texture.MipmapLevelCount, (int)drawable.Texture.SampleCount, 0, 0, 0, Format.B8G8R8A8Unorm, 0, Target.Texture2D, SwizzleComponent.Red, SwizzleComponent.Green, SwizzleComponent.Blue, SwizzleComponent.Alpha);
var dst = new Texture(_device, _renderer, this, textureInfo, drawable.Texture, 0, 0);
_renderer.HelperShader.BlitColor(Cbs, src, dst, srcRegion, dstRegion, isLinear, true);
EndCurrentPass();
Cbs.CommandBuffer.PresentDrawable(drawable);
FlushCommandsImpl();
// TODO: Auto flush counting
_renderer.SyncManager.GetAndResetWaitTicks();
// Cleanup
dst.Dispose();
}
public CommandBufferScoped GetPreloadCommandBuffer()
{
PreloadCbs ??= _renderer.CommandBufferPool.Rent();
return PreloadCbs.Value;
}
public void FlushCommandsIfWeightExceeding(IAuto disposedResource, ulong byteWeight)
{
bool usedByCurrentCb = disposedResource.HasCommandBufferDependency(Cbs);
if (PreloadCbs != null && !usedByCurrentCb)
{
usedByCurrentCb = disposedResource.HasCommandBufferDependency(PreloadCbs.Value);
}
if (usedByCurrentCb)
{
// Since we can only free memory after the command buffer that uses a given resource was executed,
// keeping the command buffer might cause a high amount of memory to be in use.
// To prevent that, we force submit command buffers if the memory usage by resources
// in use by the current command buffer is above a given limit, and those resources were disposed.
_byteWeight += byteWeight;
if (_byteWeight >= MinByteWeightForFlush)
{
FlushCommandsImpl();
}
}
}
public void FlushCommandsImpl()
{
EndCurrentPass();
_byteWeight = 0;
if (PreloadCbs != null)
{
PreloadCbs.Value.Dispose();
PreloadCbs = null;
}
CommandBuffer = (Cbs = _renderer.CommandBufferPool.ReturnAndRent(Cbs)).CommandBuffer;
_renderer.RegisterFlush();
}
public void DirtyTextures()
{
_encoderStateManager.DirtyTextures();
}
public void DirtyImages()
{
_encoderStateManager.DirtyImages();
}
public void Blit(
Texture src,
Texture dst,
Extents2D srcRegion,
Extents2D dstRegion,
bool isDepthOrStencil,
bool linearFilter)
{
if (isDepthOrStencil)
{
_renderer.HelperShader.BlitDepthStencil(Cbs, src, dst, srcRegion, dstRegion);
}
else
{
_renderer.HelperShader.BlitColor(Cbs, src, dst, srcRegion, dstRegion, linearFilter);
}
}
public void Barrier()
{
switch (CurrentEncoderType)
{
case EncoderType.Render:
{
var scope = MTLBarrierScope.Buffers | MTLBarrierScope.Textures | MTLBarrierScope.RenderTargets;
MTLRenderStages stages = MTLRenderStages.RenderStageVertex | MTLRenderStages.RenderStageFragment;
Encoders.RenderEncoder.MemoryBarrier(scope, stages, stages);
break;
}
case EncoderType.Compute:
{
var scope = MTLBarrierScope.Buffers | MTLBarrierScope.Textures | MTLBarrierScope.RenderTargets;
Encoders.ComputeEncoder.MemoryBarrier(scope);
break;
}
}
}
public void ClearBuffer(BufferHandle destination, int offset, int size, uint value)
{
var blitCommandEncoder = GetOrCreateBlitEncoder();
var mtlBuffer = _renderer.BufferManager.GetBuffer(destination, offset, size, true).Get(Cbs, offset, size, true).Value;
// Might need a closer look, range's count, lower, and upper bound
// must be a multiple of 4
blitCommandEncoder.FillBuffer(mtlBuffer,
new NSRange
{
location = (ulong)offset,
length = (ulong)size
},
(byte)value);
}
public void ClearRenderTargetColor(int index, int layer, int layerCount, uint componentMask, ColorF color)
{
float[] colors = [color.Red, color.Green, color.Blue, color.Alpha];
var dst = _encoderStateManager.RenderTargets[index];
// TODO: Remove workaround for Wonder which has an invalid texture due to unsupported format
if (dst == null)
{
Logger.Warning?.PrintMsg(LogClass.Gpu, "Attempted to clear invalid render target!");
return;
}
_renderer.HelperShader.ClearColor(index, colors, componentMask, dst.Width, dst.Height, dst.Info.Format);
}
public void ClearRenderTargetDepthStencil(int layer, int layerCount, float depthValue, bool depthMask, int stencilValue, int stencilMask)
{
var depthStencil = _encoderStateManager.DepthStencil;
if (depthStencil == null)
{
return;
}
_renderer.HelperShader.ClearDepthStencil(depthValue, depthMask, stencilValue, stencilMask, depthStencil.Width, depthStencil.Height);
}
public void CommandBufferBarrier()
{
Barrier();
}
public void CopyBuffer(BufferHandle src, BufferHandle dst, int srcOffset, int dstOffset, int size)
{
var srcBuffer = _renderer.BufferManager.GetBuffer(src, srcOffset, size, false);
var dstBuffer = _renderer.BufferManager.GetBuffer(dst, dstOffset, size, true);
BufferHolder.Copy(Cbs, srcBuffer, dstBuffer, srcOffset, dstOffset, size);
}
public void PushDebugGroup(string name)
{
var encoder = Encoders.CurrentEncoder;
var debugGroupName = StringHelper.NSString(name);
if (encoder == null)
{
return;
}
switch (Encoders.CurrentEncoderType)
{
case EncoderType.Render:
encoder.Value.PushDebugGroup(debugGroupName);
break;
case EncoderType.Blit:
encoder.Value.PushDebugGroup(debugGroupName);
break;
case EncoderType.Compute:
encoder.Value.PushDebugGroup(debugGroupName);
break;
}
}
public void PopDebugGroup()
{
var encoder = Encoders.CurrentEncoder;
if (encoder == null)
{
return;
}
switch (Encoders.CurrentEncoderType)
{
case EncoderType.Render:
encoder.Value.PopDebugGroup();
break;
case EncoderType.Blit:
encoder.Value.PopDebugGroup();
break;
case EncoderType.Compute:
encoder.Value.PopDebugGroup();
break;
}
}
public void DispatchCompute(int groupsX, int groupsY, int groupsZ)
{
DispatchCompute(groupsX, groupsY, groupsZ, String.Empty);
}
public void DispatchCompute(int groupsX, int groupsY, int groupsZ, string debugGroupName)
{
var computeCommandEncoder = GetOrCreateComputeEncoder(true);
ComputeSize localSize = _encoderStateManager.ComputeLocalSize;
if (debugGroupName != String.Empty)
{
PushDebugGroup(debugGroupName);
}
computeCommandEncoder.DispatchThreadgroups(
new MTLSize { width = (ulong)groupsX, height = (ulong)groupsY, depth = (ulong)groupsZ },
new MTLSize { width = (ulong)localSize.X, height = (ulong)localSize.Y, depth = (ulong)localSize.Z });
if (debugGroupName != String.Empty)
{
PopDebugGroup();
}
}
public void Draw(int vertexCount, int instanceCount, int firstVertex, int firstInstance)
{
Draw(vertexCount, instanceCount, firstVertex, firstInstance, String.Empty);
}
public void Draw(int vertexCount, int instanceCount, int firstVertex, int firstInstance, string debugGroupName)
{
if (vertexCount == 0)
{
return;
}
var primitiveType = TopologyRemap(_encoderStateManager.Topology).Convert();
if (TopologyUnsupported(_encoderStateManager.Topology))
{
var pattern = GetIndexBufferPattern();
BufferHandle handle = pattern.GetRepeatingBuffer(vertexCount, out int indexCount);
var buffer = _renderer.BufferManager.GetBuffer(handle, false);
var mtlBuffer = buffer.Get(Cbs, 0, indexCount * sizeof(int)).Value;
var renderCommandEncoder = GetOrCreateRenderEncoder(true);
renderCommandEncoder.DrawIndexedPrimitives(
primitiveType,
(ulong)indexCount,
MTLIndexType.UInt32,
mtlBuffer,
0);
}
else
{
var renderCommandEncoder = GetOrCreateRenderEncoder(true);
if (debugGroupName != String.Empty)
{
PushDebugGroup(debugGroupName);
}
renderCommandEncoder.DrawPrimitives(
primitiveType,
(ulong)firstVertex,
(ulong)vertexCount,
(ulong)instanceCount,
(ulong)firstInstance);
if (debugGroupName != String.Empty)
{
PopDebugGroup();
}
}
}
private IndexBufferPattern GetIndexBufferPattern()
{
return _encoderStateManager.Topology switch
{
PrimitiveTopology.Quads => QuadsToTrisPattern,
PrimitiveTopology.TriangleFan or PrimitiveTopology.Polygon => TriFanToTrisPattern,
_ => throw new NotSupportedException($"Unsupported topology: {_encoderStateManager.Topology}"),
};
}
private PrimitiveTopology TopologyRemap(PrimitiveTopology topology)
{
return topology switch
{
PrimitiveTopology.Quads => PrimitiveTopology.Triangles,
PrimitiveTopology.QuadStrip => PrimitiveTopology.TriangleStrip,
PrimitiveTopology.TriangleFan or PrimitiveTopology.Polygon => PrimitiveTopology.Triangles,
_ => topology,
};
}
private bool TopologyUnsupported(PrimitiveTopology topology)
{
return topology switch
{
PrimitiveTopology.Quads or PrimitiveTopology.TriangleFan or PrimitiveTopology.Polygon => true,
_ => false,
};
}
public void DrawIndexed(int indexCount, int instanceCount, int firstIndex, int firstVertex, int firstInstance)
{
if (indexCount == 0)
{
return;
}
MTLBuffer mtlBuffer;
int offset;
MTLIndexType type;
int finalIndexCount = indexCount;
var primitiveType = TopologyRemap(_encoderStateManager.Topology).Convert();
if (TopologyUnsupported(_encoderStateManager.Topology))
{
var pattern = GetIndexBufferPattern();
int convertedCount = pattern.GetConvertedCount(indexCount);
finalIndexCount = convertedCount;
(mtlBuffer, offset, type) = _encoderStateManager.IndexBuffer.GetConvertedIndexBuffer(_renderer, Cbs, firstIndex, indexCount, convertedCount, pattern);
}
else
{
(mtlBuffer, offset, type) = _encoderStateManager.IndexBuffer.GetIndexBuffer(_renderer, Cbs);
}
if (mtlBuffer.NativePtr != IntPtr.Zero)
{
var renderCommandEncoder = GetOrCreateRenderEncoder(true);
renderCommandEncoder.DrawIndexedPrimitives(
primitiveType,
(ulong)finalIndexCount,
type,
mtlBuffer,
(ulong)offset,
(ulong)instanceCount,
firstVertex,
(ulong)firstInstance);
}
}
public void DrawIndexedIndirect(BufferRange indirectBuffer)
{
DrawIndexedIndirectOffset(indirectBuffer);
}
public void DrawIndexedIndirectOffset(BufferRange indirectBuffer, int offset = 0)
{
// TODO: Reindex unsupported topologies
if (TopologyUnsupported(_encoderStateManager.Topology))
{
Logger.Warning?.Print(LogClass.Gpu, $"Drawing indexed with unsupported topology: {_encoderStateManager.Topology}");
}
var buffer = _renderer.BufferManager
.GetBuffer(indirectBuffer.Handle, indirectBuffer.Offset, indirectBuffer.Size, false)
.Get(Cbs, indirectBuffer.Offset, indirectBuffer.Size).Value;
var primitiveType = TopologyRemap(_encoderStateManager.Topology).Convert();
(MTLBuffer indexBuffer, int indexOffset, MTLIndexType type) = _encoderStateManager.IndexBuffer.GetIndexBuffer(_renderer, Cbs);
if (indexBuffer.NativePtr != IntPtr.Zero && buffer.NativePtr != IntPtr.Zero)
{
var renderCommandEncoder = GetOrCreateRenderEncoder(true);
renderCommandEncoder.DrawIndexedPrimitives(
primitiveType,
type,
indexBuffer,
(ulong)indexOffset,
buffer,
(ulong)(indirectBuffer.Offset + offset));
}
}
public void DrawIndexedIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride)
{
for (int i = 0; i < maxDrawCount; i++)
{
DrawIndexedIndirectOffset(indirectBuffer, stride * i);
}
}
public void DrawIndirect(BufferRange indirectBuffer)
{
DrawIndirectOffset(indirectBuffer);
}
public void DrawIndirectOffset(BufferRange indirectBuffer, int offset = 0)
{
if (TopologyUnsupported(_encoderStateManager.Topology))
{
// TODO: Reindex unsupported topologies
Logger.Warning?.Print(LogClass.Gpu, $"Drawing indirect with unsupported topology: {_encoderStateManager.Topology}");
}
var buffer = _renderer.BufferManager
.GetBuffer(indirectBuffer.Handle, indirectBuffer.Offset, indirectBuffer.Size, false)
.Get(Cbs, indirectBuffer.Offset, indirectBuffer.Size).Value;
var primitiveType = TopologyRemap(_encoderStateManager.Topology).Convert();
var renderCommandEncoder = GetOrCreateRenderEncoder(true);
renderCommandEncoder.DrawPrimitives(
primitiveType,
buffer,
(ulong)(indirectBuffer.Offset + offset));
}
public void DrawIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride)
{
for (int i = 0; i < maxDrawCount; i++)
{
DrawIndirectOffset(indirectBuffer, stride * i);
}
}
public void DrawTexture(ITexture texture, ISampler sampler, Extents2DF srcRegion, Extents2DF dstRegion)
{
_renderer.HelperShader.DrawTexture(texture, sampler, srcRegion, dstRegion);
}
public void SetAlphaTest(bool enable, float reference, CompareOp op)
{
// This is currently handled using shader specialization, as Metal does not support alpha test.
// In the future, we may want to use this to write the reference value into the support buffer,
// to avoid creating one version of the shader per reference value used.
}
public void SetBlendState(AdvancedBlendDescriptor blend)
{
// Metal does not support advanced blend.
}
public void SetBlendState(int index, BlendDescriptor blend)
{
_encoderStateManager.UpdateBlendDescriptors(index, blend);
}
public void SetDepthBias(PolygonModeMask enables, float factor, float units, float clamp)
{
if (enables == 0)
{
_encoderStateManager.UpdateDepthBias(0, 0, 0);
}
else
{
_encoderStateManager.UpdateDepthBias(units, factor, clamp);
}
}
public void SetDepthClamp(bool clamp)
{
_encoderStateManager.UpdateDepthClamp(clamp);
}
public void SetDepthMode(DepthMode mode)
{
// Metal does not support depth clip control.
}
public void SetDepthTest(DepthTestDescriptor depthTest)
{
_encoderStateManager.UpdateDepthState(depthTest);
}
public void SetFaceCulling(bool enable, Face face)
{
_encoderStateManager.UpdateCullMode(enable, face);
}
public void SetFrontFace(FrontFace frontFace)
{
_encoderStateManager.UpdateFrontFace(frontFace);
}
public void SetIndexBuffer(BufferRange buffer, IndexType type)
{
_encoderStateManager.UpdateIndexBuffer(buffer, type);
}
public void SetImage(ShaderStage stage, int binding, ITexture image)
{
if (image is TextureBase img)
{
_encoderStateManager.UpdateImage(stage, binding, img);
}
}
public void SetImageArray(ShaderStage stage, int binding, IImageArray array)
{
if (array is ImageArray imageArray)
{
_encoderStateManager.UpdateImageArray(stage, binding, imageArray);
}
}
public void SetImageArraySeparate(ShaderStage stage, int setIndex, IImageArray array)
{
if (array is ImageArray imageArray)
{
_encoderStateManager.UpdateImageArraySeparate(stage, setIndex, imageArray);
}
}
public void SetLineParameters(float width, bool smooth)
{
// Metal does not support wide-lines.
}
public void SetLogicOpState(bool enable, LogicalOp op)
{
_encoderStateManager.UpdateLogicOpState(enable, op);
}
public void SetMultisampleState(MultisampleDescriptor multisample)
{
_encoderStateManager.UpdateMultisampleState(multisample);
}
public void SetPatchParameters(int vertices, ReadOnlySpan<float> defaultOuterLevel, ReadOnlySpan<float> defaultInnerLevel)
{
Logger.Warning?.Print(LogClass.Gpu, "Not Implemented!");
}
public void SetPointParameters(float size, bool isProgramPointSize, bool enablePointSprite, Origin origin)
{
Logger.Warning?.Print(LogClass.Gpu, "Not Implemented!");
}
public void SetPolygonMode(PolygonMode frontMode, PolygonMode backMode)
{
// Metal does not support polygon mode.
}
public void SetPrimitiveRestart(bool enable, int index)
{
// Always active for LineStrip and TriangleStrip
// https://github.com/gpuweb/gpuweb/issues/1220#issuecomment-732483263
// https://developer.apple.com/documentation/metal/mtlrendercommandencoder/1515520-drawindexedprimitives
// https://stackoverflow.com/questions/70813665/how-to-render-multiple-trianglestrips-using-metal
// Emulating disabling this is very difficult. It's unlikely for an index buffer to use the largest possible index,
// so it's fine nearly all of the time.
}
public void SetPrimitiveTopology(PrimitiveTopology topology)
{
_encoderStateManager.UpdatePrimitiveTopology(topology);
}
public void SetProgram(IProgram program)
{
_encoderStateManager.UpdateProgram(program);
}
public void SetRasterizerDiscard(bool discard)
{
_encoderStateManager.UpdateRasterizerDiscard(discard);
}
public void SetRenderTargetColorMasks(ReadOnlySpan<uint> componentMask)
{
_encoderStateManager.UpdateRenderTargetColorMasks(componentMask);
}
public void SetRenderTargets(ITexture[] colors, ITexture depthStencil)
{
_encoderStateManager.UpdateRenderTargets(colors, depthStencil);
}
public void SetScissors(ReadOnlySpan<Rectangle<int>> regions)
{
_encoderStateManager.UpdateScissors(regions);
}
public void SetStencilTest(StencilTestDescriptor stencilTest)
{
_encoderStateManager.UpdateStencilState(stencilTest);
}
public void SetUniformBuffers(ReadOnlySpan<BufferAssignment> buffers)
{
_encoderStateManager.UpdateUniformBuffers(buffers);
}
public void SetStorageBuffers(ReadOnlySpan<BufferAssignment> buffers)
{
_encoderStateManager.UpdateStorageBuffers(buffers);
}
internal void SetStorageBuffers(int first, ReadOnlySpan<Auto<DisposableBuffer>> buffers)
{
_encoderStateManager.UpdateStorageBuffers(first, buffers);
}
public void SetTextureAndSampler(ShaderStage stage, int binding, ITexture texture, ISampler sampler)
{
if (texture is TextureBase tex)
{
if (sampler == null || sampler is SamplerHolder)
{
_encoderStateManager.UpdateTextureAndSampler(stage, binding, tex, (SamplerHolder)sampler);
}
}
}
public void SetTextureArray(ShaderStage stage, int binding, ITextureArray array)
{
if (array is TextureArray textureArray)
{
_encoderStateManager.UpdateTextureArray(stage, binding, textureArray);
}
}
public void SetTextureArraySeparate(ShaderStage stage, int setIndex, ITextureArray array)
{
if (array is TextureArray textureArray)
{
_encoderStateManager.UpdateTextureArraySeparate(stage, setIndex, textureArray);
}
}
public void SetUserClipDistance(int index, bool enableClip)
{
// TODO. Same as Vulkan
}
public void SetVertexAttribs(ReadOnlySpan<VertexAttribDescriptor> vertexAttribs)
{
_encoderStateManager.UpdateVertexAttribs(vertexAttribs);
}
public void SetVertexBuffers(ReadOnlySpan<VertexBufferDescriptor> vertexBuffers)
{
_encoderStateManager.UpdateVertexBuffers(vertexBuffers);
}
public void SetViewports(ReadOnlySpan<Viewport> viewports)
{
_encoderStateManager.UpdateViewports(viewports);
}
public void TextureBarrier()
{
if (CurrentEncoderType == EncoderType.Render)
{
Encoders.RenderEncoder.MemoryBarrier(MTLBarrierScope.Textures, MTLRenderStages.RenderStageFragment, MTLRenderStages.RenderStageFragment);
}
}
public void TextureBarrierTiled()
{
TextureBarrier();
}
public bool TryHostConditionalRendering(ICounterEvent value, ulong compare, bool isEqual)
{
// TODO: Implementable via indirect draw commands
return false;
}
public bool TryHostConditionalRendering(ICounterEvent value, ICounterEvent compare, bool isEqual)
{
// TODO: Implementable via indirect draw commands
return false;
}
public void EndHostConditionalRendering()
{
// TODO: Implementable via indirect draw commands
}
public void BeginTransformFeedback(PrimitiveTopology topology)
{
// Metal does not support transform feedback.
}
public void EndTransformFeedback()
{
// Metal does not support transform feedback.
}
public void SetTransformFeedbackBuffers(ReadOnlySpan<BufferRange> buffers)
{
// Metal does not support transform feedback.
}
public void Dispose()
{
EndCurrentPass();
_encoderStateManager.Dispose();
}
}
}

View file

@ -0,0 +1,286 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Shader;
using SharpMetal.Foundation;
using SharpMetal.Metal;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class Program : IProgram
{
private ProgramLinkStatus _status;
private readonly ShaderSource[] _shaders;
private readonly GCHandle[] _handles;
private int _successCount;
private readonly MetalRenderer _renderer;
public MTLFunction VertexFunction;
public MTLFunction FragmentFunction;
public MTLFunction ComputeFunction;
public ComputeSize ComputeLocalSize { get; }
private HashTableSlim<PipelineUid, MTLRenderPipelineState> _graphicsPipelineCache;
private MTLComputePipelineState? _computePipelineCache;
private bool _firstBackgroundUse;
public ResourceBindingSegment[][] BindingSegments { get; }
// Argument buffer sizes for Vertex or Compute stages
public int[] ArgumentBufferSizes { get; }
// Argument buffer sizes for Fragment stage
public int[] FragArgumentBufferSizes { get; }
public Program(
MetalRenderer renderer,
MTLDevice device,
ShaderSource[] shaders,
ResourceLayout resourceLayout,
ComputeSize computeLocalSize = default)
{
_renderer = renderer;
renderer.Programs.Add(this);
ComputeLocalSize = computeLocalSize;
_shaders = shaders;
_handles = new GCHandle[_shaders.Length];
_status = ProgramLinkStatus.Incomplete;
for (int i = 0; i < _shaders.Length; i++)
{
ShaderSource shader = _shaders[i];
using var compileOptions = new MTLCompileOptions
{
PreserveInvariance = true,
LanguageVersion = MTLLanguageVersion.Version31,
};
var index = i;
_handles[i] = device.NewLibrary(StringHelper.NSString(shader.Code), compileOptions, (library, error) => CompilationResultHandler(library, error, index));
}
(BindingSegments, ArgumentBufferSizes, FragArgumentBufferSizes) = BuildBindingSegments(resourceLayout.SetUsages);
}
public void CompilationResultHandler(MTLLibrary library, NSError error, int index)
{
var shader = _shaders[index];
if (_handles[index].IsAllocated)
{
_handles[index].Free();
}
if (error != IntPtr.Zero)
{
Logger.Warning?.PrintMsg(LogClass.Gpu, shader.Code);
Logger.Warning?.Print(LogClass.Gpu, $"{shader.Stage} shader linking failed: \n{StringHelper.String(error.LocalizedDescription)}");
_status = ProgramLinkStatus.Failure;
return;
}
switch (shader.Stage)
{
case ShaderStage.Compute:
ComputeFunction = library.NewFunction(StringHelper.NSString("kernelMain"));
break;
case ShaderStage.Vertex:
VertexFunction = library.NewFunction(StringHelper.NSString("vertexMain"));
break;
case ShaderStage.Fragment:
FragmentFunction = library.NewFunction(StringHelper.NSString("fragmentMain"));
break;
default:
Logger.Warning?.Print(LogClass.Gpu, $"Cannot handle stage {shader.Stage}!");
break;
}
_successCount++;
if (_successCount >= _shaders.Length && _status != ProgramLinkStatus.Failure)
{
_status = ProgramLinkStatus.Success;
}
}
private static (ResourceBindingSegment[][], int[], int[]) BuildBindingSegments(ReadOnlyCollection<ResourceUsageCollection> setUsages)
{
ResourceBindingSegment[][] segments = new ResourceBindingSegment[setUsages.Count][];
int[] argBufferSizes = new int[setUsages.Count];
int[] fragArgBufferSizes = new int[setUsages.Count];
for (int setIndex = 0; setIndex < setUsages.Count; setIndex++)
{
List<ResourceBindingSegment> currentSegments = new();
ResourceUsage currentUsage = default;
int currentCount = 0;
for (int index = 0; index < setUsages[setIndex].Usages.Count; index++)
{
ResourceUsage usage = setUsages[setIndex].Usages[index];
if (currentUsage.Binding + currentCount != usage.Binding ||
currentUsage.Type != usage.Type ||
currentUsage.Stages != usage.Stages ||
currentUsage.ArrayLength > 1 ||
usage.ArrayLength > 1)
{
if (currentCount != 0)
{
currentSegments.Add(new ResourceBindingSegment(
currentUsage.Binding,
currentCount,
currentUsage.Type,
currentUsage.Stages,
currentUsage.ArrayLength > 1));
var size = currentCount * ResourcePointerSize(currentUsage.Type);
if (currentUsage.Stages.HasFlag(ResourceStages.Fragment))
{
fragArgBufferSizes[setIndex] += size;
}
if (currentUsage.Stages.HasFlag(ResourceStages.Vertex) ||
currentUsage.Stages.HasFlag(ResourceStages.Compute))
{
argBufferSizes[setIndex] += size;
}
}
currentUsage = usage;
currentCount = usage.ArrayLength;
}
else
{
currentCount++;
}
}
if (currentCount != 0)
{
currentSegments.Add(new ResourceBindingSegment(
currentUsage.Binding,
currentCount,
currentUsage.Type,
currentUsage.Stages,
currentUsage.ArrayLength > 1));
var size = currentCount * ResourcePointerSize(currentUsage.Type);
if (currentUsage.Stages.HasFlag(ResourceStages.Fragment))
{
fragArgBufferSizes[setIndex] += size;
}
if (currentUsage.Stages.HasFlag(ResourceStages.Vertex) ||
currentUsage.Stages.HasFlag(ResourceStages.Compute))
{
argBufferSizes[setIndex] += size;
}
}
segments[setIndex] = currentSegments.ToArray();
}
return (segments, argBufferSizes, fragArgBufferSizes);
}
private static int ResourcePointerSize(ResourceType type)
{
return (type == ResourceType.TextureAndSampler ? 2 : 1);
}
public ProgramLinkStatus CheckProgramLink(bool blocking)
{
if (blocking)
{
while (_status == ProgramLinkStatus.Incomplete)
{ }
return _status;
}
return _status;
}
public byte[] GetBinary()
{
return [];
}
public void AddGraphicsPipeline(ref PipelineUid key, MTLRenderPipelineState pipeline)
{
(_graphicsPipelineCache ??= new()).Add(ref key, pipeline);
}
public void AddComputePipeline(MTLComputePipelineState pipeline)
{
_computePipelineCache = pipeline;
}
public bool TryGetGraphicsPipeline(ref PipelineUid key, out MTLRenderPipelineState pipeline)
{
if (_graphicsPipelineCache == null)
{
pipeline = default;
return false;
}
if (!_graphicsPipelineCache.TryGetValue(ref key, out pipeline))
{
if (_firstBackgroundUse)
{
Logger.Warning?.Print(LogClass.Gpu, "Background pipeline compile missed on draw - incorrect pipeline state?");
_firstBackgroundUse = false;
}
return false;
}
_firstBackgroundUse = false;
return true;
}
public bool TryGetComputePipeline(out MTLComputePipelineState pipeline)
{
if (_computePipelineCache.HasValue)
{
pipeline = _computePipelineCache.Value;
return true;
}
pipeline = default;
return false;
}
public void Dispose()
{
if (!_renderer.Programs.Remove(this))
{
return;
}
if (_graphicsPipelineCache != null)
{
foreach (MTLRenderPipelineState pipeline in _graphicsPipelineCache.Values)
{
pipeline.Dispose();
}
}
_computePipelineCache?.Dispose();
VertexFunction.Dispose();
FragmentFunction.Dispose();
ComputeFunction.Dispose();
}
}
}

View file

@ -0,0 +1,22 @@
using Ryujinx.Graphics.GAL;
namespace Ryujinx.Graphics.Metal
{
readonly struct ResourceBindingSegment
{
public readonly int Binding;
public readonly int Count;
public readonly ResourceType Type;
public readonly ResourceStages Stages;
public readonly bool IsArray;
public ResourceBindingSegment(int binding, int count, ResourceType type, ResourceStages stages, bool isArray)
{
Binding = binding;
Count = count;
Type = type;
Stages = stages;
IsArray = isArray;
}
}
}

View file

@ -0,0 +1,59 @@
using Ryujinx.Graphics.GAL;
using System;
using System.Collections.Generic;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class ResourceLayoutBuilder
{
private const int TotalSets = MetalRenderer.TotalSets;
private readonly List<ResourceDescriptor>[] _resourceDescriptors;
private readonly List<ResourceUsage>[] _resourceUsages;
public ResourceLayoutBuilder()
{
_resourceDescriptors = new List<ResourceDescriptor>[TotalSets];
_resourceUsages = new List<ResourceUsage>[TotalSets];
for (int index = 0; index < TotalSets; index++)
{
_resourceDescriptors[index] = new();
_resourceUsages[index] = new();
}
}
public ResourceLayoutBuilder Add(ResourceStages stages, ResourceType type, int binding, bool write = false)
{
uint setIndex = type switch
{
ResourceType.UniformBuffer => Constants.ConstantBuffersSetIndex,
ResourceType.StorageBuffer => Constants.StorageBuffersSetIndex,
ResourceType.TextureAndSampler or ResourceType.BufferTexture => Constants.TexturesSetIndex,
ResourceType.Image or ResourceType.BufferImage => Constants.ImagesSetIndex,
_ => throw new ArgumentException($"Invalid resource type \"{type}\"."),
};
_resourceDescriptors[setIndex].Add(new ResourceDescriptor(binding, 1, type, stages));
_resourceUsages[setIndex].Add(new ResourceUsage(binding, 1, type, stages, write));
return this;
}
public ResourceLayout Build()
{
var descriptors = new ResourceDescriptorCollection[TotalSets];
var usages = new ResourceUsageCollection[TotalSets];
for (int index = 0; index < TotalSets; index++)
{
descriptors[index] = new ResourceDescriptorCollection(_resourceDescriptors[index].ToArray().AsReadOnly());
usages[index] = new ResourceUsageCollection(_resourceUsages[index].ToArray().AsReadOnly());
}
return new ResourceLayout(descriptors.AsReadOnly(), usages.AsReadOnly());
}
}
}

View file

@ -0,0 +1,30 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
</PropertyGroup>
<ItemGroup>
<ProjectReference Include="..\Ryujinx.Common\Ryujinx.Common.csproj" />
<ProjectReference Include="..\Ryujinx.Graphics.GAL\Ryujinx.Graphics.GAL.csproj" />
</ItemGroup>
<ItemGroup>
<PackageReference Include="SharpMetal" />
</ItemGroup>
<ItemGroup>
<EmbeddedResource Include="Shaders\Blit.metal" />
<EmbeddedResource Include="Shaders\BlitMs.metal" />
<EmbeddedResource Include="Shaders\ChangeBufferStride.metal" />
<EmbeddedResource Include="Shaders\ConvertD32S8ToD24S8.metal" />
<EmbeddedResource Include="Shaders\ConvertIndexBuffer.metal" />
<EmbeddedResource Include="Shaders\ColorClear.metal" />
<EmbeddedResource Include="Shaders\DepthStencilClear.metal" />
<EmbeddedResource Include="Shaders\DepthBlit.metal" />
<EmbeddedResource Include="Shaders\DepthBlitMs.metal" />
<EmbeddedResource Include="Shaders\StencilBlit.metal" />
<EmbeddedResource Include="Shaders\StencilBlitMs.metal" />
</ItemGroup>
</Project>

View file

@ -0,0 +1,90 @@
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class SamplerHolder : ISampler
{
private readonly MetalRenderer _renderer;
private readonly Auto<DisposableSampler> _sampler;
public SamplerHolder(MetalRenderer renderer, MTLDevice device, SamplerCreateInfo info)
{
_renderer = renderer;
renderer.Samplers.Add(this);
(MTLSamplerMinMagFilter minFilter, MTLSamplerMipFilter mipFilter) = info.MinFilter.Convert();
MTLSamplerBorderColor borderColor = GetConstrainedBorderColor(info.BorderColor, out _);
using var descriptor = new MTLSamplerDescriptor
{
BorderColor = borderColor,
MinFilter = minFilter,
MagFilter = info.MagFilter.Convert(),
MipFilter = mipFilter,
CompareFunction = info.CompareOp.Convert(),
LodMinClamp = info.MinLod,
LodMaxClamp = info.MaxLod,
LodAverage = false,
MaxAnisotropy = Math.Max((uint)info.MaxAnisotropy, 1),
SAddressMode = info.AddressU.Convert(),
TAddressMode = info.AddressV.Convert(),
RAddressMode = info.AddressP.Convert(),
SupportArgumentBuffers = true
};
var sampler = device.NewSamplerState(descriptor);
_sampler = new Auto<DisposableSampler>(new DisposableSampler(sampler));
}
private static MTLSamplerBorderColor GetConstrainedBorderColor(ColorF arbitraryBorderColor, out bool cantConstrain)
{
float r = arbitraryBorderColor.Red;
float g = arbitraryBorderColor.Green;
float b = arbitraryBorderColor.Blue;
float a = arbitraryBorderColor.Alpha;
if (r == 0f && g == 0f && b == 0f)
{
if (a == 1f)
{
cantConstrain = false;
return MTLSamplerBorderColor.OpaqueBlack;
}
if (a == 0f)
{
cantConstrain = false;
return MTLSamplerBorderColor.TransparentBlack;
}
}
else if (r == 1f && g == 1f && b == 1f && a == 1f)
{
cantConstrain = false;
return MTLSamplerBorderColor.OpaqueWhite;
}
cantConstrain = true;
return MTLSamplerBorderColor.OpaqueBlack;
}
public Auto<DisposableSampler> GetSampler()
{
return _sampler;
}
public void Dispose()
{
if (_renderer.Samplers.Remove(this))
{
_sampler.Dispose();
}
}
}
}

View file

@ -0,0 +1,43 @@
#include <metal_stdlib>
using namespace metal;
struct CopyVertexOut {
float4 position [[position]];
float2 uv;
};
struct TexCoords {
float data[4];
};
struct ConstantBuffers {
constant TexCoords* tex_coord;
};
struct Textures
{
texture2d<FORMAT, access::sample> texture;
sampler sampler;
};
vertex CopyVertexOut vertexMain(uint vid [[vertex_id]],
constant ConstantBuffers &constant_buffers [[buffer(CONSTANT_BUFFERS_INDEX)]]) {
CopyVertexOut out;
int low = vid & 1;
int high = vid >> 1;
out.uv.x = constant_buffers.tex_coord->data[low];
out.uv.y = constant_buffers.tex_coord->data[2 + high];
out.position.x = (float(low) - 0.5f) * 2.0f;
out.position.y = (float(high) - 0.5f) * 2.0f;
out.position.z = 0.0f;
out.position.w = 1.0f;
return out;
}
fragment FORMAT4 fragmentMain(CopyVertexOut in [[stage_in]],
constant Textures &textures [[buffer(TEXTURES_INDEX)]]) {
return textures.texture.sample(textures.sampler, in.uv);
}

View file

@ -0,0 +1,45 @@
#include <metal_stdlib>
using namespace metal;
struct CopyVertexOut {
float4 position [[position]];
float2 uv;
};
struct TexCoords {
float data[4];
};
struct ConstantBuffers {
constant TexCoords* tex_coord;
};
struct Textures
{
texture2d_ms<FORMAT, access::read> texture;
};
vertex CopyVertexOut vertexMain(uint vid [[vertex_id]],
constant ConstantBuffers &constant_buffers [[buffer(CONSTANT_BUFFERS_INDEX)]]) {
CopyVertexOut out;
int low = vid & 1;
int high = vid >> 1;
out.uv.x = constant_buffers.tex_coord->data[low];
out.uv.y = constant_buffers.tex_coord->data[2 + high];
out.position.x = (float(low) - 0.5f) * 2.0f;
out.position.y = (float(high) - 0.5f) * 2.0f;
out.position.z = 0.0f;
out.position.w = 1.0f;
return out;
}
fragment FORMAT4 fragmentMain(CopyVertexOut in [[stage_in]],
constant Textures &textures [[buffer(TEXTURES_INDEX)]],
uint sample_id [[sample_id]]) {
uint2 tex_size = uint2(textures.texture.get_width(), textures.texture.get_height());
uint2 tex_coord = uint2(in.uv * float2(tex_size));
return textures.texture.read(tex_coord, sample_id);
}

View file

@ -0,0 +1,72 @@
#include <metal_stdlib>
using namespace metal;
struct StrideArguments {
int4 data;
};
struct InData {
uint8_t data[1];
};
struct OutData {
uint8_t data[1];
};
struct ConstantBuffers {
constant StrideArguments* stride_arguments;
};
struct StorageBuffers {
device InData* in_data;
device OutData* out_data;
};
kernel void kernelMain(constant ConstantBuffers &constant_buffers [[buffer(CONSTANT_BUFFERS_INDEX)]],
device StorageBuffers &storage_buffers [[buffer(STORAGE_BUFFERS_INDEX)]],
uint3 thread_position_in_grid [[thread_position_in_grid]],
uint3 threads_per_threadgroup [[threads_per_threadgroup]],
uint3 threadgroups_per_grid [[threadgroups_per_grid]])
{
// Determine what slice of the stride copies this invocation will perform.
int sourceStride = constant_buffers.stride_arguments->data.x;
int targetStride = constant_buffers.stride_arguments->data.y;
int bufferSize = constant_buffers.stride_arguments->data.z;
int sourceOffset = constant_buffers.stride_arguments->data.w;
int strideRemainder = targetStride - sourceStride;
int invocations = int(threads_per_threadgroup.x * threadgroups_per_grid.x);
int copiesRequired = bufferSize / sourceStride;
// Find the copies that this invocation should perform.
// - Copies that all invocations perform.
int allInvocationCopies = copiesRequired / invocations;
// - Extra remainder copy that this invocation performs.
int index = int(thread_position_in_grid.x);
int extra = (index < (copiesRequired % invocations)) ? 1 : 0;
int copyCount = allInvocationCopies + extra;
// Finally, get the starting offset. Make sure to count extra copies.
int startCopy = allInvocationCopies * index + min(copiesRequired % invocations, index);
int srcOffset = sourceOffset + startCopy * sourceStride;
int dstOffset = startCopy * targetStride;
// Perform the copies for this region
for (int i = 0; i < copyCount; i++) {
for (int j = 0; j < sourceStride; j++) {
storage_buffers.out_data->data[dstOffset++] = storage_buffers.in_data->data[srcOffset++];
}
for (int j = 0; j < strideRemainder; j++) {
storage_buffers.out_data->data[dstOffset++] = uint8_t(0);
}
}
}

View file

@ -0,0 +1,38 @@
#include <metal_stdlib>
using namespace metal;
struct VertexOut {
float4 position [[position]];
};
struct ClearColor {
FORMAT4 data;
};
struct ConstantBuffers {
constant ClearColor* clear_color;
};
vertex VertexOut vertexMain(ushort vid [[vertex_id]]) {
int low = vid & 1;
int high = vid >> 1;
VertexOut out;
out.position.x = (float(low) - 0.5f) * 2.0f;
out.position.y = (float(high) - 0.5f) * 2.0f;
out.position.z = 0.0f;
out.position.w = 1.0f;
return out;
}
struct FragmentOut {
FORMAT4 color [[color(COLOR_ATTACHMENT_INDEX)]];
};
fragment FragmentOut fragmentMain(VertexOut in [[stage_in]],
constant ConstantBuffers &constant_buffers [[buffer(CONSTANT_BUFFERS_INDEX)]]) {
return {constant_buffers.clear_color->data};
}

View file

@ -0,0 +1,66 @@
#include <metal_stdlib>
using namespace metal;
struct StrideArguments {
int pixelCount;
int dstStartOffset;
};
struct InData {
uint data[1];
};
struct OutData {
uint data[1];
};
struct ConstantBuffers {
constant StrideArguments* stride_arguments;
};
struct StorageBuffers {
device InData* in_data;
device OutData* out_data;
};
kernel void kernelMain(constant ConstantBuffers &constant_buffers [[buffer(CONSTANT_BUFFERS_INDEX)]],
device StorageBuffers &storage_buffers [[buffer(STORAGE_BUFFERS_INDEX)]],
uint3 thread_position_in_grid [[thread_position_in_grid]],
uint3 threads_per_threadgroup [[threads_per_threadgroup]],
uint3 threadgroups_per_grid [[threadgroups_per_grid]])
{
// Determine what slice of the stride copies this invocation will perform.
int invocations = int(threads_per_threadgroup.x * threadgroups_per_grid.x);
int copiesRequired = constant_buffers.stride_arguments->pixelCount;
// Find the copies that this invocation should perform.
// - Copies that all invocations perform.
int allInvocationCopies = copiesRequired / invocations;
// - Extra remainder copy that this invocation performs.
int index = int(thread_position_in_grid.x);
int extra = (index < (copiesRequired % invocations)) ? 1 : 0;
int copyCount = allInvocationCopies + extra;
// Finally, get the starting offset. Make sure to count extra copies.
int startCopy = allInvocationCopies * index + min(copiesRequired % invocations, index);
int srcOffset = startCopy * 2;
int dstOffset = constant_buffers.stride_arguments->dstStartOffset + startCopy;
// Perform the conversion for this region.
for (int i = 0; i < copyCount; i++)
{
float depth = as_type<float>(storage_buffers.in_data->data[srcOffset++]);
uint stencil = storage_buffers.in_data->data[srcOffset++];
uint rescaledDepth = uint(clamp(depth, 0.0, 1.0) * 16777215.0);
storage_buffers.out_data->data[dstOffset++] = (rescaledDepth << 8) | (stencil & 0xff);
}
}

View file

@ -0,0 +1,59 @@
#include <metal_stdlib>
using namespace metal;
struct IndexBufferPattern {
int pattern[8];
int primitiveVertices;
int primitiveVerticesOut;
int indexSize;
int indexSizeOut;
int baseIndex;
int indexStride;
int srcOffset;
int totalPrimitives;
};
struct InData {
uint8_t data[1];
};
struct OutData {
uint8_t data[1];
};
struct StorageBuffers {
device InData* in_data;
device OutData* out_data;
constant IndexBufferPattern* index_buffer_pattern;
};
kernel void kernelMain(device StorageBuffers &storage_buffers [[buffer(STORAGE_BUFFERS_INDEX)]],
uint3 thread_position_in_grid [[thread_position_in_grid]])
{
int primitiveIndex = int(thread_position_in_grid.x);
if (primitiveIndex >= storage_buffers.index_buffer_pattern->totalPrimitives)
{
return;
}
int inOffset = primitiveIndex * storage_buffers.index_buffer_pattern->indexStride;
int outOffset = primitiveIndex * storage_buffers.index_buffer_pattern->primitiveVerticesOut;
for (int i = 0; i < storage_buffers.index_buffer_pattern->primitiveVerticesOut; i++)
{
int j;
int io = max(0, inOffset + storage_buffers.index_buffer_pattern->baseIndex + storage_buffers.index_buffer_pattern->pattern[i]) * storage_buffers.index_buffer_pattern->indexSize;
int oo = (outOffset + i) * storage_buffers.index_buffer_pattern->indexSizeOut;
for (j = 0; j < storage_buffers.index_buffer_pattern->indexSize; j++)
{
storage_buffers.out_data->data[oo + j] = storage_buffers.in_data->data[storage_buffers.index_buffer_pattern->srcOffset + io + j];
}
for(; j < storage_buffers.index_buffer_pattern->indexSizeOut; j++)
{
storage_buffers.out_data->data[oo + j] = uint8_t(0);
}
}
}

View file

@ -0,0 +1,27 @@
#include <metal_stdlib>
using namespace metal;
struct CopyVertexOut {
float4 position [[position]];
float2 uv;
};
struct Textures
{
texture2d<float, access::sample> texture;
sampler sampler;
};
struct FragmentOut {
float depth [[depth(any)]];
};
fragment FragmentOut fragmentMain(CopyVertexOut in [[stage_in]],
constant Textures &textures [[buffer(TEXTURES_INDEX)]]) {
FragmentOut out;
out.depth = textures.texture.sample(textures.sampler, in.uv).r;
return out;
}

View file

@ -0,0 +1,29 @@
#include <metal_stdlib>
using namespace metal;
struct CopyVertexOut {
float4 position [[position]];
float2 uv;
};
struct Textures
{
texture2d_ms<float, access::read> texture;
};
struct FragmentOut {
float depth [[depth(any)]];
};
fragment FragmentOut fragmentMain(CopyVertexOut in [[stage_in]],
constant Textures &textures [[buffer(TEXTURES_INDEX)]],
uint sample_id [[sample_id]]) {
FragmentOut out;
uint2 tex_size = uint2(textures.texture.get_width(), textures.texture.get_height());
uint2 tex_coord = uint2(in.uv * float2(tex_size));
out.depth = textures.texture.read(tex_coord, sample_id).r;
return out;
}

View file

@ -0,0 +1,42 @@
#include <metal_stdlib>
using namespace metal;
struct VertexOut {
float4 position [[position]];
};
struct FragmentOut {
float depth [[depth(any)]];
};
struct ClearDepth {
float data;
};
struct ConstantBuffers {
constant ClearDepth* clear_depth;
};
vertex VertexOut vertexMain(ushort vid [[vertex_id]]) {
int low = vid & 1;
int high = vid >> 1;
VertexOut out;
out.position.x = (float(low) - 0.5f) * 2.0f;
out.position.y = (float(high) - 0.5f) * 2.0f;
out.position.z = 0.0f;
out.position.w = 1.0f;
return out;
}
fragment FragmentOut fragmentMain(VertexOut in [[stage_in]],
constant ConstantBuffers &constant_buffers [[buffer(CONSTANT_BUFFERS_INDEX)]]) {
FragmentOut out;
out.depth = constant_buffers.clear_depth->data;
return out;
}

View file

@ -0,0 +1,27 @@
#include <metal_stdlib>
using namespace metal;
struct CopyVertexOut {
float4 position [[position]];
float2 uv;
};
struct Textures
{
texture2d<uint, access::sample> texture;
sampler sampler;
};
struct FragmentOut {
uint stencil [[stencil]];
};
fragment FragmentOut fragmentMain(CopyVertexOut in [[stage_in]],
constant Textures &textures [[buffer(TEXTURES_INDEX)]]) {
FragmentOut out;
out.stencil = textures.texture.sample(textures.sampler, in.uv).r;
return out;
}

View file

@ -0,0 +1,29 @@
#include <metal_stdlib>
using namespace metal;
struct CopyVertexOut {
float4 position [[position]];
float2 uv;
};
struct Textures
{
texture2d_ms<uint, access::read> texture;
};
struct FragmentOut {
uint stencil [[stencil]];
};
fragment FragmentOut fragmentMain(CopyVertexOut in [[stage_in]],
constant Textures &textures [[buffer(TEXTURES_INDEX)]],
uint sample_id [[sample_id]]) {
FragmentOut out;
uint2 tex_size = uint2(textures.texture.get_width(), textures.texture.get_height());
uint2 tex_coord = uint2(in.uv * float2(tex_size));
out.stencil = textures.texture.read(tex_coord, sample_id).r;
return out;
}

View file

@ -0,0 +1,288 @@
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
readonly struct StagingBufferReserved
{
public readonly BufferHolder Buffer;
public readonly int Offset;
public readonly int Size;
public StagingBufferReserved(BufferHolder buffer, int offset, int size)
{
Buffer = buffer;
Offset = offset;
Size = size;
}
}
[SupportedOSPlatform("macos")]
class StagingBuffer : IDisposable
{
private const int BufferSize = 32 * 1024 * 1024;
private int _freeOffset;
private int _freeSize;
private readonly MetalRenderer _renderer;
private readonly BufferHolder _buffer;
private readonly int _resourceAlignment;
public readonly BufferHandle Handle;
private readonly struct PendingCopy
{
public FenceHolder Fence { get; }
public int Size { get; }
public PendingCopy(FenceHolder fence, int size)
{
Fence = fence;
Size = size;
fence.Get();
}
}
private readonly Queue<PendingCopy> _pendingCopies;
public StagingBuffer(MetalRenderer renderer, BufferManager bufferManager)
{
_renderer = renderer;
Handle = bufferManager.CreateWithHandle(BufferSize, out _buffer);
_pendingCopies = new Queue<PendingCopy>();
_freeSize = BufferSize;
_resourceAlignment = Constants.MinResourceAlignment;
}
public void PushData(CommandBufferPool cbp, CommandBufferScoped? cbs, BufferHolder dst, int dstOffset, ReadOnlySpan<byte> data)
{
bool isRender = cbs != null;
CommandBufferScoped scoped = cbs ?? cbp.Rent();
// Must push all data to the buffer. If it can't fit, split it up.
while (data.Length > 0)
{
if (_freeSize < data.Length)
{
FreeCompleted();
}
while (_freeSize == 0)
{
if (!WaitFreeCompleted(cbp))
{
if (isRender)
{
_renderer.FlushAllCommands();
scoped = cbp.Rent();
isRender = false;
}
else
{
scoped = cbp.ReturnAndRent(scoped);
}
}
}
int chunkSize = Math.Min(_freeSize, data.Length);
PushDataImpl(scoped, dst, dstOffset, data[..chunkSize]);
dstOffset += chunkSize;
data = data[chunkSize..];
}
if (!isRender)
{
scoped.Dispose();
}
}
private void PushDataImpl(CommandBufferScoped cbs, BufferHolder dst, int dstOffset, ReadOnlySpan<byte> data)
{
var srcBuffer = _buffer.GetBuffer();
var dstBuffer = dst.GetBuffer(dstOffset, data.Length, true);
int offset = _freeOffset;
int capacity = BufferSize - offset;
if (capacity < data.Length)
{
_buffer.SetDataUnchecked(offset, data[..capacity]);
_buffer.SetDataUnchecked(0, data[capacity..]);
BufferHolder.Copy(cbs, srcBuffer, dstBuffer, offset, dstOffset, capacity);
BufferHolder.Copy(cbs, srcBuffer, dstBuffer, 0, dstOffset + capacity, data.Length - capacity);
}
else
{
_buffer.SetDataUnchecked(offset, data);
BufferHolder.Copy(cbs, srcBuffer, dstBuffer, offset, dstOffset, data.Length);
}
_freeOffset = (offset + data.Length) & (BufferSize - 1);
_freeSize -= data.Length;
Debug.Assert(_freeSize >= 0);
_pendingCopies.Enqueue(new PendingCopy(cbs.GetFence(), data.Length));
}
public bool TryPushData(CommandBufferScoped cbs, BufferHolder dst, int dstOffset, ReadOnlySpan<byte> data)
{
if (data.Length > BufferSize)
{
return false;
}
if (_freeSize < data.Length)
{
FreeCompleted();
if (_freeSize < data.Length)
{
return false;
}
}
PushDataImpl(cbs, dst, dstOffset, data);
return true;
}
private StagingBufferReserved ReserveDataImpl(CommandBufferScoped cbs, int size, int alignment)
{
// Assumes the caller has already determined that there is enough space.
int offset = BitUtils.AlignUp(_freeOffset, alignment);
int padding = offset - _freeOffset;
int capacity = Math.Min(_freeSize, BufferSize - offset);
int reservedLength = size + padding;
if (capacity < size)
{
offset = 0; // Place at start.
reservedLength += capacity;
}
_freeOffset = (_freeOffset + reservedLength) & (BufferSize - 1);
_freeSize -= reservedLength;
Debug.Assert(_freeSize >= 0);
_pendingCopies.Enqueue(new PendingCopy(cbs.GetFence(), reservedLength));
return new StagingBufferReserved(_buffer, offset, size);
}
private int GetContiguousFreeSize(int alignment)
{
int alignedFreeOffset = BitUtils.AlignUp(_freeOffset, alignment);
int padding = alignedFreeOffset - _freeOffset;
// Free regions:
// - Aligned free offset to end (minimum free size - padding)
// - 0 to _freeOffset + freeSize wrapped (only if free area contains 0)
int endOffset = (_freeOffset + _freeSize) & (BufferSize - 1);
return Math.Max(
Math.Min(_freeSize - padding, BufferSize - alignedFreeOffset),
endOffset <= _freeOffset ? Math.Min(_freeSize, endOffset) : 0
);
}
/// <summary>
/// Reserve a range on the staging buffer for the current command buffer and upload data to it.
/// </summary>
/// <param name="cbs">Command buffer to reserve the data on</param>
/// <param name="size">The minimum size the reserved data requires</param>
/// <param name="alignment">The required alignment for the buffer offset</param>
/// <returns>The reserved range of the staging buffer</returns>
public StagingBufferReserved? TryReserveData(CommandBufferScoped cbs, int size, int alignment)
{
if (size > BufferSize)
{
return null;
}
// Temporary reserved data cannot be fragmented.
if (GetContiguousFreeSize(alignment) < size)
{
FreeCompleted();
if (GetContiguousFreeSize(alignment) < size)
{
Logger.Debug?.PrintMsg(LogClass.Gpu, $"Staging buffer out of space to reserve data of size {size}.");
return null;
}
}
return ReserveDataImpl(cbs, size, alignment);
}
/// <summary>
/// Reserve a range on the staging buffer for the current command buffer and upload data to it.
/// Uses the most permissive byte alignment.
/// </summary>
/// <param name="cbs">Command buffer to reserve the data on</param>
/// <param name="size">The minimum size the reserved data requires</param>
/// <returns>The reserved range of the staging buffer</returns>
public StagingBufferReserved? TryReserveData(CommandBufferScoped cbs, int size)
{
return TryReserveData(cbs, size, _resourceAlignment);
}
private bool WaitFreeCompleted(CommandBufferPool cbp)
{
if (_pendingCopies.TryPeek(out var pc))
{
if (!pc.Fence.IsSignaled())
{
if (cbp.IsFenceOnRentedCommandBuffer(pc.Fence))
{
return false;
}
pc.Fence.Wait();
}
var dequeued = _pendingCopies.Dequeue();
Debug.Assert(dequeued.Fence == pc.Fence);
_freeSize += pc.Size;
pc.Fence.Put();
}
return true;
}
public void FreeCompleted()
{
FenceHolder signalledFence = null;
while (_pendingCopies.TryPeek(out var pc) && (pc.Fence == signalledFence || pc.Fence.IsSignaled()))
{
signalledFence = pc.Fence; // Already checked - don't need to do it again.
var dequeued = _pendingCopies.Dequeue();
Debug.Assert(dequeued.Fence == pc.Fence);
_freeSize += pc.Size;
pc.Fence.Put();
}
}
public void Dispose()
{
_renderer.BufferManager.Delete(Handle);
while (_pendingCopies.TryDequeue(out var pc))
{
pc.Fence.Put();
}
}
}
}

View file

@ -0,0 +1,110 @@
using SharpMetal.Metal;
using System;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
namespace Ryujinx.Graphics.Metal.State
{
[StructLayout(LayoutKind.Sequential, Pack = 1)]
public struct StencilUid
{
public uint ReadMask;
public uint WriteMask;
public ushort Operations;
public MTLStencilOperation StencilFailureOperation
{
readonly get => (MTLStencilOperation)((Operations >> 0) & 0xF);
set => Operations = (ushort)((Operations & 0xFFF0) | ((int)value << 0));
}
public MTLStencilOperation DepthFailureOperation
{
readonly get => (MTLStencilOperation)((Operations >> 4) & 0xF);
set => Operations = (ushort)((Operations & 0xFF0F) | ((int)value << 4));
}
public MTLStencilOperation DepthStencilPassOperation
{
readonly get => (MTLStencilOperation)((Operations >> 8) & 0xF);
set => Operations = (ushort)((Operations & 0xF0FF) | ((int)value << 8));
}
public MTLCompareFunction StencilCompareFunction
{
readonly get => (MTLCompareFunction)((Operations >> 12) & 0xF);
set => Operations = (ushort)((Operations & 0x0FFF) | ((int)value << 12));
}
}
[StructLayout(LayoutKind.Explicit, Size = 24)]
internal struct DepthStencilUid : IEquatable<DepthStencilUid>
{
[FieldOffset(0)]
public StencilUid FrontFace;
[FieldOffset(10)]
public ushort DepthState;
[FieldOffset(12)]
public StencilUid BackFace;
[FieldOffset(22)]
private readonly ushort _padding;
// Quick access aliases
#pragma warning disable IDE0044 // Add readonly modifier
[FieldOffset(0)]
private ulong _id0;
[FieldOffset(8)]
private ulong _id1;
[FieldOffset(0)]
private Vector128<byte> _id01;
[FieldOffset(16)]
private ulong _id2;
#pragma warning restore IDE0044 // Add readonly modifier
public MTLCompareFunction DepthCompareFunction
{
readonly get => (MTLCompareFunction)((DepthState >> 0) & 0xF);
set => DepthState = (ushort)((DepthState & 0xFFF0) | ((int)value << 0));
}
public bool StencilTestEnabled
{
readonly get => ((DepthState >> 4) & 0x1) != 0;
set => DepthState = (ushort)((DepthState & 0xFFEF) | ((value ? 1 : 0) << 4));
}
public bool DepthWriteEnabled
{
readonly get => ((DepthState >> 15) & 0x1) != 0;
set => DepthState = (ushort)((DepthState & 0x7FFF) | ((value ? 1 : 0) << 15));
}
public readonly override bool Equals(object obj)
{
return obj is DepthStencilUid other && EqualsRef(ref other);
}
public readonly bool EqualsRef(ref DepthStencilUid other)
{
return _id01.Equals(other._id01) && _id2 == other._id2;
}
public readonly bool Equals(DepthStencilUid other)
{
return EqualsRef(ref other);
}
public readonly override int GetHashCode()
{
ulong hash64 = _id0 * 23 ^
_id1 * 23 ^
_id2 * 23;
return (int)hash64 ^ ((int)(hash64 >> 32) * 17);
}
}
}

View file

@ -0,0 +1,341 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using SharpMetal.Foundation;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
struct PipelineState
{
public PipelineUid Internal;
public uint StagesCount
{
readonly get => (byte)((Internal.Id0 >> 0) & 0xFF);
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFFFFFFFFF00) | ((ulong)value << 0);
}
public uint VertexAttributeDescriptionsCount
{
readonly get => (byte)((Internal.Id0 >> 8) & 0xFF);
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFFFFFFF00FF) | ((ulong)value << 8);
}
public uint VertexBindingDescriptionsCount
{
readonly get => (byte)((Internal.Id0 >> 16) & 0xFF);
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFFFFF00FFFF) | ((ulong)value << 16);
}
public uint ColorBlendAttachmentStateCount
{
readonly get => (byte)((Internal.Id0 >> 24) & 0xFF);
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFFF00FFFFFF) | ((ulong)value << 24);
}
/*
* Can be an input to a pipeline, but not sure what the situation for that is.
public PrimitiveTopology Topology
{
readonly get => (PrimitiveTopology)((Internal.Id6 >> 16) & 0xF);
set => Internal.Id6 = (Internal.Id6 & 0xFFFFFFFFFFF0FFFF) | ((ulong)value << 16);
}
*/
public MTLLogicOperation LogicOp
{
readonly get => (MTLLogicOperation)((Internal.Id0 >> 32) & 0xF);
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFF0FFFFFFFF) | ((ulong)value << 32);
}
//?
public bool PrimitiveRestartEnable
{
readonly get => ((Internal.Id0 >> 36) & 0x1) != 0UL;
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFEFFFFFFFFF) | ((value ? 1UL : 0UL) << 36);
}
public bool RasterizerDiscardEnable
{
readonly get => ((Internal.Id0 >> 37) & 0x1) != 0UL;
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFDFFFFFFFFF) | ((value ? 1UL : 0UL) << 37);
}
public bool LogicOpEnable
{
readonly get => ((Internal.Id0 >> 38) & 0x1) != 0UL;
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFFBFFFFFFFFF) | ((value ? 1UL : 0UL) << 38);
}
public bool AlphaToCoverageEnable
{
readonly get => ((Internal.Id0 >> 40) & 0x1) != 0UL;
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFEFFFFFFFFFF) | ((value ? 1UL : 0UL) << 40);
}
public bool AlphaToOneEnable
{
readonly get => ((Internal.Id0 >> 41) & 0x1) != 0UL;
set => Internal.Id0 = (Internal.Id0 & 0xFFFFFDFFFFFFFFFF) | ((value ? 1UL : 0UL) << 41);
}
public MTLPixelFormat DepthStencilFormat
{
readonly get => (MTLPixelFormat)(Internal.Id0 >> 48);
set => Internal.Id0 = (Internal.Id0 & 0x0000FFFFFFFFFFFF) | ((ulong)value << 48);
}
// Not sure how to appropriately use this, but it does need to be passed for tess.
public uint PatchControlPoints
{
readonly get => (uint)((Internal.Id1 >> 0) & 0xFFFFFFFF);
set => Internal.Id1 = (Internal.Id1 & 0xFFFFFFFF00000000) | ((ulong)value << 0);
}
public uint SamplesCount
{
readonly get => (uint)((Internal.Id1 >> 32) & 0xFFFFFFFF);
set => Internal.Id1 = (Internal.Id1 & 0xFFFFFFFF) | ((ulong)value << 32);
}
// Advanced blend not supported
private readonly void BuildColorAttachment(MTLRenderPipelineColorAttachmentDescriptor descriptor, ColorBlendStateUid blendState)
{
descriptor.PixelFormat = blendState.PixelFormat;
descriptor.SetBlendingEnabled(blendState.Enable);
descriptor.AlphaBlendOperation = blendState.AlphaBlendOperation;
descriptor.RgbBlendOperation = blendState.RgbBlendOperation;
descriptor.SourceAlphaBlendFactor = blendState.SourceAlphaBlendFactor;
descriptor.DestinationAlphaBlendFactor = blendState.DestinationAlphaBlendFactor;
descriptor.SourceRGBBlendFactor = blendState.SourceRGBBlendFactor;
descriptor.DestinationRGBBlendFactor = blendState.DestinationRGBBlendFactor;
descriptor.WriteMask = blendState.WriteMask;
}
private readonly MTLVertexDescriptor BuildVertexDescriptor()
{
var vertexDescriptor = new MTLVertexDescriptor();
for (int i = 0; i < VertexAttributeDescriptionsCount; i++)
{
VertexInputAttributeUid uid = Internal.VertexAttributes[i];
var attrib = vertexDescriptor.Attributes.Object((ulong)i);
attrib.Format = uid.Format;
attrib.Offset = uid.Offset;
attrib.BufferIndex = uid.BufferIndex;
}
for (int i = 0; i < VertexBindingDescriptionsCount; i++)
{
VertexInputLayoutUid uid = Internal.VertexBindings[i];
var layout = vertexDescriptor.Layouts.Object((ulong)i);
layout.StepFunction = uid.StepFunction;
layout.StepRate = uid.StepRate;
layout.Stride = uid.Stride;
}
return vertexDescriptor;
}
private MTLRenderPipelineDescriptor CreateRenderDescriptor(Program program)
{
var renderPipelineDescriptor = new MTLRenderPipelineDescriptor();
for (int i = 0; i < Constants.MaxColorAttachments; i++)
{
var blendState = Internal.ColorBlendState[i];
if (blendState.PixelFormat != MTLPixelFormat.Invalid)
{
var pipelineAttachment = renderPipelineDescriptor.ColorAttachments.Object((ulong)i);
BuildColorAttachment(pipelineAttachment, blendState);
}
}
MTLPixelFormat dsFormat = DepthStencilFormat;
if (dsFormat != MTLPixelFormat.Invalid)
{
switch (dsFormat)
{
// Depth Only Attachment
case MTLPixelFormat.Depth16Unorm:
case MTLPixelFormat.Depth32Float:
renderPipelineDescriptor.DepthAttachmentPixelFormat = dsFormat;
break;
// Stencil Only Attachment
case MTLPixelFormat.Stencil8:
renderPipelineDescriptor.StencilAttachmentPixelFormat = dsFormat;
break;
// Combined Attachment
case MTLPixelFormat.Depth24UnormStencil8:
case MTLPixelFormat.Depth32FloatStencil8:
renderPipelineDescriptor.DepthAttachmentPixelFormat = dsFormat;
renderPipelineDescriptor.StencilAttachmentPixelFormat = dsFormat;
break;
default:
Logger.Error?.PrintMsg(LogClass.Gpu, $"Unsupported Depth/Stencil Format: {dsFormat}!");
break;
}
}
renderPipelineDescriptor.LogicOperationEnabled = LogicOpEnable;
renderPipelineDescriptor.LogicOperation = LogicOp;
renderPipelineDescriptor.AlphaToCoverageEnabled = AlphaToCoverageEnable;
renderPipelineDescriptor.AlphaToOneEnabled = AlphaToOneEnable;
renderPipelineDescriptor.RasterizationEnabled = !RasterizerDiscardEnable;
renderPipelineDescriptor.SampleCount = Math.Max(1, SamplesCount);
var vertexDescriptor = BuildVertexDescriptor();
renderPipelineDescriptor.VertexDescriptor = vertexDescriptor;
renderPipelineDescriptor.VertexFunction = program.VertexFunction;
if (program.FragmentFunction.NativePtr != 0)
{
renderPipelineDescriptor.FragmentFunction = program.FragmentFunction;
}
return renderPipelineDescriptor;
}
public MTLRenderPipelineState CreateRenderPipeline(MTLDevice device, Program program)
{
if (program.TryGetGraphicsPipeline(ref Internal, out var pipelineState))
{
return pipelineState;
}
using var descriptor = CreateRenderDescriptor(program);
var error = new NSError(IntPtr.Zero);
pipelineState = device.NewRenderPipelineState(descriptor, ref error);
if (error != IntPtr.Zero)
{
Logger.Error?.PrintMsg(LogClass.Gpu, $"Failed to create Render Pipeline State: {StringHelper.String(error.LocalizedDescription)}");
}
program.AddGraphicsPipeline(ref Internal, pipelineState);
return pipelineState;
}
public static MTLComputePipelineDescriptor CreateComputeDescriptor(Program program)
{
ComputeSize localSize = program.ComputeLocalSize;
uint maxThreads = (uint)(localSize.X * localSize.Y * localSize.Z);
if (maxThreads == 0)
{
throw new InvalidOperationException($"Local thread size for compute cannot be 0 in any dimension.");
}
var descriptor = new MTLComputePipelineDescriptor
{
ComputeFunction = program.ComputeFunction,
MaxTotalThreadsPerThreadgroup = maxThreads,
ThreadGroupSizeIsMultipleOfThreadExecutionWidth = true,
};
return descriptor;
}
public static MTLComputePipelineState CreateComputePipeline(MTLDevice device, Program program)
{
if (program.TryGetComputePipeline(out var pipelineState))
{
return pipelineState;
}
using MTLComputePipelineDescriptor descriptor = CreateComputeDescriptor(program);
var error = new NSError(IntPtr.Zero);
pipelineState = device.NewComputePipelineState(descriptor, MTLPipelineOption.None, 0, ref error);
if (error != IntPtr.Zero)
{
Logger.Error?.PrintMsg(LogClass.Gpu, $"Failed to create Compute Pipeline State: {StringHelper.String(error.LocalizedDescription)}");
}
program.AddComputePipeline(pipelineState);
return pipelineState;
}
public void Initialize()
{
SamplesCount = 1;
Internal.ResetColorState();
}
/*
* TODO, this is from vulkan.
private void UpdateVertexAttributeDescriptions(VulkanRenderer gd)
{
// Vertex attributes exceeding the stride are invalid.
// In metal, they cause glitches with the vertex shader fetching incorrect values.
// To work around this, we reduce the format to something that doesn't exceed the stride if possible.
// The assumption is that the exceeding components are not actually accessed on the shader.
for (int index = 0; index < VertexAttributeDescriptionsCount; index++)
{
var attribute = Internal.VertexAttributeDescriptions[index];
int vbIndex = GetVertexBufferIndex(attribute.Binding);
if (vbIndex >= 0)
{
ref var vb = ref Internal.VertexBindingDescriptions[vbIndex];
Format format = attribute.Format;
while (vb.Stride != 0 && attribute.Offset + FormatTable.GetAttributeFormatSize(format) > vb.Stride)
{
Format newFormat = FormatTable.DropLastComponent(format);
if (newFormat == format)
{
// That case means we failed to find a format that fits within the stride,
// so just restore the original format and give up.
format = attribute.Format;
break;
}
format = newFormat;
}
if (attribute.Format != format && gd.FormatCapabilities.BufferFormatSupports(FormatFeatureFlags.VertexBufferBit, format))
{
attribute.Format = format;
}
}
_vertexAttributeDescriptions2[index] = attribute;
}
}
private int GetVertexBufferIndex(uint binding)
{
for (int index = 0; index < VertexBindingDescriptionsCount; index++)
{
if (Internal.VertexBindingDescriptions[index].Binding == binding)
{
return index;
}
}
return -1;
}
*/
}
}

View file

@ -0,0 +1,208 @@
using Ryujinx.Common.Memory;
using SharpMetal.Metal;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
struct VertexInputAttributeUid
{
public ulong Id0;
public ulong Offset
{
readonly get => (uint)((Id0 >> 0) & 0xFFFFFFFF);
set => Id0 = (Id0 & 0xFFFFFFFF00000000) | ((ulong)value << 0);
}
public MTLVertexFormat Format
{
readonly get => (MTLVertexFormat)((Id0 >> 32) & 0xFFFF);
set => Id0 = (Id0 & 0xFFFF0000FFFFFFFF) | ((ulong)value << 32);
}
public ulong BufferIndex
{
readonly get => ((Id0 >> 48) & 0xFFFF);
set => Id0 = (Id0 & 0x0000FFFFFFFFFFFF) | ((ulong)value << 48);
}
}
struct VertexInputLayoutUid
{
public ulong Id0;
public uint Stride
{
readonly get => (uint)((Id0 >> 0) & 0xFFFFFFFF);
set => Id0 = (Id0 & 0xFFFFFFFF00000000) | ((ulong)value << 0);
}
public uint StepRate
{
readonly get => (uint)((Id0 >> 32) & 0x1FFFFFFF);
set => Id0 = (Id0 & 0xE0000000FFFFFFFF) | ((ulong)value << 32);
}
public MTLVertexStepFunction StepFunction
{
readonly get => (MTLVertexStepFunction)((Id0 >> 61) & 0x7);
set => Id0 = (Id0 & 0x1FFFFFFFFFFFFFFF) | ((ulong)value << 61);
}
}
struct ColorBlendStateUid
{
public ulong Id0;
public MTLPixelFormat PixelFormat
{
readonly get => (MTLPixelFormat)((Id0 >> 0) & 0xFFFF);
set => Id0 = (Id0 & 0xFFFFFFFFFFFF0000) | ((ulong)value << 0);
}
public MTLBlendFactor SourceRGBBlendFactor
{
readonly get => (MTLBlendFactor)((Id0 >> 16) & 0xFF);
set => Id0 = (Id0 & 0xFFFFFFFFFF00FFFF) | ((ulong)value << 16);
}
public MTLBlendFactor DestinationRGBBlendFactor
{
readonly get => (MTLBlendFactor)((Id0 >> 24) & 0xFF);
set => Id0 = (Id0 & 0xFFFFFFFF00FFFFFF) | ((ulong)value << 24);
}
public MTLBlendOperation RgbBlendOperation
{
readonly get => (MTLBlendOperation)((Id0 >> 32) & 0xF);
set => Id0 = (Id0 & 0xFFFFFFF0FFFFFFFF) | ((ulong)value << 32);
}
public MTLBlendOperation AlphaBlendOperation
{
readonly get => (MTLBlendOperation)((Id0 >> 36) & 0xF);
set => Id0 = (Id0 & 0xFFFFFF0FFFFFFFFF) | ((ulong)value << 36);
}
public MTLBlendFactor SourceAlphaBlendFactor
{
readonly get => (MTLBlendFactor)((Id0 >> 40) & 0xFF);
set => Id0 = (Id0 & 0xFFFF00FFFFFFFFFF) | ((ulong)value << 40);
}
public MTLBlendFactor DestinationAlphaBlendFactor
{
readonly get => (MTLBlendFactor)((Id0 >> 48) & 0xFF);
set => Id0 = (Id0 & 0xFF00FFFFFFFFFFFF) | ((ulong)value << 48);
}
public MTLColorWriteMask WriteMask
{
readonly get => (MTLColorWriteMask)((Id0 >> 56) & 0xF);
set => Id0 = (Id0 & 0xF0FFFFFFFFFFFFFF) | ((ulong)value << 56);
}
public bool Enable
{
readonly get => ((Id0 >> 63) & 0x1) != 0UL;
set => Id0 = (Id0 & 0x7FFFFFFFFFFFFFFF) | ((value ? 1UL : 0UL) << 63);
}
public void Swap(ColorBlendStateUid uid)
{
var format = PixelFormat;
this = uid;
PixelFormat = format;
}
}
[SupportedOSPlatform("macos")]
struct PipelineUid : IRefEquatable<PipelineUid>
{
public ulong Id0;
public ulong Id1;
private readonly uint VertexAttributeDescriptionsCount => (byte)((Id0 >> 8) & 0xFF);
private readonly uint VertexBindingDescriptionsCount => (byte)((Id0 >> 16) & 0xFF);
private readonly uint ColorBlendAttachmentStateCount => (byte)((Id0 >> 24) & 0xFF);
public Array32<VertexInputAttributeUid> VertexAttributes;
public Array33<VertexInputLayoutUid> VertexBindings;
public Array8<ColorBlendStateUid> ColorBlendState;
public uint AttachmentIntegerFormatMask;
public bool LogicOpsAllowed;
public void ResetColorState()
{
ColorBlendState = new();
for (int i = 0; i < ColorBlendState.Length; i++)
{
ColorBlendState[i].WriteMask = MTLColorWriteMask.All;
}
}
public readonly override bool Equals(object obj)
{
return obj is PipelineUid other && Equals(other);
}
public bool Equals(ref PipelineUid other)
{
if (!Unsafe.As<ulong, Vector128<byte>>(ref Id0).Equals(Unsafe.As<ulong, Vector128<byte>>(ref other.Id0)))
{
return false;
}
if (!SequenceEqual<VertexInputAttributeUid>(VertexAttributes.AsSpan(), other.VertexAttributes.AsSpan(), VertexAttributeDescriptionsCount))
{
return false;
}
if (!SequenceEqual<VertexInputLayoutUid>(VertexBindings.AsSpan(), other.VertexBindings.AsSpan(), VertexBindingDescriptionsCount))
{
return false;
}
if (!SequenceEqual<ColorBlendStateUid>(ColorBlendState.AsSpan(), other.ColorBlendState.AsSpan(), ColorBlendAttachmentStateCount))
{
return false;
}
return true;
}
private static bool SequenceEqual<T>(ReadOnlySpan<T> x, ReadOnlySpan<T> y, uint count) where T : unmanaged
{
return MemoryMarshal.Cast<T, byte>(x[..(int)count]).SequenceEqual(MemoryMarshal.Cast<T, byte>(y[..(int)count]));
}
public override int GetHashCode()
{
ulong hash64 = Id0 * 23 ^
Id1 * 23;
for (int i = 0; i < (int)VertexAttributeDescriptionsCount; i++)
{
hash64 ^= VertexAttributes[i].Id0 * 23;
}
for (int i = 0; i < (int)VertexBindingDescriptionsCount; i++)
{
hash64 ^= VertexBindings[i].Id0 * 23;
}
for (int i = 0; i < (int)ColorBlendAttachmentStateCount; i++)
{
hash64 ^= ColorBlendState[i].Id0 * 23;
}
return (int)hash64 ^ ((int)(hash64 >> 32) * 17);
}
}
}

View file

@ -0,0 +1,42 @@
using System;
using System.Collections.Generic;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
abstract class StateCache<T, TDescriptor, THash> : IDisposable where T : IDisposable
{
private readonly Dictionary<THash, T> _cache = new();
protected abstract THash GetHash(TDescriptor descriptor);
protected abstract T CreateValue(TDescriptor descriptor);
public void Dispose()
{
foreach (T value in _cache.Values)
{
value.Dispose();
}
GC.SuppressFinalize(this);
}
public T GetOrCreate(TDescriptor descriptor)
{
var hash = GetHash(descriptor);
if (_cache.TryGetValue(hash, out T value))
{
return value;
}
else
{
var newValue = CreateValue(descriptor);
_cache.Add(hash, newValue);
return newValue;
}
}
}
}

View file

@ -0,0 +1,30 @@
using SharpMetal.Foundation;
using SharpMetal.ObjectiveCCore;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class StringHelper
{
public static NSString NSString(string source)
{
return new(ObjectiveC.IntPtr_objc_msgSend(new ObjectiveCClass("NSString"), "stringWithUTF8String:", source));
}
public static unsafe string String(NSString source)
{
char[] sourceBuffer = new char[source.Length];
fixed (char* pSourceBuffer = sourceBuffer)
{
ObjectiveC.bool_objc_msgSend(source,
"getCString:maxLength:encoding:",
pSourceBuffer,
source.MaximumLengthOfBytes(NSStringEncoding.UTF16) + 1,
(ulong)NSStringEncoding.UTF16);
}
return new string(sourceBuffer);
}
}
}

View file

@ -0,0 +1,214 @@
using Ryujinx.Common.Logging;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class SyncManager
{
private class SyncHandle
{
public ulong ID;
public MultiFenceHolder Waitable;
public ulong FlushId;
public bool Signalled;
public bool NeedsFlush(ulong currentFlushId)
{
return (long)(FlushId - currentFlushId) >= 0;
}
}
private ulong _firstHandle;
private readonly MetalRenderer _renderer;
private readonly List<SyncHandle> _handles;
private ulong _flushId;
private long _waitTicks;
public SyncManager(MetalRenderer renderer)
{
_renderer = renderer;
_handles = new List<SyncHandle>();
}
public void RegisterFlush()
{
_flushId++;
}
public void Create(ulong id, bool strict)
{
ulong flushId = _flushId;
MultiFenceHolder waitable = new();
if (strict || _renderer.InterruptAction == null)
{
_renderer.FlushAllCommands();
_renderer.CommandBufferPool.AddWaitable(waitable);
}
else
{
// Don't flush commands, instead wait for the current command buffer to finish.
// If this sync is waited on before the command buffer is submitted, interrupt the gpu thread and flush it manually.
_renderer.CommandBufferPool.AddInUseWaitable(waitable);
}
SyncHandle handle = new()
{
ID = id,
Waitable = waitable,
FlushId = flushId,
};
lock (_handles)
{
_handles.Add(handle);
}
}
public ulong GetCurrent()
{
lock (_handles)
{
ulong lastHandle = _firstHandle;
foreach (SyncHandle handle in _handles)
{
lock (handle)
{
if (handle.Waitable == null)
{
continue;
}
if (handle.ID > lastHandle)
{
bool signaled = handle.Signalled || handle.Waitable.WaitForFences(false);
if (signaled)
{
lastHandle = handle.ID;
handle.Signalled = true;
}
}
}
}
return lastHandle;
}
}
public void Wait(ulong id)
{
SyncHandle result = null;
lock (_handles)
{
if ((long)(_firstHandle - id) > 0)
{
return; // The handle has already been signalled or deleted.
}
foreach (SyncHandle handle in _handles)
{
if (handle.ID == id)
{
result = handle;
break;
}
}
}
if (result != null)
{
if (result.Waitable == null)
{
return;
}
long beforeTicks = Stopwatch.GetTimestamp();
if (result.NeedsFlush(_flushId))
{
_renderer.InterruptAction(() =>
{
if (result.NeedsFlush(_flushId))
{
_renderer.FlushAllCommands();
}
});
}
lock (result)
{
if (result.Waitable == null)
{
return;
}
bool signaled = result.Signalled || result.Waitable.WaitForFences(true);
if (!signaled)
{
Logger.Error?.PrintMsg(LogClass.Gpu, $"Metal Sync Object {result.ID} failed to signal within 1000ms. Continuing...");
}
else
{
_waitTicks += Stopwatch.GetTimestamp() - beforeTicks;
result.Signalled = true;
}
}
}
}
public void Cleanup()
{
// Iterate through handles and remove any that have already been signalled.
while (true)
{
SyncHandle first = null;
lock (_handles)
{
first = _handles.FirstOrDefault();
}
if (first == null || first.NeedsFlush(_flushId))
{
break;
}
bool signaled = first.Waitable.WaitForFences(false);
if (signaled)
{
// Delete the sync object.
lock (_handles)
{
lock (first)
{
_firstHandle = first.ID + 1;
_handles.RemoveAt(0);
first.Waitable = null;
}
}
}
else
{
// This sync handle and any following have not been reached yet.
break;
}
}
}
public long GetAndResetWaitTicks()
{
long result = _waitTicks;
_waitTicks = 0;
return result;
}
}
}

View file

@ -0,0 +1,654 @@
using Ryujinx.Common.Logging;
using Ryujinx.Common.Memory;
using Ryujinx.Graphics.GAL;
using SharpMetal.Foundation;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class Texture : TextureBase, ITexture
{
private MTLTexture _identitySwizzleHandle;
private readonly bool _identityIsDifferent;
public Texture(MTLDevice device, MetalRenderer renderer, Pipeline pipeline, TextureCreateInfo info) : base(device, renderer, pipeline, info)
{
MTLPixelFormat pixelFormat = FormatTable.GetFormat(Info.Format);
var descriptor = new MTLTextureDescriptor
{
PixelFormat = pixelFormat,
Usage = MTLTextureUsage.Unknown,
SampleCount = (ulong)Info.Samples,
TextureType = Info.Target.Convert(),
Width = (ulong)Info.Width,
Height = (ulong)Info.Height,
MipmapLevelCount = (ulong)Info.Levels
};
if (info.Target == Target.Texture3D)
{
descriptor.Depth = (ulong)Info.Depth;
}
else if (info.Target != Target.Cubemap)
{
if (info.Target == Target.CubemapArray)
{
descriptor.ArrayLength = (ulong)(Info.Depth / 6);
}
else
{
descriptor.ArrayLength = (ulong)Info.Depth;
}
}
MTLTextureSwizzleChannels swizzle = GetSwizzle(info, descriptor.PixelFormat);
_identitySwizzleHandle = Device.NewTexture(descriptor);
if (SwizzleIsIdentity(swizzle))
{
MtlTexture = _identitySwizzleHandle;
}
else
{
MtlTexture = CreateDefaultView(_identitySwizzleHandle, swizzle, descriptor);
_identityIsDifferent = true;
}
MtlFormat = pixelFormat;
descriptor.Dispose();
}
public Texture(MTLDevice device, MetalRenderer renderer, Pipeline pipeline, TextureCreateInfo info, MTLTexture sourceTexture, int firstLayer, int firstLevel) : base(device, renderer, pipeline, info)
{
var pixelFormat = FormatTable.GetFormat(Info.Format);
if (info.DepthStencilMode == DepthStencilMode.Stencil)
{
pixelFormat = pixelFormat switch
{
MTLPixelFormat.Depth32FloatStencil8 => MTLPixelFormat.X32Stencil8,
MTLPixelFormat.Depth24UnormStencil8 => MTLPixelFormat.X24Stencil8,
_ => pixelFormat
};
}
var textureType = Info.Target.Convert();
NSRange levels;
levels.location = (ulong)firstLevel;
levels.length = (ulong)Info.Levels;
NSRange slices;
slices.location = (ulong)firstLayer;
slices.length = textureType == MTLTextureType.Type3D ? 1 : (ulong)info.GetDepthOrLayers();
var swizzle = GetSwizzle(info, pixelFormat);
_identitySwizzleHandle = sourceTexture.NewTextureView(pixelFormat, textureType, levels, slices);
if (SwizzleIsIdentity(swizzle))
{
MtlTexture = _identitySwizzleHandle;
}
else
{
MtlTexture = sourceTexture.NewTextureView(pixelFormat, textureType, levels, slices, swizzle);
_identityIsDifferent = true;
}
MtlFormat = pixelFormat;
FirstLayer = firstLayer;
FirstLevel = firstLevel;
}
public void PopulateRenderPassAttachment(MTLRenderPassColorAttachmentDescriptor descriptor)
{
descriptor.Texture = _identitySwizzleHandle;
}
private MTLTexture CreateDefaultView(MTLTexture texture, MTLTextureSwizzleChannels swizzle, MTLTextureDescriptor descriptor)
{
NSRange levels;
levels.location = 0;
levels.length = (ulong)Info.Levels;
NSRange slices;
slices.location = 0;
slices.length = Info.Target == Target.Texture3D ? 1 : (ulong)Info.GetDepthOrLayers();
return texture.NewTextureView(descriptor.PixelFormat, descriptor.TextureType, levels, slices, swizzle);
}
private bool SwizzleIsIdentity(MTLTextureSwizzleChannels swizzle)
{
return swizzle.red == MTLTextureSwizzle.Red &&
swizzle.green == MTLTextureSwizzle.Green &&
swizzle.blue == MTLTextureSwizzle.Blue &&
swizzle.alpha == MTLTextureSwizzle.Alpha;
}
private MTLTextureSwizzleChannels GetSwizzle(TextureCreateInfo info, MTLPixelFormat pixelFormat)
{
var swizzleR = Info.SwizzleR.Convert();
var swizzleG = Info.SwizzleG.Convert();
var swizzleB = Info.SwizzleB.Convert();
var swizzleA = Info.SwizzleA.Convert();
if (info.Format == Format.R5G5B5A1Unorm ||
info.Format == Format.R5G5B5X1Unorm ||
info.Format == Format.R5G6B5Unorm)
{
(swizzleB, swizzleR) = (swizzleR, swizzleB);
}
else if (pixelFormat == MTLPixelFormat.ABGR4Unorm || info.Format == Format.A1B5G5R5Unorm)
{
var tempB = swizzleB;
var tempA = swizzleA;
swizzleB = swizzleG;
swizzleA = swizzleR;
swizzleR = tempA;
swizzleG = tempB;
}
return new MTLTextureSwizzleChannels
{
red = swizzleR,
green = swizzleG,
blue = swizzleB,
alpha = swizzleA
};
}
public void CopyTo(ITexture destination, int firstLayer, int firstLevel)
{
CommandBufferScoped cbs = Pipeline.Cbs;
TextureBase src = this;
TextureBase dst = (TextureBase)destination;
if (!Valid || !dst.Valid)
{
return;
}
var srcImage = GetHandle();
var dstImage = dst.GetHandle();
if (!dst.Info.Target.IsMultisample() && Info.Target.IsMultisample())
{
// int layers = Math.Min(Info.GetLayers(), dst.Info.GetLayers() - firstLayer);
// _gd.HelperShader.CopyMSToNonMS(_gd, cbs, src, dst, 0, firstLayer, layers);
}
else if (dst.Info.Target.IsMultisample() && !Info.Target.IsMultisample())
{
// int layers = Math.Min(Info.GetLayers(), dst.Info.GetLayers() - firstLayer);
// _gd.HelperShader.CopyNonMSToMS(_gd, cbs, src, dst, 0, firstLayer, layers);
}
else if (dst.Info.BytesPerPixel != Info.BytesPerPixel)
{
// int layers = Math.Min(Info.GetLayers(), dst.Info.GetLayers() - firstLayer);
// int levels = Math.Min(Info.Levels, dst.Info.Levels - firstLevel);
// _gd.HelperShader.CopyIncompatibleFormats(_gd, cbs, src, dst, 0, firstLayer, 0, firstLevel, layers, levels);
}
else if (src.Info.Format.IsDepthOrStencil() != dst.Info.Format.IsDepthOrStencil())
{
// int layers = Math.Min(Info.GetLayers(), dst.Info.GetLayers() - firstLayer);
// int levels = Math.Min(Info.Levels, dst.Info.Levels - firstLevel);
// TODO: depth copy?
// _gd.HelperShader.CopyColor(_gd, cbs, src, dst, 0, firstLayer, 0, FirstLevel, layers, levels);
}
else
{
TextureCopy.Copy(
cbs,
srcImage,
dstImage,
src.Info,
dst.Info,
0,
firstLayer,
0,
firstLevel);
}
}
public void CopyTo(ITexture destination, int srcLayer, int dstLayer, int srcLevel, int dstLevel)
{
CommandBufferScoped cbs = Pipeline.Cbs;
TextureBase src = this;
TextureBase dst = (TextureBase)destination;
if (!Valid || !dst.Valid)
{
return;
}
var srcImage = GetHandle();
var dstImage = dst.GetHandle();
if (!dst.Info.Target.IsMultisample() && Info.Target.IsMultisample())
{
// _gd.HelperShader.CopyMSToNonMS(_gd, cbs, src, dst, srcLayer, dstLayer, 1);
}
else if (dst.Info.Target.IsMultisample() && !Info.Target.IsMultisample())
{
// _gd.HelperShader.CopyNonMSToMS(_gd, cbs, src, dst, srcLayer, dstLayer, 1);
}
else if (dst.Info.BytesPerPixel != Info.BytesPerPixel)
{
// _gd.HelperShader.CopyIncompatibleFormats(_gd, cbs, src, dst, srcLayer, dstLayer, srcLevel, dstLevel, 1, 1);
}
else if (src.Info.Format.IsDepthOrStencil() != dst.Info.Format.IsDepthOrStencil())
{
// _gd.HelperShader.CopyColor(_gd, cbs, src, dst, srcLayer, dstLayer, srcLevel, dstLevel, 1, 1);
}
else
{
TextureCopy.Copy(
cbs,
srcImage,
dstImage,
src.Info,
dst.Info,
srcLayer,
dstLayer,
srcLevel,
dstLevel,
1,
1);
}
}
public void CopyTo(ITexture destination, Extents2D srcRegion, Extents2D dstRegion, bool linearFilter)
{
if (!Renderer.CommandBufferPool.OwnedByCurrentThread)
{
Logger.Warning?.PrintMsg(LogClass.Gpu, "Metal doesn't currently support scaled blit on background thread.");
return;
}
var dst = (Texture)destination;
bool isDepthOrStencil = dst.Info.Format.IsDepthOrStencil();
Pipeline.Blit(this, dst, srcRegion, dstRegion, isDepthOrStencil, linearFilter);
}
public void CopyTo(BufferRange range, int layer, int level, int stride)
{
var cbs = Pipeline.Cbs;
int outSize = Info.GetMipSize(level);
int hostSize = GetBufferDataLength(outSize);
int offset = range.Offset;
var autoBuffer = Renderer.BufferManager.GetBuffer(range.Handle, true);
var mtlBuffer = autoBuffer.Get(cbs, range.Offset, outSize).Value;
if (PrepareOutputBuffer(cbs, hostSize, mtlBuffer, out MTLBuffer copyToBuffer, out BufferHolder tempCopyHolder))
{
offset = 0;
}
CopyFromOrToBuffer(cbs, copyToBuffer, MtlTexture, hostSize, true, layer, level, 1, 1, singleSlice: true, offset, stride);
if (tempCopyHolder != null)
{
CopyDataToOutputBuffer(cbs, tempCopyHolder, autoBuffer, hostSize, range.Offset);
tempCopyHolder.Dispose();
}
}
public ITexture CreateView(TextureCreateInfo info, int firstLayer, int firstLevel)
{
return new Texture(Device, Renderer, Pipeline, info, _identitySwizzleHandle, firstLayer, firstLevel);
}
private void CopyDataToBuffer(Span<byte> storage, ReadOnlySpan<byte> input)
{
if (NeedsD24S8Conversion())
{
FormatConverter.ConvertD24S8ToD32FS8(storage, input);
return;
}
input.CopyTo(storage);
}
private ReadOnlySpan<byte> GetDataFromBuffer(ReadOnlySpan<byte> storage, int size, Span<byte> output)
{
if (NeedsD24S8Conversion())
{
if (output.IsEmpty)
{
output = new byte[GetBufferDataLength(size)];
}
FormatConverter.ConvertD32FS8ToD24S8(output, storage);
return output;
}
return storage;
}
private bool PrepareOutputBuffer(CommandBufferScoped cbs, int hostSize, MTLBuffer target, out MTLBuffer copyTarget, out BufferHolder copyTargetHolder)
{
if (NeedsD24S8Conversion())
{
copyTargetHolder = Renderer.BufferManager.Create(hostSize);
copyTarget = copyTargetHolder.GetBuffer().Get(cbs, 0, hostSize).Value;
return true;
}
copyTarget = target;
copyTargetHolder = null;
return false;
}
private void CopyDataToOutputBuffer(CommandBufferScoped cbs, BufferHolder hostData, Auto<DisposableBuffer> copyTarget, int hostSize, int dstOffset)
{
if (NeedsD24S8Conversion())
{
Renderer.HelperShader.ConvertD32S8ToD24S8(cbs, hostData, copyTarget, hostSize / (2 * sizeof(int)), dstOffset);
}
}
private bool NeedsD24S8Conversion()
{
return FormatTable.IsD24S8(Info.Format) && MtlFormat == MTLPixelFormat.Depth32FloatStencil8;
}
public void CopyFromOrToBuffer(
CommandBufferScoped cbs,
MTLBuffer buffer,
MTLTexture image,
int size,
bool to,
int dstLayer,
int dstLevel,
int dstLayers,
int dstLevels,
bool singleSlice,
int offset = 0,
int stride = 0)
{
MTLBlitCommandEncoder blitCommandEncoder = cbs.Encoders.EnsureBlitEncoder();
bool is3D = Info.Target == Target.Texture3D;
int width = Math.Max(1, Info.Width >> dstLevel);
int height = Math.Max(1, Info.Height >> dstLevel);
int depth = is3D && !singleSlice ? Math.Max(1, Info.Depth >> dstLevel) : 1;
int layers = dstLayers;
int levels = dstLevels;
for (int oLevel = 0; oLevel < levels; oLevel++)
{
int level = oLevel + dstLevel;
int mipSize = Info.GetMipSize2D(level);
int mipSizeLevel = GetBufferDataLength(is3D && !singleSlice
? Info.GetMipSize(level)
: mipSize * dstLayers);
int endOffset = offset + mipSizeLevel;
if ((uint)endOffset > (uint)size)
{
break;
}
for (int oLayer = 0; oLayer < layers; oLayer++)
{
int layer = !is3D ? dstLayer + oLayer : 0;
int z = is3D ? dstLayer + oLayer : 0;
if (to)
{
blitCommandEncoder.CopyFromTexture(
image,
(ulong)layer,
(ulong)level,
new MTLOrigin { z = (ulong)z },
new MTLSize { width = (ulong)width, height = (ulong)height, depth = 1 },
buffer,
(ulong)offset,
(ulong)Info.GetMipStride(level),
(ulong)mipSize
);
}
else
{
blitCommandEncoder.CopyFromBuffer(
buffer,
(ulong)offset,
(ulong)Info.GetMipStride(level),
(ulong)mipSize,
new MTLSize { width = (ulong)width, height = (ulong)height, depth = 1 },
image,
(ulong)(layer + oLayer),
(ulong)level,
new MTLOrigin { z = (ulong)z }
);
}
offset += mipSize;
}
width = Math.Max(1, width >> 1);
height = Math.Max(1, height >> 1);
if (Info.Target == Target.Texture3D)
{
depth = Math.Max(1, depth >> 1);
}
}
}
private ReadOnlySpan<byte> GetData(CommandBufferPool cbp, PersistentFlushBuffer flushBuffer)
{
int size = 0;
for (int level = 0; level < Info.Levels; level++)
{
size += Info.GetMipSize(level);
}
size = GetBufferDataLength(size);
Span<byte> result = flushBuffer.GetTextureData(cbp, this, size);
return GetDataFromBuffer(result, size, result);
}
private ReadOnlySpan<byte> GetData(CommandBufferPool cbp, PersistentFlushBuffer flushBuffer, int layer, int level)
{
int size = GetBufferDataLength(Info.GetMipSize(level));
Span<byte> result = flushBuffer.GetTextureData(cbp, this, size, layer, level);
return GetDataFromBuffer(result, size, result);
}
public PinnedSpan<byte> GetData()
{
BackgroundResource resources = Renderer.BackgroundResources.Get();
if (Renderer.CommandBufferPool.OwnedByCurrentThread)
{
Renderer.FlushAllCommands();
return PinnedSpan<byte>.UnsafeFromSpan(GetData(Renderer.CommandBufferPool, resources.GetFlushBuffer()));
}
return PinnedSpan<byte>.UnsafeFromSpan(GetData(resources.GetPool(), resources.GetFlushBuffer()));
}
public PinnedSpan<byte> GetData(int layer, int level)
{
BackgroundResource resources = Renderer.BackgroundResources.Get();
if (Renderer.CommandBufferPool.OwnedByCurrentThread)
{
Renderer.FlushAllCommands();
return PinnedSpan<byte>.UnsafeFromSpan(GetData(Renderer.CommandBufferPool, resources.GetFlushBuffer(), layer, level));
}
return PinnedSpan<byte>.UnsafeFromSpan(GetData(resources.GetPool(), resources.GetFlushBuffer(), layer, level));
}
public void SetData(MemoryOwner<byte> data)
{
var blitCommandEncoder = Pipeline.GetOrCreateBlitEncoder();
var dataSpan = data.Memory.Span;
var buffer = Renderer.BufferManager.Create(dataSpan.Length);
buffer.SetDataUnchecked(0, dataSpan);
var mtlBuffer = buffer.GetBuffer(false).Get(Pipeline.Cbs).Value;
int width = Info.Width;
int height = Info.Height;
int depth = Info.Depth;
int levels = Info.Levels;
int layers = Info.GetLayers();
bool is3D = Info.Target == Target.Texture3D;
int offset = 0;
for (int level = 0; level < levels; level++)
{
int mipSize = Info.GetMipSize2D(level);
int endOffset = offset + mipSize;
if ((uint)endOffset > (uint)dataSpan.Length)
{
return;
}
for (int layer = 0; layer < layers; layer++)
{
blitCommandEncoder.CopyFromBuffer(
mtlBuffer,
(ulong)offset,
(ulong)Info.GetMipStride(level),
(ulong)mipSize,
new MTLSize { width = (ulong)width, height = (ulong)height, depth = is3D ? (ulong)depth : 1 },
MtlTexture,
(ulong)layer,
(ulong)level,
new MTLOrigin()
);
offset += mipSize;
}
width = Math.Max(1, width >> 1);
height = Math.Max(1, height >> 1);
if (is3D)
{
depth = Math.Max(1, depth >> 1);
}
}
// Cleanup
buffer.Dispose();
}
private void SetData(ReadOnlySpan<byte> data, int layer, int level, int layers, int levels, bool singleSlice)
{
int bufferDataLength = GetBufferDataLength(data.Length);
using var bufferHolder = Renderer.BufferManager.Create(bufferDataLength);
// TODO: loadInline logic
var cbs = Pipeline.Cbs;
CopyDataToBuffer(bufferHolder.GetDataStorage(0, bufferDataLength), data);
var buffer = bufferHolder.GetBuffer().Get(cbs).Value;
var image = GetHandle();
CopyFromOrToBuffer(cbs, buffer, image, bufferDataLength, false, layer, level, layers, levels, singleSlice);
}
public void SetData(MemoryOwner<byte> data, int layer, int level)
{
SetData(data.Memory.Span, layer, level, 1, 1, singleSlice: true);
data.Dispose();
}
public void SetData(MemoryOwner<byte> data, int layer, int level, Rectangle<int> region)
{
var blitCommandEncoder = Pipeline.GetOrCreateBlitEncoder();
ulong bytesPerRow = (ulong)Info.GetMipStride(level);
ulong bytesPerImage = 0;
if (MtlTexture.TextureType == MTLTextureType.Type3D)
{
bytesPerImage = bytesPerRow * (ulong)Info.Height;
}
var dataSpan = data.Memory.Span;
var buffer = Renderer.BufferManager.Create(dataSpan.Length);
buffer.SetDataUnchecked(0, dataSpan);
var mtlBuffer = buffer.GetBuffer(false).Get(Pipeline.Cbs).Value;
blitCommandEncoder.CopyFromBuffer(
mtlBuffer,
0,
bytesPerRow,
bytesPerImage,
new MTLSize { width = (ulong)region.Width, height = (ulong)region.Height, depth = 1 },
MtlTexture,
(ulong)layer,
(ulong)level,
new MTLOrigin { x = (ulong)region.X, y = (ulong)region.Y }
);
// Cleanup
buffer.Dispose();
}
private int GetBufferDataLength(int length)
{
if (NeedsD24S8Conversion())
{
return length * 2;
}
return length;
}
public void SetStorage(BufferRange buffer)
{
throw new NotImplementedException();
}
public override void Release()
{
if (_identityIsDifferent)
{
_identitySwizzleHandle.Dispose();
}
base.Release();
}
}
}

View file

@ -0,0 +1,93 @@
using Ryujinx.Graphics.GAL;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
internal class TextureArray : ITextureArray
{
private readonly TextureRef[] _textureRefs;
private readonly TextureBuffer[] _bufferTextureRefs;
private readonly bool _isBuffer;
private readonly Pipeline _pipeline;
public TextureArray(int size, bool isBuffer, Pipeline pipeline)
{
if (isBuffer)
{
_bufferTextureRefs = new TextureBuffer[size];
}
else
{
_textureRefs = new TextureRef[size];
}
_isBuffer = isBuffer;
_pipeline = pipeline;
}
public void SetSamplers(int index, ISampler[] samplers)
{
for (int i = 0; i < samplers.Length; i++)
{
ISampler sampler = samplers[i];
if (sampler is SamplerHolder samp)
{
_textureRefs[index + i].Sampler = samp.GetSampler();
}
else
{
_textureRefs[index + i].Sampler = default;
}
}
SetDirty();
}
public void SetTextures(int index, ITexture[] textures)
{
for (int i = 0; i < textures.Length; i++)
{
ITexture texture = textures[i];
if (texture is TextureBuffer textureBuffer)
{
_bufferTextureRefs[index + i] = textureBuffer;
}
else if (texture is Texture tex)
{
_textureRefs[index + i].Storage = tex;
}
else if (!_isBuffer)
{
_textureRefs[index + i].Storage = null;
}
else
{
_bufferTextureRefs[index + i] = null;
}
}
SetDirty();
}
public TextureRef[] GetTextureRefs()
{
return _textureRefs;
}
public TextureBuffer[] GetBufferTextureRefs()
{
return _bufferTextureRefs;
}
private void SetDirty()
{
_pipeline.DirtyTextures();
}
public void Dispose() { }
}
}

View file

@ -0,0 +1,67 @@
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
using System.Threading;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
abstract class TextureBase : IDisposable
{
private int _isValid = 1;
public bool Valid => Volatile.Read(ref _isValid) != 0;
protected readonly Pipeline Pipeline;
protected readonly MTLDevice Device;
protected readonly MetalRenderer Renderer;
protected MTLTexture MtlTexture;
public readonly TextureCreateInfo Info;
public int Width => Info.Width;
public int Height => Info.Height;
public int Depth => Info.Depth;
public MTLPixelFormat MtlFormat { get; protected set; }
public int FirstLayer { get; protected set; }
public int FirstLevel { get; protected set; }
public TextureBase(MTLDevice device, MetalRenderer renderer, Pipeline pipeline, TextureCreateInfo info)
{
Device = device;
Renderer = renderer;
Pipeline = pipeline;
Info = info;
}
public MTLTexture GetHandle()
{
if (_isValid == 0)
{
return new MTLTexture(IntPtr.Zero);
}
return MtlTexture;
}
public virtual void Release()
{
Dispose();
}
public void Dispose()
{
bool wasValid = Interlocked.Exchange(ref _isValid, 0) != 0;
if (wasValid)
{
if (MtlTexture != IntPtr.Zero)
{
MtlTexture.Dispose();
}
}
}
}
}

View file

@ -0,0 +1,132 @@
using Ryujinx.Common.Memory;
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class TextureBuffer : TextureBase, ITexture
{
private MTLTextureDescriptor _descriptor;
private BufferHandle _bufferHandle;
private int _offset;
private int _size;
private int _bufferCount;
private Auto<DisposableBuffer> _buffer;
public TextureBuffer(MTLDevice device, MetalRenderer renderer, Pipeline pipeline, TextureCreateInfo info) : base(device, renderer, pipeline, info)
{
MTLPixelFormat pixelFormat = FormatTable.GetFormat(Info.Format);
_descriptor = new MTLTextureDescriptor
{
PixelFormat = pixelFormat,
Usage = MTLTextureUsage.Unknown,
TextureType = MTLTextureType.TextureBuffer,
Width = (ulong)Info.Width,
Height = (ulong)Info.Height,
};
MtlFormat = pixelFormat;
}
public void RebuildStorage(bool write)
{
if (MtlTexture != IntPtr.Zero)
{
MtlTexture.Dispose();
}
if (_buffer == null)
{
MtlTexture = default;
}
else
{
DisposableBuffer buffer = _buffer.Get(Pipeline.Cbs, _offset, _size, write);
_descriptor.Width = (uint)(_size / Info.BytesPerPixel);
MtlTexture = buffer.Value.NewTexture(_descriptor, (ulong)_offset, (ulong)_size);
}
}
public void CopyTo(ITexture destination, int firstLayer, int firstLevel)
{
throw new NotSupportedException();
}
public void CopyTo(ITexture destination, int srcLayer, int dstLayer, int srcLevel, int dstLevel)
{
throw new NotSupportedException();
}
public void CopyTo(ITexture destination, Extents2D srcRegion, Extents2D dstRegion, bool linearFilter)
{
throw new NotSupportedException();
}
public ITexture CreateView(TextureCreateInfo info, int firstLayer, int firstLevel)
{
throw new NotSupportedException();
}
public PinnedSpan<byte> GetData()
{
return Renderer.GetBufferData(_bufferHandle, _offset, _size);
}
public PinnedSpan<byte> GetData(int layer, int level)
{
return GetData();
}
public void CopyTo(BufferRange range, int layer, int level, int stride)
{
throw new NotImplementedException();
}
public void SetData(MemoryOwner<byte> data)
{
Renderer.SetBufferData(_bufferHandle, _offset, data.Memory.Span);
data.Dispose();
}
public void SetData(MemoryOwner<byte> data, int layer, int level)
{
throw new NotSupportedException();
}
public void SetData(MemoryOwner<byte> data, int layer, int level, Rectangle<int> region)
{
throw new NotSupportedException();
}
public void SetStorage(BufferRange buffer)
{
if (_bufferHandle == buffer.Handle &&
_offset == buffer.Offset &&
_size == buffer.Size &&
_bufferCount == Renderer.BufferManager.BufferCount)
{
return;
}
_bufferHandle = buffer.Handle;
_offset = buffer.Offset;
_size = buffer.Size;
_bufferCount = Renderer.BufferManager.BufferCount;
_buffer = Renderer.BufferManager.GetBuffer(_bufferHandle, false);
}
public override void Release()
{
_descriptor.Dispose();
base.Release();
}
}
}

View file

@ -0,0 +1,265 @@
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
static class TextureCopy
{
public static ulong CopyFromOrToBuffer(
CommandBufferScoped cbs,
MTLBuffer buffer,
MTLTexture image,
TextureCreateInfo info,
bool to,
int dstLayer,
int dstLevel,
int x,
int y,
int width,
int height,
ulong offset = 0)
{
MTLBlitCommandEncoder blitCommandEncoder = cbs.Encoders.EnsureBlitEncoder();
bool is3D = info.Target == Target.Texture3D;
int blockWidth = BitUtils.DivRoundUp(width, info.BlockWidth);
int blockHeight = BitUtils.DivRoundUp(height, info.BlockHeight);
ulong bytesPerRow = (ulong)BitUtils.AlignUp(blockWidth * info.BytesPerPixel, 4);
ulong bytesPerImage = bytesPerRow * (ulong)blockHeight;
MTLOrigin origin = new MTLOrigin { x = (ulong)x, y = (ulong)y, z = is3D ? (ulong)dstLayer : 0 };
MTLSize region = new MTLSize { width = (ulong)width, height = (ulong)height, depth = 1 };
uint layer = is3D ? 0 : (uint)dstLayer;
if (to)
{
blitCommandEncoder.CopyFromTexture(
image,
layer,
(ulong)dstLevel,
origin,
region,
buffer,
offset,
bytesPerRow,
bytesPerImage);
}
else
{
blitCommandEncoder.CopyFromBuffer(buffer, offset, bytesPerRow, bytesPerImage, region, image, layer, (ulong)dstLevel, origin);
}
return offset + bytesPerImage;
}
public static void Copy(
CommandBufferScoped cbs,
MTLTexture srcImage,
MTLTexture dstImage,
TextureCreateInfo srcInfo,
TextureCreateInfo dstInfo,
int srcLayer,
int dstLayer,
int srcLevel,
int dstLevel)
{
int srcDepth = srcInfo.GetDepthOrLayers();
int srcLevels = srcInfo.Levels;
int dstDepth = dstInfo.GetDepthOrLayers();
int dstLevels = dstInfo.Levels;
if (dstInfo.Target == Target.Texture3D)
{
dstDepth = Math.Max(1, dstDepth >> dstLevel);
}
int depth = Math.Min(srcDepth, dstDepth);
int levels = Math.Min(srcLevels, dstLevels);
Copy(
cbs,
srcImage,
dstImage,
srcInfo,
dstInfo,
srcLayer,
dstLayer,
srcLevel,
dstLevel,
depth,
levels);
}
public static void Copy(
CommandBufferScoped cbs,
MTLTexture srcImage,
MTLTexture dstImage,
TextureCreateInfo srcInfo,
TextureCreateInfo dstInfo,
int srcDepthOrLayer,
int dstDepthOrLayer,
int srcLevel,
int dstLevel,
int depthOrLayers,
int levels)
{
MTLBlitCommandEncoder blitCommandEncoder = cbs.Encoders.EnsureBlitEncoder();
int srcZ;
int srcLayer;
int srcDepth;
int srcLayers;
if (srcInfo.Target == Target.Texture3D)
{
srcZ = srcDepthOrLayer;
srcLayer = 0;
srcDepth = depthOrLayers;
srcLayers = 1;
}
else
{
srcZ = 0;
srcLayer = srcDepthOrLayer;
srcDepth = 1;
srcLayers = depthOrLayers;
}
int dstZ;
int dstLayer;
int dstLayers;
if (dstInfo.Target == Target.Texture3D)
{
dstZ = dstDepthOrLayer;
dstLayer = 0;
dstLayers = 1;
}
else
{
dstZ = 0;
dstLayer = dstDepthOrLayer;
dstLayers = depthOrLayers;
}
int srcWidth = srcInfo.Width;
int srcHeight = srcInfo.Height;
int dstWidth = dstInfo.Width;
int dstHeight = dstInfo.Height;
srcWidth = Math.Max(1, srcWidth >> srcLevel);
srcHeight = Math.Max(1, srcHeight >> srcLevel);
dstWidth = Math.Max(1, dstWidth >> dstLevel);
dstHeight = Math.Max(1, dstHeight >> dstLevel);
int blockWidth = 1;
int blockHeight = 1;
bool sizeInBlocks = false;
MTLBuffer tempBuffer = default;
if (srcInfo.Format != dstInfo.Format && (srcInfo.IsCompressed || dstInfo.IsCompressed))
{
// Compressed alias copies need to happen through a temporary buffer.
// The data is copied from the source to the buffer, then the buffer to the destination.
// The length of the buffer should be the maximum slice size for the destination.
tempBuffer = blitCommandEncoder.Device.NewBuffer((ulong)dstInfo.GetMipSize2D(0), MTLResourceOptions.ResourceStorageModePrivate);
}
// When copying from a compressed to a non-compressed format,
// the non-compressed texture will have the size of the texture
// in blocks (not in texels), so we must adjust that size to
// match the size in texels of the compressed texture.
if (!srcInfo.IsCompressed && dstInfo.IsCompressed)
{
srcWidth *= dstInfo.BlockWidth;
srcHeight *= dstInfo.BlockHeight;
blockWidth = dstInfo.BlockWidth;
blockHeight = dstInfo.BlockHeight;
sizeInBlocks = true;
}
else if (srcInfo.IsCompressed && !dstInfo.IsCompressed)
{
dstWidth *= srcInfo.BlockWidth;
dstHeight *= srcInfo.BlockHeight;
blockWidth = srcInfo.BlockWidth;
blockHeight = srcInfo.BlockHeight;
}
int width = Math.Min(srcWidth, dstWidth);
int height = Math.Min(srcHeight, dstHeight);
for (int level = 0; level < levels; level++)
{
// Stop copy if we are already out of the levels range.
if (level >= srcInfo.Levels || dstLevel + level >= dstInfo.Levels)
{
break;
}
int copyWidth = sizeInBlocks ? BitUtils.DivRoundUp(width, blockWidth) : width;
int copyHeight = sizeInBlocks ? BitUtils.DivRoundUp(height, blockHeight) : height;
int layers = Math.Max(dstLayers - dstLayer, srcLayers);
for (int layer = 0; layer < layers; layer++)
{
if (tempBuffer.NativePtr != 0)
{
// Copy through the temp buffer
CopyFromOrToBuffer(cbs, tempBuffer, srcImage, srcInfo, true, srcLayer + layer, srcLevel + level, 0, 0, copyWidth, copyHeight);
int dstBufferWidth = sizeInBlocks ? copyWidth * blockWidth : BitUtils.DivRoundUp(copyWidth, blockWidth);
int dstBufferHeight = sizeInBlocks ? copyHeight * blockHeight : BitUtils.DivRoundUp(copyHeight, blockHeight);
CopyFromOrToBuffer(cbs, tempBuffer, dstImage, dstInfo, false, dstLayer + layer, dstLevel + level, 0, 0, dstBufferWidth, dstBufferHeight);
}
else if (srcInfo.Samples > 1 && srcInfo.Samples != dstInfo.Samples)
{
// TODO
Logger.Warning?.PrintMsg(LogClass.Gpu, "Unsupported mismatching sample count copy");
}
else
{
blitCommandEncoder.CopyFromTexture(
srcImage,
(ulong)(srcLayer + layer),
(ulong)(srcLevel + level),
new MTLOrigin { z = (ulong)srcZ },
new MTLSize { width = (ulong)copyWidth, height = (ulong)copyHeight, depth = (ulong)srcDepth },
dstImage,
(ulong)(dstLayer + layer),
(ulong)(dstLevel + level),
new MTLOrigin { z = (ulong)dstZ });
}
}
width = Math.Max(1, width >> 1);
height = Math.Max(1, height >> 1);
if (srcInfo.Target == Target.Texture3D)
{
srcDepth = Math.Max(1, srcDepth >> 1);
}
}
if (tempBuffer.NativePtr != 0)
{
tempBuffer.Dispose();
}
}
}
}

View file

@ -0,0 +1,60 @@
using Ryujinx.Graphics.GAL;
using SharpMetal.Metal;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
readonly internal struct VertexBufferState
{
public static VertexBufferState Null => new(BufferHandle.Null, 0, 0, 0);
private readonly BufferHandle _handle;
private readonly int _offset;
private readonly int _size;
public readonly int Stride;
public readonly int Divisor;
public VertexBufferState(BufferHandle handle, int offset, int size, int divisor, int stride = 0)
{
_handle = handle;
_offset = offset;
_size = size;
Stride = stride;
Divisor = divisor;
}
public (MTLBuffer, int) GetVertexBuffer(BufferManager bufferManager, CommandBufferScoped cbs)
{
Auto<DisposableBuffer> autoBuffer = null;
if (_handle != BufferHandle.Null)
{
// TODO: Handle restride if necessary
autoBuffer = bufferManager.GetBuffer(_handle, false, out int size);
// The original stride must be reapplied in case it was rewritten.
// TODO: Handle restride if necessary
if (_offset >= size)
{
autoBuffer = null;
}
}
if (autoBuffer != null)
{
int offset = _offset;
var buffer = autoBuffer.Get(cbs, offset, _size).Value;
return (buffer, offset);
}
return (new MTLBuffer(IntPtr.Zero), 0);
}
}
}

View file

@ -0,0 +1,231 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Metal.Effects;
using SharpMetal.ObjectiveCCore;
using SharpMetal.QuartzCore;
using System;
using System.Runtime.Versioning;
namespace Ryujinx.Graphics.Metal
{
[SupportedOSPlatform("macos")]
class Window : IWindow, IDisposable
{
public bool ScreenCaptureRequested { get; set; }
private readonly MetalRenderer _renderer;
private readonly CAMetalLayer _metalLayer;
private int _width;
private int _height;
private int _requestedWidth;
private int _requestedHeight;
// private bool _vsyncEnabled;
private AntiAliasing _currentAntiAliasing;
private bool _updateEffect;
private IPostProcessingEffect _effect;
private IScalingFilter _scalingFilter;
private bool _isLinear;
// private float _scalingFilterLevel;
private bool _updateScalingFilter;
private ScalingFilter _currentScalingFilter;
// private bool _colorSpacePassthroughEnabled;
public Window(MetalRenderer renderer, CAMetalLayer metalLayer)
{
_renderer = renderer;
_metalLayer = metalLayer;
}
private unsafe void ResizeIfNeeded()
{
if (_requestedWidth != 0 && _requestedHeight != 0)
{
// TODO: This is actually a CGSize, but there is no overload for that, so fill the first two fields of rect with the size.
var rect = new NSRect(_requestedWidth, _requestedHeight, 0, 0);
ObjectiveC.objc_msgSend(_metalLayer, "setDrawableSize:", rect);
_requestedWidth = 0;
_requestedHeight = 0;
}
}
public unsafe void Present(ITexture texture, ImageCrop crop, Action swapBuffersCallback)
{
if (_renderer.Pipeline is Pipeline pipeline && texture is Texture tex)
{
ResizeIfNeeded();
var drawable = new CAMetalDrawable(ObjectiveC.IntPtr_objc_msgSend(_metalLayer, "nextDrawable"));
_width = (int)drawable.Texture.Width;
_height = (int)drawable.Texture.Height;
UpdateEffect();
if (_effect != null)
{
// TODO: Run Effects
// view = _effect.Run()
}
int srcX0, srcX1, srcY0, srcY1;
if (crop.Left == 0 && crop.Right == 0)
{
srcX0 = 0;
srcX1 = tex.Width;
}
else
{
srcX0 = crop.Left;
srcX1 = crop.Right;
}
if (crop.Top == 0 && crop.Bottom == 0)
{
srcY0 = 0;
srcY1 = tex.Height;
}
else
{
srcY0 = crop.Top;
srcY1 = crop.Bottom;
}
if (ScreenCaptureRequested)
{
// TODO: Support screen captures
ScreenCaptureRequested = false;
}
float ratioX = crop.IsStretched ? 1.0f : MathF.Min(1.0f, _height * crop.AspectRatioX / (_width * crop.AspectRatioY));
float ratioY = crop.IsStretched ? 1.0f : MathF.Min(1.0f, _width * crop.AspectRatioY / (_height * crop.AspectRatioX));
int dstWidth = (int)(_width * ratioX);
int dstHeight = (int)(_height * ratioY);
int dstPaddingX = (_width - dstWidth) / 2;
int dstPaddingY = (_height - dstHeight) / 2;
int dstX0 = crop.FlipX ? _width - dstPaddingX : dstPaddingX;
int dstX1 = crop.FlipX ? dstPaddingX : _width - dstPaddingX;
int dstY0 = crop.FlipY ? _height - dstPaddingY : dstPaddingY;
int dstY1 = crop.FlipY ? dstPaddingY : _height - dstPaddingY;
if (_scalingFilter != null)
{
// TODO: Run scaling filter
}
pipeline.Present(
drawable,
tex,
new Extents2D(srcX0, srcY0, srcX1, srcY1),
new Extents2D(dstX0, dstY0, dstX1, dstY1),
_isLinear);
}
}
public void SetSize(int width, int height)
{
_requestedWidth = width;
_requestedHeight = height;
}
public void ChangeVSyncMode(VSyncMode vSyncMode)
{
//_vSyncMode = vSyncMode;
}
public void SetAntiAliasing(AntiAliasing effect)
{
if (_currentAntiAliasing == effect && _effect != null)
{
return;
}
_currentAntiAliasing = effect;
_updateEffect = true;
}
public void SetScalingFilter(ScalingFilter type)
{
if (_currentScalingFilter == type && _effect != null)
{
return;
}
_currentScalingFilter = type;
_updateScalingFilter = true;
}
public void SetScalingFilterLevel(float level)
{
// _scalingFilterLevel = level;
_updateScalingFilter = true;
}
public void SetColorSpacePassthrough(bool colorSpacePassThroughEnabled)
{
// _colorSpacePassthroughEnabled = colorSpacePassThroughEnabled;
}
private void UpdateEffect()
{
if (_updateEffect)
{
_updateEffect = false;
switch (_currentAntiAliasing)
{
case AntiAliasing.Fxaa:
_effect?.Dispose();
Logger.Warning?.PrintMsg(LogClass.Gpu, "FXAA not implemented for Metal backend!");
break;
case AntiAliasing.None:
_effect?.Dispose();
_effect = null;
break;
case AntiAliasing.SmaaLow:
case AntiAliasing.SmaaMedium:
case AntiAliasing.SmaaHigh:
case AntiAliasing.SmaaUltra:
// var quality = _currentAntiAliasing - AntiAliasing.SmaaLow;
Logger.Warning?.PrintMsg(LogClass.Gpu, "SMAA not implemented for Metal backend!");
break;
}
}
if (_updateScalingFilter)
{
_updateScalingFilter = false;
switch (_currentScalingFilter)
{
case ScalingFilter.Bilinear:
case ScalingFilter.Nearest:
_scalingFilter?.Dispose();
_scalingFilter = null;
_isLinear = _currentScalingFilter == ScalingFilter.Bilinear;
break;
case ScalingFilter.Fsr:
Logger.Warning?.PrintMsg(LogClass.Gpu, "FSR not implemented for Metal backend!");
break;
}
}
}
public void Dispose()
{
_metalLayer.Dispose();
}
}
}

View file

@ -0,0 +1,108 @@
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation;
using System.Text;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl
{
class CodeGenContext
{
public const string Tab = " ";
// The number of additional arguments that every function (except for the main one) must have (for instance support_buffer)
public const int AdditionalArgCount = 2;
public StructuredFunction CurrentFunction { get; set; }
public StructuredProgramInfo Info { get; }
public AttributeUsage AttributeUsage { get; }
public ShaderDefinitions Definitions { get; }
public ShaderProperties Properties { get; }
public HostCapabilities HostCapabilities { get; }
public ILogger Logger { get; }
public TargetApi TargetApi { get; }
public OperandManager OperandManager { get; }
private readonly StringBuilder _sb;
private int _level;
private string _indentation;
public CodeGenContext(StructuredProgramInfo info, CodeGenParameters parameters)
{
Info = info;
AttributeUsage = parameters.AttributeUsage;
Definitions = parameters.Definitions;
Properties = parameters.Properties;
HostCapabilities = parameters.HostCapabilities;
Logger = parameters.Logger;
TargetApi = parameters.TargetApi;
OperandManager = new OperandManager();
_sb = new StringBuilder();
}
public void AppendLine()
{
_sb.AppendLine();
}
public void AppendLine(string str)
{
_sb.AppendLine(_indentation + str);
}
public string GetCode()
{
return _sb.ToString();
}
public void EnterScope(string prefix = "")
{
AppendLine(prefix + "{");
_level++;
UpdateIndentation();
}
public void LeaveScope(string suffix = "")
{
if (_level == 0)
{
return;
}
_level--;
UpdateIndentation();
AppendLine("}" + suffix);
}
public StructuredFunction GetFunction(int id)
{
return Info.Functions[id];
}
private void UpdateIndentation()
{
_indentation = GetIndentation(_level);
}
private static string GetIndentation(int level)
{
string indentation = string.Empty;
for (int index = 0; index < level; index++)
{
indentation += Tab;
}
return indentation;
}
}
}

View file

@ -0,0 +1,578 @@
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Collections.Generic;
using System.Linq;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl
{
static class Declarations
{
/*
* Description of MSL Binding Model
*
* There are a few fundamental differences between how GLSL and MSL handle I/O.
* This comment will set out to describe the reasons why things are done certain ways
* and to describe the overall binding model that we're striving for here.
*
* Main I/O Structs
*
* Each stage has a main input and output struct (if applicable) labeled as [Stage][In/Out], i.e VertexIn.
* Every field within these structs is labeled with an [[attribute(n)]] property,
* and the overall struct is labeled with [[stage_in]] for input structs, and defined as the
* output type of the main shader function for the output struct. This struct also contains special
* attribute-based properties like [[position]] that would be "built-ins" in a GLSL context.
*
* These structs are passed as inputs to all inline functions due to containing "built-ins"
* that inline functions assume access to.
*
* Vertex & Zero Buffers
*
* Binding indices 0-16 are reserved for vertex buffers, and binding 18 is reserved for the zero buffer.
*
* Uniforms & Storage Buffers
*
* Uniforms and storage buffers are tightly packed into their respective argument buffers
* (effectively ignoring binding indices at shader level), with each pointer to the corresponding
* struct that defines the layout and fields of these buffers (usually just a single data array), laid
* out one after the other in ascending order of their binding index.
*
* The uniforms argument buffer is always bound at a fixed index of 20.
* The storage buffers argument buffer is always bound at a fixed index of 21.
*
* These structs are passed as inputs to all inline functions as in GLSL or SPIRV,
* uniforms and storage buffers would be globals, and inline functions assume access to these buffers.
*
* Samplers & Textures
*
* Metal does not have a combined image sampler like sampler2D in GLSL, as a result we need to bind
* an individual texture and a sampler object for each instance of a combined image sampler.
* Samplers and textures are bound in a shared argument buffer. This argument buffer is tightly packed
* (effectively ignoring binding indices at shader level), with texture and their samplers (if present)
* laid out one after the other in ascending order of their binding index.
*
* The samplers and textures argument buffer is always bound at a fixed index of 22.
*
*/
public static int[] Declare(CodeGenContext context, StructuredProgramInfo info)
{
// TODO: Re-enable this warning
context.AppendLine("#pragma clang diagnostic ignored \"-Wunused-variable\"");
context.AppendLine();
context.AppendLine("#include <metal_stdlib>");
context.AppendLine("#include <simd/simd.h>");
context.AppendLine();
context.AppendLine("using namespace metal;");
context.AppendLine();
var fsi = (info.HelperFunctionsMask & HelperFunctionsMask.FSI) != 0;
DeclareInputAttributes(context, info.IoDefinitions.Where(x => IsUserDefined(x, StorageKind.Input)));
context.AppendLine();
DeclareOutputAttributes(context, info.IoDefinitions.Where(x => x.StorageKind == StorageKind.Output));
context.AppendLine();
DeclareBufferStructures(context, context.Properties.ConstantBuffers.Values.OrderBy(x => x.Binding).ToArray(), true, fsi);
DeclareBufferStructures(context, context.Properties.StorageBuffers.Values.OrderBy(x => x.Binding).ToArray(), false, fsi);
// We need to declare each set as a new struct
var textureDefinitions = context.Properties.Textures.Values
.GroupBy(x => x.Set)
.ToDictionary(x => x.Key, x => x.OrderBy(y => y.Binding).ToArray());
var imageDefinitions = context.Properties.Images.Values
.GroupBy(x => x.Set)
.ToDictionary(x => x.Key, x => x.OrderBy(y => y.Binding).ToArray());
var textureSets = textureDefinitions.Keys.ToArray();
var imageSets = imageDefinitions.Keys.ToArray();
var sets = textureSets.Union(imageSets).ToArray();
foreach (var set in textureDefinitions)
{
DeclareTextures(context, set.Value, set.Key);
}
foreach (var set in imageDefinitions)
{
DeclareImages(context, set.Value, set.Key, fsi);
}
if ((info.HelperFunctionsMask & HelperFunctionsMask.FindLSB) != 0)
{
AppendHelperFunction(context, "Ryujinx.Graphics.Shader/CodeGen/Msl/HelperFunctions/FindLSB.metal");
}
if ((info.HelperFunctionsMask & HelperFunctionsMask.FindMSBS32) != 0)
{
AppendHelperFunction(context, "Ryujinx.Graphics.Shader/CodeGen/Msl/HelperFunctions/FindMSBS32.metal");
}
if ((info.HelperFunctionsMask & HelperFunctionsMask.FindMSBU32) != 0)
{
AppendHelperFunction(context, "Ryujinx.Graphics.Shader/CodeGen/Msl/HelperFunctions/FindMSBU32.metal");
}
if ((info.HelperFunctionsMask & HelperFunctionsMask.SwizzleAdd) != 0)
{
AppendHelperFunction(context, "Ryujinx.Graphics.Shader/CodeGen/Msl/HelperFunctions/SwizzleAdd.metal");
}
if ((info.HelperFunctionsMask & HelperFunctionsMask.Precise) != 0)
{
AppendHelperFunction(context, "Ryujinx.Graphics.Shader/CodeGen/Msl/HelperFunctions/Precise.metal");
}
return sets;
}
static bool IsUserDefined(IoDefinition ioDefinition, StorageKind storageKind)
{
return ioDefinition.StorageKind == storageKind && ioDefinition.IoVariable == IoVariable.UserDefined;
}
public static void DeclareLocals(CodeGenContext context, StructuredFunction function, ShaderStage stage, bool isMainFunc = false)
{
if (isMainFunc)
{
// TODO: Support OaIndexing
if (context.Definitions.IaIndexing)
{
context.EnterScope($"array<float4, {Constants.MaxAttributes}> {Defaults.IAttributePrefix} = ");
for (int i = 0; i < Constants.MaxAttributes; i++)
{
context.AppendLine($"in.{Defaults.IAttributePrefix}{i},");
}
context.LeaveScope(";");
}
DeclareMemories(context, context.Properties.LocalMemories.Values, isShared: false);
DeclareMemories(context, context.Properties.SharedMemories.Values, isShared: true);
switch (stage)
{
case ShaderStage.Vertex:
context.AppendLine("VertexOut out = {};");
// TODO: Only add if necessary
context.AppendLine("uint instance_index = instance_id + base_instance;");
break;
case ShaderStage.Fragment:
context.AppendLine("FragmentOut out = {};");
break;
}
// TODO: Only add if necessary
if (stage != ShaderStage.Compute)
{
// MSL does not give us access to [[thread_index_in_simdgroup]]
// outside compute. But we may still need to provide this value in frag/vert.
context.AppendLine("uint thread_index_in_simdgroup = simd_prefix_exclusive_sum(1);");
}
}
foreach (AstOperand decl in function.Locals)
{
string name = context.OperandManager.DeclareLocal(decl);
context.AppendLine(GetVarTypeName(decl.VarType) + " " + name + ";");
}
}
public static string GetVarTypeName(AggregateType type, bool atomic = false)
{
var s32 = atomic ? "atomic_int" : "int";
var u32 = atomic ? "atomic_uint" : "uint";
return type switch
{
AggregateType.Void => "void",
AggregateType.Bool => "bool",
AggregateType.FP32 => "float",
AggregateType.S32 => s32,
AggregateType.U32 => u32,
AggregateType.Vector2 | AggregateType.Bool => "bool2",
AggregateType.Vector2 | AggregateType.FP32 => "float2",
AggregateType.Vector2 | AggregateType.S32 => "int2",
AggregateType.Vector2 | AggregateType.U32 => "uint2",
AggregateType.Vector3 | AggregateType.Bool => "bool3",
AggregateType.Vector3 | AggregateType.FP32 => "float3",
AggregateType.Vector3 | AggregateType.S32 => "int3",
AggregateType.Vector3 | AggregateType.U32 => "uint3",
AggregateType.Vector4 | AggregateType.Bool => "bool4",
AggregateType.Vector4 | AggregateType.FP32 => "float4",
AggregateType.Vector4 | AggregateType.S32 => "int4",
AggregateType.Vector4 | AggregateType.U32 => "uint4",
_ => throw new ArgumentException($"Invalid variable type \"{type}\"."),
};
}
private static void DeclareMemories(CodeGenContext context, IEnumerable<MemoryDefinition> memories, bool isShared)
{
string prefix = isShared ? "threadgroup " : string.Empty;
foreach (var memory in memories)
{
string arraySize = "";
if ((memory.Type & AggregateType.Array) != 0)
{
arraySize = $"[{memory.ArrayLength}]";
}
var typeName = GetVarTypeName(memory.Type & ~AggregateType.Array);
context.AppendLine($"{prefix}{typeName} {memory.Name}{arraySize};");
}
}
private static void DeclareBufferStructures(CodeGenContext context, BufferDefinition[] buffers, bool constant, bool fsi)
{
var name = constant ? "ConstantBuffers" : "StorageBuffers";
var addressSpace = constant ? "constant" : "device";
string[] bufferDec = new string[buffers.Length];
for (int i = 0; i < buffers.Length; i++)
{
BufferDefinition buffer = buffers[i];
var needsPadding = buffer.Layout == BufferLayout.Std140;
string fsiSuffix = !constant && fsi ? " [[raster_order_group(0)]]" : "";
bufferDec[i] = $"{addressSpace} {Defaults.StructPrefix}_{buffer.Name}* {buffer.Name}{fsiSuffix};";
context.AppendLine($"struct {Defaults.StructPrefix}_{buffer.Name}");
context.EnterScope();
foreach (StructureField field in buffer.Type.Fields)
{
var type = field.Type;
type |= (needsPadding && (field.Type & AggregateType.Array) != 0)
? AggregateType.Vector4
: AggregateType.Invalid;
type &= ~AggregateType.Array;
string typeName = GetVarTypeName(type);
string arraySuffix = "";
if (field.Type.HasFlag(AggregateType.Array))
{
if (field.ArrayLength > 0)
{
arraySuffix = $"[{field.ArrayLength}]";
}
else
{
// Probably UB, but this is the approach that MVK takes
arraySuffix = "[1]";
}
}
context.AppendLine($"{typeName} {field.Name}{arraySuffix};");
}
context.LeaveScope(";");
context.AppendLine();
}
context.AppendLine($"struct {name}");
context.EnterScope();
foreach (var declaration in bufferDec)
{
context.AppendLine(declaration);
}
context.LeaveScope(";");
context.AppendLine();
}
private static void DeclareTextures(CodeGenContext context, TextureDefinition[] textures, int set)
{
var setName = GetNameForSet(set);
context.AppendLine($"struct {setName}");
context.EnterScope();
List<string> textureDec = [];
foreach (TextureDefinition texture in textures)
{
if (texture.Type != SamplerType.None)
{
var textureTypeName = texture.Type.ToMslTextureType(texture.Format.GetComponentType());
if (texture.ArrayLength > 1)
{
textureTypeName = $"array<{textureTypeName}, {texture.ArrayLength}>";
}
textureDec.Add($"{textureTypeName} tex_{texture.Name};");
}
if (!texture.Separate && texture.Type != SamplerType.TextureBuffer)
{
var samplerType = "sampler";
if (texture.ArrayLength > 1)
{
samplerType = $"array<{samplerType}, {texture.ArrayLength}>";
}
textureDec.Add($"{samplerType} samp_{texture.Name};");
}
}
foreach (var declaration in textureDec)
{
context.AppendLine(declaration);
}
context.LeaveScope(";");
context.AppendLine();
}
private static void DeclareImages(CodeGenContext context, TextureDefinition[] images, int set, bool fsi)
{
var setName = GetNameForSet(set);
context.AppendLine($"struct {setName}");
context.EnterScope();
string[] imageDec = new string[images.Length];
for (int i = 0; i < images.Length; i++)
{
TextureDefinition image = images[i];
var imageTypeName = image.Type.ToMslTextureType(image.Format.GetComponentType(), true);
if (image.ArrayLength > 1)
{
imageTypeName = $"array<{imageTypeName}, {image.ArrayLength}>";
}
string fsiSuffix = fsi ? " [[raster_order_group(0)]]" : "";
imageDec[i] = $"{imageTypeName} {image.Name}{fsiSuffix};";
}
foreach (var declaration in imageDec)
{
context.AppendLine(declaration);
}
context.LeaveScope(";");
context.AppendLine();
}
private static void DeclareInputAttributes(CodeGenContext context, IEnumerable<IoDefinition> inputs)
{
if (context.Definitions.Stage == ShaderStage.Compute)
{
return;
}
switch (context.Definitions.Stage)
{
case ShaderStage.Vertex:
context.AppendLine("struct VertexIn");
break;
case ShaderStage.Fragment:
context.AppendLine("struct FragmentIn");
break;
}
context.EnterScope();
if (context.Definitions.Stage == ShaderStage.Fragment)
{
// TODO: check if it's needed
context.AppendLine("float4 position [[position, invariant]];");
context.AppendLine("bool front_facing [[front_facing]];");
context.AppendLine("float2 point_coord [[point_coord]];");
context.AppendLine("uint primitive_id [[primitive_id]];");
}
if (context.Definitions.IaIndexing)
{
// MSL does not support arrays in stage I/O
// We need to use the SPIRV-Cross workaround
for (int i = 0; i < Constants.MaxAttributes; i++)
{
var suffix = context.Definitions.Stage == ShaderStage.Fragment ? $"[[user(loc{i})]]" : $"[[attribute({i})]]";
context.AppendLine($"float4 {Defaults.IAttributePrefix}{i} {suffix};");
}
}
if (inputs.Any())
{
foreach (var ioDefinition in inputs.OrderBy(x => x.Location))
{
if (context.Definitions.IaIndexing && ioDefinition.IoVariable == IoVariable.UserDefined)
{
continue;
}
string iq = string.Empty;
if (context.Definitions.Stage == ShaderStage.Fragment)
{
iq = context.Definitions.ImapTypes[ioDefinition.Location].GetFirstUsedType() switch
{
PixelImap.Constant => "[[flat]] ",
PixelImap.ScreenLinear => "[[center_no_perspective]] ",
_ => string.Empty,
};
}
string type = ioDefinition.IoVariable switch
{
// IoVariable.Position => "float4",
IoVariable.GlobalId => "uint3",
IoVariable.VertexId => "uint",
IoVariable.VertexIndex => "uint",
// IoVariable.PointCoord => "float2",
_ => GetVarTypeName(context.Definitions.GetUserDefinedType(ioDefinition.Location, isOutput: false))
};
string name = ioDefinition.IoVariable switch
{
// IoVariable.Position => "position",
IoVariable.GlobalId => "global_id",
IoVariable.VertexId => "vertex_id",
IoVariable.VertexIndex => "vertex_index",
// IoVariable.PointCoord => "point_coord",
_ => $"{Defaults.IAttributePrefix}{ioDefinition.Location}"
};
string suffix = ioDefinition.IoVariable switch
{
// IoVariable.Position => "[[position, invariant]]",
IoVariable.GlobalId => "[[thread_position_in_grid]]",
IoVariable.VertexId => "[[vertex_id]]",
// TODO: Avoid potential redeclaration
IoVariable.VertexIndex => "[[vertex_id]]",
// IoVariable.PointCoord => "[[point_coord]]",
IoVariable.UserDefined => context.Definitions.Stage == ShaderStage.Fragment ? $"[[user(loc{ioDefinition.Location})]]" : $"[[attribute({ioDefinition.Location})]]",
_ => ""
};
context.AppendLine($"{type} {name} {iq}{suffix};");
}
}
context.LeaveScope(";");
}
private static void DeclareOutputAttributes(CodeGenContext context, IEnumerable<IoDefinition> outputs)
{
switch (context.Definitions.Stage)
{
case ShaderStage.Vertex:
context.AppendLine("struct VertexOut");
break;
case ShaderStage.Fragment:
context.AppendLine("struct FragmentOut");
break;
case ShaderStage.Compute:
context.AppendLine("struct KernelOut");
break;
}
context.EnterScope();
if (context.Definitions.OaIndexing)
{
// MSL does not support arrays in stage I/O
// We need to use the SPIRV-Cross workaround
for (int i = 0; i < Constants.MaxAttributes; i++)
{
context.AppendLine($"float4 {Defaults.OAttributePrefix}{i} [[user(loc{i})]];");
}
}
if (outputs.Any())
{
outputs = outputs.OrderBy(x => x.Location);
if (context.Definitions.Stage == ShaderStage.Fragment && context.Definitions.DualSourceBlend)
{
IoDefinition firstOutput = outputs.ElementAtOrDefault(0);
IoDefinition secondOutput = outputs.ElementAtOrDefault(1);
var type1 = GetVarTypeName(context.Definitions.GetFragmentOutputColorType(firstOutput.Location));
var type2 = GetVarTypeName(context.Definitions.GetFragmentOutputColorType(secondOutput.Location));
var name1 = $"color{firstOutput.Location}";
var name2 = $"color{firstOutput.Location + 1}";
context.AppendLine($"{type1} {name1} [[color({firstOutput.Location}), index(0)]];");
context.AppendLine($"{type2} {name2} [[color({firstOutput.Location}), index(1)]];");
outputs = outputs.Skip(2);
}
foreach (var ioDefinition in outputs)
{
if (context.Definitions.OaIndexing && ioDefinition.IoVariable == IoVariable.UserDefined)
{
continue;
}
string type = ioDefinition.IoVariable switch
{
IoVariable.Position => "float4",
IoVariable.PointSize => "float",
IoVariable.FragmentOutputColor => GetVarTypeName(context.Definitions.GetFragmentOutputColorType(ioDefinition.Location)),
IoVariable.FragmentOutputDepth => "float",
IoVariable.ClipDistance => "float",
_ => GetVarTypeName(context.Definitions.GetUserDefinedType(ioDefinition.Location, isOutput: true))
};
string name = ioDefinition.IoVariable switch
{
IoVariable.Position => "position",
IoVariable.PointSize => "point_size",
IoVariable.FragmentOutputColor => $"color{ioDefinition.Location}",
IoVariable.FragmentOutputDepth => "depth",
IoVariable.ClipDistance => "clip_distance",
_ => $"{Defaults.OAttributePrefix}{ioDefinition.Location}"
};
string suffix = ioDefinition.IoVariable switch
{
IoVariable.Position => "[[position, invariant]]",
IoVariable.PointSize => "[[point_size]]",
IoVariable.UserDefined => $"[[user(loc{ioDefinition.Location})]]",
IoVariable.FragmentOutputColor => $"[[color({ioDefinition.Location})]]",
IoVariable.FragmentOutputDepth => "[[depth(any)]]",
IoVariable.ClipDistance => $"[[clip_distance]][{Defaults.TotalClipDistances}]",
_ => ""
};
context.AppendLine($"{type} {name} {suffix};");
}
}
context.LeaveScope(";");
}
private static void AppendHelperFunction(CodeGenContext context, string filename)
{
string code = EmbeddedResources.ReadAllText(filename);
code = code.Replace("\t", CodeGenContext.Tab);
context.AppendLine(code);
context.AppendLine();
}
public static string GetNameForSet(int set, bool forVar = false)
{
return (uint)set switch
{
Defaults.TexturesSetIndex => forVar ? "textures" : "Textures",
Defaults.ImagesSetIndex => forVar ? "images" : "Images",
_ => $"{(forVar ? "set" : "Set")}{set}"
};
}
}
}

View file

@ -0,0 +1,34 @@
namespace Ryujinx.Graphics.Shader.CodeGen.Msl
{
static class Defaults
{
public const string LocalNamePrefix = "temp";
public const string PerPatchAttributePrefix = "patchAttr";
public const string IAttributePrefix = "inAttr";
public const string OAttributePrefix = "outAttr";
public const string StructPrefix = "struct";
public const string ArgumentNamePrefix = "a";
public const string UndefinedName = "0";
public const int MaxVertexBuffers = 16;
public const uint ZeroBufferIndex = MaxVertexBuffers;
public const uint BaseSetIndex = MaxVertexBuffers + 1;
public const uint ConstantBuffersIndex = BaseSetIndex;
public const uint StorageBuffersIndex = BaseSetIndex + 1;
public const uint TexturesIndex = BaseSetIndex + 2;
public const uint ImagesIndex = BaseSetIndex + 3;
public const uint ConstantBuffersSetIndex = 0;
public const uint StorageBuffersSetIndex = 1;
public const uint TexturesSetIndex = 2;
public const uint ImagesSetIndex = 3;
public const int TotalClipDistances = 8;
}
}

View file

@ -0,0 +1,5 @@
template<typename T>
inline T findLSB(T x)
{
return select(ctz(x), T(-1), x == T(0));
}

View file

@ -0,0 +1,5 @@
template<typename T>
inline T findMSBS32(T x)
{
return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));
}

View file

@ -0,0 +1,6 @@
template<typename T>
inline T findMSBU32(T x)
{
T v = select(x, T(-1) - x, x < T(0));
return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));
}

View file

@ -0,0 +1,10 @@
namespace Ryujinx.Graphics.Shader.CodeGen.Msl
{
static class HelperFunctionNames
{
public static string FindLSB = "findLSB";
public static string FindMSBS32 = "findMSBS32";
public static string FindMSBU32 = "findMSBU32";
public static string SwizzleAdd = "swizzleAdd";
}
}

View file

@ -0,0 +1,14 @@
template<typename T>
[[clang::optnone]] T PreciseFAdd(T l, T r) {
return fma(T(1), l, r);
}
template<typename T>
[[clang::optnone]] T PreciseFSub(T l, T r) {
return fma(T(-1), r, l);
}
template<typename T>
[[clang::optnone]] T PreciseFMul(T l, T r) {
return fma(l, r, T(0));
}

View file

@ -0,0 +1,7 @@
float swizzleAdd(float x, float y, int mask, uint thread_index_in_simdgroup)
{
float4 xLut = float4(1.0, -1.0, 1.0, 0.0);
float4 yLut = float4(1.0, 1.0, -1.0, 1.0);
int lutIdx = (mask >> (int(thread_index_in_simdgroup & 3u) * 2)) & 3;
return x * xLut[lutIdx] + y * yLut[lutIdx];
}

View file

@ -0,0 +1,185 @@
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Text;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenBallot;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenBarrier;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenCall;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenHelper;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenMemory;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenVector;
using static Ryujinx.Graphics.Shader.StructuredIr.InstructionInfo;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class InstGen
{
public static string GetExpression(CodeGenContext context, IAstNode node)
{
if (node is AstOperation operation)
{
return GetExpression(context, operation);
}
else if (node is AstOperand operand)
{
return context.OperandManager.GetExpression(context, operand);
}
throw new ArgumentException($"Invalid node type \"{node?.GetType().Name ?? "null"}\".");
}
private static string GetExpression(CodeGenContext context, AstOperation operation)
{
Instruction inst = operation.Inst;
InstInfo info = GetInstructionInfo(inst);
if ((info.Type & InstType.Call) != 0)
{
bool atomic = (info.Type & InstType.Atomic) != 0;
int arity = (int)(info.Type & InstType.ArityMask);
StringBuilder builder = new();
if (atomic && (operation.StorageKind == StorageKind.StorageBuffer || operation.StorageKind == StorageKind.SharedMemory))
{
AggregateType dstType = operation.Inst == Instruction.AtomicMaxS32 || operation.Inst == Instruction.AtomicMinS32
? AggregateType.S32
: AggregateType.U32;
var shared = operation.StorageKind == StorageKind.SharedMemory;
builder.Append($"({(shared ? "threadgroup" : "device")} {Declarations.GetVarTypeName(dstType, true)}*)&{GenerateLoadOrStore(context, operation, isStore: false)}");
for (int argIndex = operation.SourcesCount - arity + 2; argIndex < operation.SourcesCount; argIndex++)
{
builder.Append($", {GetSourceExpr(context, operation.GetSource(argIndex), dstType)}, memory_order_relaxed");
}
}
else
{
for (int argIndex = 0; argIndex < arity; argIndex++)
{
if (argIndex != 0)
{
builder.Append(", ");
}
AggregateType dstType = GetSrcVarType(inst, argIndex);
builder.Append(GetSourceExpr(context, operation.GetSource(argIndex), dstType));
}
if ((operation.Inst & Instruction.Mask) == Instruction.SwizzleAdd)
{
// SwizzleAdd takes one last argument, the thread_index_in_simdgroup
builder.Append(", thread_index_in_simdgroup");
}
}
return $"{info.OpName}({builder})";
}
else if ((info.Type & InstType.Op) != 0)
{
string op = info.OpName;
if (inst == Instruction.Return && operation.SourcesCount != 0)
{
return $"{op} {GetSourceExpr(context, operation.GetSource(0), context.CurrentFunction.ReturnType)}";
}
if (inst == Instruction.Return && context.Definitions.Stage is ShaderStage.Vertex or ShaderStage.Fragment)
{
return $"{op} out";
}
int arity = (int)(info.Type & InstType.ArityMask);
string[] expr = new string[arity];
for (int index = 0; index < arity; index++)
{
IAstNode src = operation.GetSource(index);
string srcExpr = GetSourceExpr(context, src, GetSrcVarType(inst, index));
bool isLhs = arity == 2 && index == 0;
expr[index] = Enclose(srcExpr, src, inst, info, isLhs);
}
switch (arity)
{
case 0:
return op;
case 1:
return op + expr[0];
case 2:
if (operation.ForcePrecise)
{
var func = (inst & Instruction.Mask) switch
{
Instruction.Add => "PreciseFAdd",
Instruction.Subtract => "PreciseFSub",
Instruction.Multiply => "PreciseFMul",
};
return $"{func}({expr[0]}, {expr[1]})";
}
return $"{expr[0]} {op} {expr[1]}";
case 3:
return $"{expr[0]} {op[0]} {expr[1]} {op[1]} {expr[2]}";
}
}
else if ((info.Type & InstType.Special) != 0)
{
switch (inst & Instruction.Mask)
{
case Instruction.Ballot:
return Ballot(context, operation);
case Instruction.Call:
return Call(context, operation);
case Instruction.FSIBegin:
case Instruction.FSIEnd:
return "// FSI implemented with raster order groups in MSL";
case Instruction.GroupMemoryBarrier:
case Instruction.MemoryBarrier:
case Instruction.Barrier:
return Barrier(context, operation);
case Instruction.ImageLoad:
case Instruction.ImageStore:
case Instruction.ImageAtomic:
return ImageLoadOrStore(context, operation);
case Instruction.Load:
return Load(context, operation);
case Instruction.Lod:
return Lod(context, operation);
case Instruction.Store:
return Store(context, operation);
case Instruction.TextureSample:
return TextureSample(context, operation);
case Instruction.TextureQuerySamples:
return TextureQuerySamples(context, operation);
case Instruction.TextureQuerySize:
return TextureQuerySize(context, operation);
case Instruction.PackHalf2x16:
return PackHalf2x16(context, operation);
case Instruction.UnpackHalf2x16:
return UnpackHalf2x16(context, operation);
case Instruction.VectorExtract:
return VectorExtract(context, operation);
case Instruction.VoteAllEqual:
return VoteAllEqual(context, operation);
}
}
// TODO: Return this to being an error
return $"Unexpected instruction type \"{info.Type}\".";
}
}
}

View file

@ -0,0 +1,30 @@
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenHelper;
using static Ryujinx.Graphics.Shader.StructuredIr.InstructionInfo;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class InstGenBallot
{
public static string Ballot(CodeGenContext context, AstOperation operation)
{
AggregateType dstType = GetSrcVarType(operation.Inst, 0);
string arg = GetSourceExpr(context, operation.GetSource(0), dstType);
char component = "xyzw"[operation.Index];
return $"uint4(as_type<uint2>((simd_vote::vote_t)simd_ballot({arg})), 0, 0).{component}";
}
public static string VoteAllEqual(CodeGenContext context, AstOperation operation)
{
AggregateType dstType = GetSrcVarType(operation.Inst, 0);
string arg = GetSourceExpr(context, operation.GetSource(0), dstType);
return $"simd_all({arg}) || !simd_any({arg})";
}
}
}

View file

@ -0,0 +1,15 @@
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.StructuredIr;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class InstGenBarrier
{
public static string Barrier(CodeGenContext context, AstOperation operation)
{
var device = (operation.Inst & Instruction.Mask) == Instruction.MemoryBarrier;
return $"threadgroup_barrier(mem_flags::mem_{(device ? "device" : "threadgroup")})";
}
}
}

View file

@ -0,0 +1,60 @@
using Ryujinx.Graphics.Shader.StructuredIr;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenHelper;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class InstGenCall
{
public static string Call(CodeGenContext context, AstOperation operation)
{
AstOperand funcId = (AstOperand)operation.GetSource(0);
var function = context.GetFunction(funcId.Value);
int argCount = operation.SourcesCount - 1;
int additionalArgCount = CodeGenContext.AdditionalArgCount + (context.Definitions.Stage != ShaderStage.Compute ? 1 : 0);
bool needsThreadIndex = false;
// TODO: Replace this with a proper flag
if (function.Name.Contains("Shuffle"))
{
needsThreadIndex = true;
additionalArgCount++;
}
string[] args = new string[argCount + additionalArgCount];
// Additional arguments
if (context.Definitions.Stage != ShaderStage.Compute)
{
args[0] = "in";
args[1] = "constant_buffers";
args[2] = "storage_buffers";
if (needsThreadIndex)
{
args[3] = "thread_index_in_simdgroup";
}
}
else
{
args[0] = "constant_buffers";
args[1] = "storage_buffers";
if (needsThreadIndex)
{
args[2] = "thread_index_in_simdgroup";
}
}
int argIndex = additionalArgCount;
for (int i = 0; i < argCount; i++)
{
args[argIndex++] = GetSourceExpr(context, operation.GetSource(i + 1), function.GetArgumentType(i));
}
return $"{function.Name}({string.Join(", ", args)})";
}
}
}

View file

@ -0,0 +1,222 @@
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.TypeConversion;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class InstGenHelper
{
private static readonly InstInfo[] _infoTable;
static InstGenHelper()
{
_infoTable = new InstInfo[(int)Instruction.Count];
#pragma warning disable IDE0055 // Disable formatting
Add(Instruction.AtomicAdd, InstType.AtomicBinary, "atomic_fetch_add_explicit");
Add(Instruction.AtomicAnd, InstType.AtomicBinary, "atomic_fetch_and_explicit");
Add(Instruction.AtomicCompareAndSwap, InstType.AtomicBinary, "atomic_compare_exchange_weak_explicit");
Add(Instruction.AtomicMaxU32, InstType.AtomicBinary, "atomic_fetch_max_explicit");
Add(Instruction.AtomicMinU32, InstType.AtomicBinary, "atomic_fetch_min_explicit");
Add(Instruction.AtomicOr, InstType.AtomicBinary, "atomic_fetch_or_explicit");
Add(Instruction.AtomicSwap, InstType.AtomicBinary, "atomic_exchange_explicit");
Add(Instruction.AtomicXor, InstType.AtomicBinary, "atomic_fetch_xor_explicit");
Add(Instruction.Absolute, InstType.CallUnary, "abs");
Add(Instruction.Add, InstType.OpBinaryCom, "+", 2);
Add(Instruction.Ballot, InstType.Special);
Add(Instruction.Barrier, InstType.Special);
Add(Instruction.BitCount, InstType.CallUnary, "popcount");
Add(Instruction.BitfieldExtractS32, InstType.CallTernary, "extract_bits");
Add(Instruction.BitfieldExtractU32, InstType.CallTernary, "extract_bits");
Add(Instruction.BitfieldInsert, InstType.CallQuaternary, "insert_bits");
Add(Instruction.BitfieldReverse, InstType.CallUnary, "reverse_bits");
Add(Instruction.BitwiseAnd, InstType.OpBinaryCom, "&", 6);
Add(Instruction.BitwiseExclusiveOr, InstType.OpBinaryCom, "^", 7);
Add(Instruction.BitwiseNot, InstType.OpUnary, "~", 0);
Add(Instruction.BitwiseOr, InstType.OpBinaryCom, "|", 8);
Add(Instruction.Call, InstType.Special);
Add(Instruction.Ceiling, InstType.CallUnary, "ceil");
Add(Instruction.Clamp, InstType.CallTernary, "clamp");
Add(Instruction.ClampU32, InstType.CallTernary, "clamp");
Add(Instruction.CompareEqual, InstType.OpBinaryCom, "==", 5);
Add(Instruction.CompareGreater, InstType.OpBinary, ">", 4);
Add(Instruction.CompareGreaterOrEqual, InstType.OpBinary, ">=", 4);
Add(Instruction.CompareGreaterOrEqualU32, InstType.OpBinary, ">=", 4);
Add(Instruction.CompareGreaterU32, InstType.OpBinary, ">", 4);
Add(Instruction.CompareLess, InstType.OpBinary, "<", 4);
Add(Instruction.CompareLessOrEqual, InstType.OpBinary, "<=", 4);
Add(Instruction.CompareLessOrEqualU32, InstType.OpBinary, "<=", 4);
Add(Instruction.CompareLessU32, InstType.OpBinary, "<", 4);
Add(Instruction.CompareNotEqual, InstType.OpBinaryCom, "!=", 5);
Add(Instruction.ConditionalSelect, InstType.OpTernary, "?:", 12);
Add(Instruction.ConvertFP32ToFP64, 0); // MSL does not have a 64-bit FP
Add(Instruction.ConvertFP64ToFP32, 0); // MSL does not have a 64-bit FP
Add(Instruction.ConvertFP32ToS32, InstType.CallUnary, "int");
Add(Instruction.ConvertFP32ToU32, InstType.CallUnary, "uint");
Add(Instruction.ConvertFP64ToS32, 0); // MSL does not have a 64-bit FP
Add(Instruction.ConvertFP64ToU32, 0); // MSL does not have a 64-bit FP
Add(Instruction.ConvertS32ToFP32, InstType.CallUnary, "float");
Add(Instruction.ConvertS32ToFP64, 0); // MSL does not have a 64-bit FP
Add(Instruction.ConvertU32ToFP32, InstType.CallUnary, "float");
Add(Instruction.ConvertU32ToFP64, 0); // MSL does not have a 64-bit FP
Add(Instruction.Cosine, InstType.CallUnary, "cos");
Add(Instruction.Ddx, InstType.CallUnary, "dfdx");
Add(Instruction.Ddy, InstType.CallUnary, "dfdy");
Add(Instruction.Discard, InstType.CallNullary, "discard_fragment");
Add(Instruction.Divide, InstType.OpBinary, "/", 1);
Add(Instruction.EmitVertex, 0); // MSL does not have geometry shaders
Add(Instruction.EndPrimitive, 0); // MSL does not have geometry shaders
Add(Instruction.ExponentB2, InstType.CallUnary, "exp2");
Add(Instruction.FSIBegin, InstType.Special);
Add(Instruction.FSIEnd, InstType.Special);
Add(Instruction.FindLSB, InstType.CallUnary, HelperFunctionNames.FindLSB);
Add(Instruction.FindMSBS32, InstType.CallUnary, HelperFunctionNames.FindMSBS32);
Add(Instruction.FindMSBU32, InstType.CallUnary, HelperFunctionNames.FindMSBU32);
Add(Instruction.Floor, InstType.CallUnary, "floor");
Add(Instruction.FusedMultiplyAdd, InstType.CallTernary, "fma");
Add(Instruction.GroupMemoryBarrier, InstType.Special);
Add(Instruction.ImageLoad, InstType.Special);
Add(Instruction.ImageStore, InstType.Special);
Add(Instruction.ImageAtomic, InstType.Special); // Metal 3.1+
Add(Instruction.IsNan, InstType.CallUnary, "isnan");
Add(Instruction.Load, InstType.Special);
Add(Instruction.Lod, InstType.Special);
Add(Instruction.LogarithmB2, InstType.CallUnary, "log2");
Add(Instruction.LogicalAnd, InstType.OpBinaryCom, "&&", 9);
Add(Instruction.LogicalExclusiveOr, InstType.OpBinaryCom, "^", 10);
Add(Instruction.LogicalNot, InstType.OpUnary, "!", 0);
Add(Instruction.LogicalOr, InstType.OpBinaryCom, "||", 11);
Add(Instruction.LoopBreak, InstType.OpNullary, "break");
Add(Instruction.LoopContinue, InstType.OpNullary, "continue");
Add(Instruction.PackDouble2x32, 0); // MSL does not have a 64-bit FP
Add(Instruction.PackHalf2x16, InstType.Special);
Add(Instruction.Maximum, InstType.CallBinary, "max");
Add(Instruction.MaximumU32, InstType.CallBinary, "max");
Add(Instruction.MemoryBarrier, InstType.Special);
Add(Instruction.Minimum, InstType.CallBinary, "min");
Add(Instruction.MinimumU32, InstType.CallBinary, "min");
Add(Instruction.Modulo, InstType.CallBinary, "fmod");
Add(Instruction.Multiply, InstType.OpBinaryCom, "*", 1);
Add(Instruction.MultiplyHighS32, InstType.CallBinary, "mulhi");
Add(Instruction.MultiplyHighU32, InstType.CallBinary, "mulhi");
Add(Instruction.Negate, InstType.OpUnary, "-");
Add(Instruction.ReciprocalSquareRoot, InstType.CallUnary, "rsqrt");
Add(Instruction.Return, InstType.OpNullary, "return");
Add(Instruction.Round, InstType.CallUnary, "round");
Add(Instruction.ShiftLeft, InstType.OpBinary, "<<", 3);
Add(Instruction.ShiftRightS32, InstType.OpBinary, ">>", 3);
Add(Instruction.ShiftRightU32, InstType.OpBinary, ">>", 3);
Add(Instruction.Shuffle, InstType.CallBinary, "simd_shuffle");
Add(Instruction.ShuffleDown, InstType.CallBinary, "simd_shuffle_down");
Add(Instruction.ShuffleUp, InstType.CallBinary, "simd_shuffle_up");
Add(Instruction.ShuffleXor, InstType.CallBinary, "simd_shuffle_xor");
Add(Instruction.Sine, InstType.CallUnary, "sin");
Add(Instruction.SquareRoot, InstType.CallUnary, "sqrt");
Add(Instruction.Store, InstType.Special);
Add(Instruction.Subtract, InstType.OpBinary, "-", 2);
Add(Instruction.SwizzleAdd, InstType.CallTernary, HelperFunctionNames.SwizzleAdd);
Add(Instruction.TextureSample, InstType.Special);
Add(Instruction.TextureQuerySamples, InstType.Special);
Add(Instruction.TextureQuerySize, InstType.Special);
Add(Instruction.Truncate, InstType.CallUnary, "trunc");
Add(Instruction.UnpackDouble2x32, 0); // MSL does not have a 64-bit FP
Add(Instruction.UnpackHalf2x16, InstType.Special);
Add(Instruction.VectorExtract, InstType.Special);
Add(Instruction.VoteAll, InstType.CallUnary, "simd_all");
Add(Instruction.VoteAllEqual, InstType.Special);
Add(Instruction.VoteAny, InstType.CallUnary, "simd_any");
#pragma warning restore IDE0055
}
private static void Add(Instruction inst, InstType flags, string opName = null, int precedence = 0)
{
_infoTable[(int)inst] = new InstInfo(flags, opName, precedence);
}
public static InstInfo GetInstructionInfo(Instruction inst)
{
return _infoTable[(int)(inst & Instruction.Mask)];
}
public static string GetSourceExpr(CodeGenContext context, IAstNode node, AggregateType dstType)
{
return ReinterpretCast(context, node, OperandManager.GetNodeDestType(context, node), dstType);
}
public static string Enclose(string expr, IAstNode node, Instruction pInst, bool isLhs)
{
InstInfo pInfo = GetInstructionInfo(pInst);
return Enclose(expr, node, pInst, pInfo, isLhs);
}
public static string Enclose(string expr, IAstNode node, Instruction pInst, InstInfo pInfo, bool isLhs = false)
{
if (NeedsParenthesis(node, pInst, pInfo, isLhs))
{
expr = "(" + expr + ")";
}
return expr;
}
public static bool NeedsParenthesis(IAstNode node, Instruction pInst, InstInfo pInfo, bool isLhs)
{
// If the node isn't an operation, then it can only be an operand,
// and those never needs to be surrounded in parentheses.
if (node is not AstOperation operation)
{
// This is sort of a special case, if this is a negative constant,
// and it is consumed by a unary operation, we need to put on the parenthesis,
// as in MSL, while a sequence like ~-1 is valid, --2 is not.
if (IsNegativeConst(node) && pInfo.Type == InstType.OpUnary)
{
return true;
}
return false;
}
if ((pInfo.Type & (InstType.Call | InstType.Special)) != 0)
{
return false;
}
InstInfo info = _infoTable[(int)(operation.Inst & Instruction.Mask)];
if ((info.Type & (InstType.Call | InstType.Special)) != 0)
{
return false;
}
if (info.Precedence < pInfo.Precedence)
{
return false;
}
if (info.Precedence == pInfo.Precedence && isLhs)
{
return false;
}
if (pInst == operation.Inst && info.Type == InstType.OpBinaryCom)
{
return false;
}
return true;
}
private static bool IsNegativeConst(IAstNode node)
{
if (node is not AstOperand operand)
{
return false;
}
return operand.Type == OperandType.Constant && operand.Value < 0;
}
}
}

View file

@ -0,0 +1,672 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Text;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenHelper;
using static Ryujinx.Graphics.Shader.StructuredIr.InstructionInfo;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class InstGenMemory
{
public static string GenerateLoadOrStore(CodeGenContext context, AstOperation operation, bool isStore)
{
StorageKind storageKind = operation.StorageKind;
string varName;
AggregateType varType;
int srcIndex = 0;
bool isStoreOrAtomic = operation.Inst == Instruction.Store || operation.Inst.IsAtomic();
int inputsCount = isStoreOrAtomic ? operation.SourcesCount - 1 : operation.SourcesCount;
bool fieldHasPadding = false;
if (operation.Inst == Instruction.AtomicCompareAndSwap)
{
inputsCount--;
}
string fieldName = "";
switch (storageKind)
{
case StorageKind.ConstantBuffer:
case StorageKind.StorageBuffer:
if (operation.GetSource(srcIndex++) is not AstOperand bindingIndex || bindingIndex.Type != OperandType.Constant)
{
throw new InvalidOperationException($"First input of {operation.Inst} with {storageKind} storage must be a constant operand.");
}
int binding = bindingIndex.Value;
BufferDefinition buffer = storageKind == StorageKind.ConstantBuffer
? context.Properties.ConstantBuffers[binding]
: context.Properties.StorageBuffers[binding];
if (operation.GetSource(srcIndex++) is not AstOperand fieldIndex || fieldIndex.Type != OperandType.Constant)
{
throw new InvalidOperationException($"Second input of {operation.Inst} with {storageKind} storage must be a constant operand.");
}
StructureField field = buffer.Type.Fields[fieldIndex.Value];
fieldHasPadding = buffer.Layout == BufferLayout.Std140
&& ((field.Type & AggregateType.Vector4) == 0)
&& ((field.Type & AggregateType.Array) != 0);
varName = storageKind == StorageKind.ConstantBuffer
? "constant_buffers"
: "storage_buffers";
varName += "." + buffer.Name;
varName += "->" + field.Name;
varType = field.Type;
break;
case StorageKind.LocalMemory:
case StorageKind.SharedMemory:
if (operation.GetSource(srcIndex++) is not AstOperand { Type: OperandType.Constant } bindingId)
{
throw new InvalidOperationException($"First input of {operation.Inst} with {storageKind} storage must be a constant operand.");
}
MemoryDefinition memory = storageKind == StorageKind.LocalMemory
? context.Properties.LocalMemories[bindingId.Value]
: context.Properties.SharedMemories[bindingId.Value];
varName = memory.Name;
varType = memory.Type;
break;
case StorageKind.Input:
case StorageKind.InputPerPatch:
case StorageKind.Output:
case StorageKind.OutputPerPatch:
if (operation.GetSource(srcIndex++) is not AstOperand varId || varId.Type != OperandType.Constant)
{
throw new InvalidOperationException($"First input of {operation.Inst} with {storageKind} storage must be a constant operand.");
}
IoVariable ioVariable = (IoVariable)varId.Value;
bool isOutput = storageKind.IsOutput();
bool isPerPatch = storageKind.IsPerPatch();
int location = -1;
int component = 0;
if (context.Definitions.HasPerLocationInputOrOutput(ioVariable, isOutput))
{
if (operation.GetSource(srcIndex++) is not AstOperand vecIndex || vecIndex.Type != OperandType.Constant)
{
throw new InvalidOperationException($"Second input of {operation.Inst} with {storageKind} storage must be a constant operand.");
}
location = vecIndex.Value;
if (operation.SourcesCount > srcIndex &&
operation.GetSource(srcIndex) is AstOperand elemIndex &&
elemIndex.Type == OperandType.Constant &&
context.Definitions.HasPerLocationInputOrOutputComponent(ioVariable, vecIndex.Value, elemIndex.Value, isOutput))
{
component = elemIndex.Value;
srcIndex++;
}
}
(varName, varType) = IoMap.GetMslBuiltIn(
context.Definitions,
ioVariable,
location,
component,
isOutput,
isPerPatch);
break;
default:
throw new InvalidOperationException($"Invalid storage kind {storageKind}.");
}
for (; srcIndex < inputsCount; srcIndex++)
{
IAstNode src = operation.GetSource(srcIndex);
if ((varType & AggregateType.ElementCountMask) != 0 &&
srcIndex == inputsCount - 1 &&
src is AstOperand elementIndex &&
elementIndex.Type == OperandType.Constant)
{
varName += "." + "xyzw"[elementIndex.Value & 3];
}
else
{
varName += $"[{GetSourceExpr(context, src, AggregateType.S32)}]";
}
}
varName += fieldName;
varName += fieldHasPadding ? ".x" : "";
if (isStore)
{
varType &= AggregateType.ElementTypeMask;
varName = $"{varName} = {GetSourceExpr(context, operation.GetSource(srcIndex), varType)}";
}
return varName;
}
public static string ImageLoadOrStore(CodeGenContext context, AstOperation operation)
{
AstTextureOperation texOp = (AstTextureOperation)operation;
bool isArray = (texOp.Type & SamplerType.Array) != 0;
var texCallBuilder = new StringBuilder();
int srcIndex = 0;
string Src(AggregateType type)
{
return GetSourceExpr(context, texOp.GetSource(srcIndex++), type);
}
string imageName = GetImageName(context, texOp, ref srcIndex);
texCallBuilder.Append(imageName);
texCallBuilder.Append('.');
if (texOp.Inst == Instruction.ImageAtomic)
{
texCallBuilder.Append((texOp.Flags & TextureFlags.AtomicMask) switch
{
TextureFlags.Add => "atomic_fetch_add",
TextureFlags.Minimum => "atomic_min",
TextureFlags.Maximum => "atomic_max",
TextureFlags.Increment => "atomic_fetch_add",
TextureFlags.Decrement => "atomic_fetch_sub",
TextureFlags.BitwiseAnd => "atomic_fetch_and",
TextureFlags.BitwiseOr => "atomic_fetch_or",
TextureFlags.BitwiseXor => "atomic_fetch_xor",
TextureFlags.Swap => "atomic_exchange",
TextureFlags.CAS => "atomic_compare_exchange_weak",
_ => "atomic_fetch_add",
});
}
else
{
texCallBuilder.Append(texOp.Inst == Instruction.ImageLoad ? "read" : "write");
}
texCallBuilder.Append('(');
var coordsBuilder = new StringBuilder();
int coordsCount = texOp.Type.GetDimensions();
if (coordsCount > 1)
{
string[] elems = new string[coordsCount];
for (int index = 0; index < coordsCount; index++)
{
elems[index] = Src(AggregateType.S32);
}
coordsBuilder.Append($"uint{coordsCount}({string.Join(", ", elems)})");
}
else
{
coordsBuilder.Append($"uint({Src(AggregateType.S32)})");
}
if (isArray)
{
coordsBuilder.Append(", ");
coordsBuilder.Append(Src(AggregateType.S32));
}
if (texOp.Inst == Instruction.ImageStore)
{
AggregateType type = texOp.Format.GetComponentType();
string[] cElems = new string[4];
for (int index = 0; index < 4; index++)
{
if (srcIndex < texOp.SourcesCount)
{
cElems[index] = Src(type);
}
else
{
cElems[index] = type switch
{
AggregateType.S32 => NumberFormatter.FormatInt(0),
AggregateType.U32 => NumberFormatter.FormatUint(0),
_ => NumberFormatter.FormatFloat(0),
};
}
}
string prefix = type switch
{
AggregateType.S32 => "int",
AggregateType.U32 => "uint",
AggregateType.FP32 => "float",
_ => string.Empty,
};
texCallBuilder.Append($"{prefix}4({string.Join(", ", cElems)})");
texCallBuilder.Append(", ");
}
texCallBuilder.Append(coordsBuilder);
if (texOp.Inst == Instruction.ImageAtomic)
{
texCallBuilder.Append(", ");
AggregateType type = texOp.Format.GetComponentType();
if ((texOp.Flags & TextureFlags.AtomicMask) == TextureFlags.CAS)
{
texCallBuilder.Append(Src(type)); // Compare value.
}
string value = (texOp.Flags & TextureFlags.AtomicMask) switch
{
TextureFlags.Increment => NumberFormatter.FormatInt(1, type), // TODO: Clamp value
TextureFlags.Decrement => NumberFormatter.FormatInt(-1, type), // TODO: Clamp value
_ => Src(type),
};
texCallBuilder.Append(value);
// This doesn't match what the MSL spec document says so either
// it is wrong or the MSL compiler has a bug.
texCallBuilder.Append(")[0]");
}
else
{
texCallBuilder.Append(')');
if (texOp.Inst == Instruction.ImageLoad)
{
texCallBuilder.Append(GetMaskMultiDest(texOp.Index));
}
}
return texCallBuilder.ToString();
}
public static string Load(CodeGenContext context, AstOperation operation)
{
return GenerateLoadOrStore(context, operation, isStore: false);
}
public static string Lod(CodeGenContext context, AstOperation operation)
{
AstTextureOperation texOp = (AstTextureOperation)operation;
int coordsCount = texOp.Type.GetDimensions();
int coordsIndex = 0;
string textureName = GetTextureName(context, texOp, ref coordsIndex);
string samplerName = GetSamplerName(context, texOp, ref coordsIndex);
string coordsExpr;
if (coordsCount > 1)
{
string[] elems = new string[coordsCount];
for (int index = 0; index < coordsCount; index++)
{
elems[index] = GetSourceExpr(context, texOp.GetSource(coordsIndex + index), AggregateType.FP32);
}
coordsExpr = "float" + coordsCount + "(" + string.Join(", ", elems) + ")";
}
else
{
coordsExpr = GetSourceExpr(context, texOp.GetSource(coordsIndex), AggregateType.FP32);
}
var clamped = $"{textureName}.calculate_clamped_lod({samplerName}, {coordsExpr})";
var unclamped = $"{textureName}.calculate_unclamped_lod({samplerName}, {coordsExpr})";
return $"float2({clamped}, {unclamped}){GetMask(texOp.Index)}";
}
public static string Store(CodeGenContext context, AstOperation operation)
{
return GenerateLoadOrStore(context, operation, isStore: true);
}
public static string TextureSample(CodeGenContext context, AstOperation operation)
{
AstTextureOperation texOp = (AstTextureOperation)operation;
bool isGather = (texOp.Flags & TextureFlags.Gather) != 0;
bool hasDerivatives = (texOp.Flags & TextureFlags.Derivatives) != 0;
bool intCoords = (texOp.Flags & TextureFlags.IntCoords) != 0;
bool hasLodBias = (texOp.Flags & TextureFlags.LodBias) != 0;
bool hasLodLevel = (texOp.Flags & TextureFlags.LodLevel) != 0;
bool hasOffset = (texOp.Flags & TextureFlags.Offset) != 0;
bool hasOffsets = (texOp.Flags & TextureFlags.Offsets) != 0;
bool isArray = (texOp.Type & SamplerType.Array) != 0;
bool isShadow = (texOp.Type & SamplerType.Shadow) != 0;
var texCallBuilder = new StringBuilder();
bool colorIsVector = isGather || !isShadow;
int srcIndex = 0;
string Src(AggregateType type)
{
return GetSourceExpr(context, texOp.GetSource(srcIndex++), type);
}
string textureName = GetTextureName(context, texOp, ref srcIndex);
string samplerName = GetSamplerName(context, texOp, ref srcIndex);
texCallBuilder.Append(textureName);
texCallBuilder.Append('.');
if (intCoords)
{
texCallBuilder.Append("read(");
}
else
{
if (isGather)
{
texCallBuilder.Append("gather");
}
else
{
texCallBuilder.Append("sample");
}
if (isShadow)
{
texCallBuilder.Append("_compare");
}
texCallBuilder.Append($"({samplerName}, ");
}
int coordsCount = texOp.Type.GetDimensions();
int pCount = coordsCount;
bool appended = false;
void Append(string str)
{
if (appended)
{
texCallBuilder.Append(", ");
}
else
{
appended = true;
}
texCallBuilder.Append(str);
}
AggregateType coordType = intCoords ? AggregateType.S32 : AggregateType.FP32;
string AssemblePVector(int count)
{
string coords;
if (count > 1)
{
string[] elems = new string[count];
for (int index = 0; index < count; index++)
{
elems[index] = Src(coordType);
}
coords = string.Join(", ", elems);
}
else
{
coords = Src(coordType);
}
string prefix = intCoords ? "uint" : "float";
return prefix + (count > 1 ? count : "") + "(" + coords + ")";
}
Append(AssemblePVector(pCount));
if (isArray)
{
Append(Src(AggregateType.S32));
}
if (isShadow)
{
Append(Src(AggregateType.FP32));
}
if (hasDerivatives)
{
Logger.Warning?.PrintMsg(LogClass.Gpu, "Unused sampler derivatives!");
}
if (hasLodBias)
{
Logger.Warning?.PrintMsg(LogClass.Gpu, "Unused sample LOD bias!");
}
if (hasLodLevel)
{
if (intCoords)
{
Append(Src(coordType));
}
else
{
Append($"level({Src(coordType)})");
}
}
string AssembleOffsetVector(int count)
{
if (count > 1)
{
string[] elems = new string[count];
for (int index = 0; index < count; index++)
{
elems[index] = Src(AggregateType.S32);
}
return "int" + count + "(" + string.Join(", ", elems) + ")";
}
else
{
return Src(AggregateType.S32);
}
}
// TODO: Support reads with offsets
if (!intCoords)
{
if (hasOffset)
{
Append(AssembleOffsetVector(coordsCount));
}
else if (hasOffsets)
{
Logger.Warning?.PrintMsg(LogClass.Gpu, "Multiple offsets on gathers are not yet supported!");
}
}
texCallBuilder.Append(')');
texCallBuilder.Append(colorIsVector ? GetMaskMultiDest(texOp.Index) : "");
return texCallBuilder.ToString();
}
private static string GetTextureName(CodeGenContext context, AstTextureOperation texOp, ref int srcIndex)
{
TextureDefinition textureDefinition = context.Properties.Textures[texOp.GetTextureSetAndBinding()];
string name = textureDefinition.Name;
string setName = Declarations.GetNameForSet(textureDefinition.Set, true);
if (textureDefinition.ArrayLength != 1)
{
name = $"{name}[{GetSourceExpr(context, texOp.GetSource(srcIndex++), AggregateType.S32)}]";
}
return $"{setName}.tex_{name}";
}
private static string GetSamplerName(CodeGenContext context, AstTextureOperation texOp, ref int srcIndex)
{
var index = texOp.IsSeparate ? texOp.GetSamplerSetAndBinding() : texOp.GetTextureSetAndBinding();
var sourceIndex = texOp.IsSeparate ? srcIndex++ : srcIndex + 1;
TextureDefinition samplerDefinition = context.Properties.Textures[index];
string name = samplerDefinition.Name;
string setName = Declarations.GetNameForSet(samplerDefinition.Set, true);
if (samplerDefinition.ArrayLength != 1)
{
name = $"{name}[{GetSourceExpr(context, texOp.GetSource(sourceIndex), AggregateType.S32)}]";
}
return $"{setName}.samp_{name}";
}
private static string GetImageName(CodeGenContext context, AstTextureOperation texOp, ref int srcIndex)
{
TextureDefinition imageDefinition = context.Properties.Images[texOp.GetTextureSetAndBinding()];
string name = imageDefinition.Name;
string setName = Declarations.GetNameForSet(imageDefinition.Set, true);
if (imageDefinition.ArrayLength != 1)
{
name = $"{name}[{GetSourceExpr(context, texOp.GetSource(srcIndex++), AggregateType.S32)}]";
}
return $"{setName}.{name}";
}
private static string GetMaskMultiDest(int mask)
{
if (mask == 0x0)
{
return "";
}
string swizzle = ".";
for (int i = 0; i < 4; i++)
{
if ((mask & (1 << i)) != 0)
{
swizzle += "xyzw"[i];
}
}
return swizzle;
}
public static string TextureQuerySamples(CodeGenContext context, AstOperation operation)
{
AstTextureOperation texOp = (AstTextureOperation)operation;
int srcIndex = 0;
string textureName = GetTextureName(context, texOp, ref srcIndex);
return $"{textureName}.get_num_samples()";
}
public static string TextureQuerySize(CodeGenContext context, AstOperation operation)
{
AstTextureOperation texOp = (AstTextureOperation)operation;
var texCallBuilder = new StringBuilder();
int srcIndex = 0;
string textureName = GetTextureName(context, texOp, ref srcIndex);
texCallBuilder.Append(textureName);
texCallBuilder.Append('.');
if (texOp.Index == 3)
{
texCallBuilder.Append("get_num_mip_levels()");
}
else
{
context.Properties.Textures.TryGetValue(texOp.GetTextureSetAndBinding(), out TextureDefinition definition);
bool hasLod = !definition.Type.HasFlag(SamplerType.Multisample) && (definition.Type & SamplerType.Mask) != SamplerType.TextureBuffer;
bool isArray = definition.Type.HasFlag(SamplerType.Array);
texCallBuilder.Append("get_");
if (texOp.Index == 0)
{
texCallBuilder.Append("width");
}
else if (texOp.Index == 1)
{
texCallBuilder.Append("height");
}
else
{
if (isArray)
{
texCallBuilder.Append("array_size");
}
else
{
texCallBuilder.Append("depth");
}
}
texCallBuilder.Append('(');
if (hasLod && !isArray)
{
IAstNode lod = operation.GetSource(0);
string lodExpr = GetSourceExpr(context, lod, GetSrcVarType(operation.Inst, 0));
texCallBuilder.Append(lodExpr);
}
texCallBuilder.Append(')');
}
return texCallBuilder.ToString();
}
public static string PackHalf2x16(CodeGenContext context, AstOperation operation)
{
IAstNode src0 = operation.GetSource(0);
IAstNode src1 = operation.GetSource(1);
string src0Expr = GetSourceExpr(context, src0, GetSrcVarType(operation.Inst, 0));
string src1Expr = GetSourceExpr(context, src1, GetSrcVarType(operation.Inst, 1));
return $"as_type<uint>(half2({src0Expr}, {src1Expr}))";
}
public static string UnpackHalf2x16(CodeGenContext context, AstOperation operation)
{
IAstNode src = operation.GetSource(0);
string srcExpr = GetSourceExpr(context, src, GetSrcVarType(operation.Inst, 0));
return $"float2(as_type<half2>({srcExpr})){GetMask(operation.Index)}";
}
private static string GetMask(int index)
{
return $".{"xy".AsSpan(index, 1)}";
}
}
}

View file

@ -0,0 +1,32 @@
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.StructuredIr;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions.InstGenHelper;
using static Ryujinx.Graphics.Shader.StructuredIr.InstructionInfo;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class InstGenVector
{
public static string VectorExtract(CodeGenContext context, AstOperation operation)
{
IAstNode vector = operation.GetSource(0);
IAstNode index = operation.GetSource(1);
string vectorExpr = GetSourceExpr(context, vector, OperandManager.GetNodeDestType(context, vector));
if (index is AstOperand indexOperand && indexOperand.Type == OperandType.Constant)
{
char elem = "xyzw"[indexOperand.Value];
return $"{vectorExpr}.{elem}";
}
else
{
string indexExpr = GetSourceExpr(context, index, GetSrcVarType(operation.Inst, 1));
return $"{vectorExpr}[{indexExpr}]";
}
}
}
}

View file

@ -0,0 +1,18 @@
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
readonly struct InstInfo
{
public InstType Type { get; }
public string OpName { get; }
public int Precedence { get; }
public InstInfo(InstType type, string opName, int precedence)
{
Type = type;
OpName = opName;
Precedence = precedence;
}
}
}

View file

@ -0,0 +1,35 @@
using System;
using System.Diagnostics.CodeAnalysis;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
[Flags]
[SuppressMessage("Design", "CA1069: Enums values should not be duplicated")]
public enum InstType
{
OpNullary = Op | 0,
OpUnary = Op | 1,
OpBinary = Op | 2,
OpBinaryCom = Op | 2 | Commutative,
OpTernary = Op | 3,
CallNullary = Call | 0,
CallUnary = Call | 1,
CallBinary = Call | 2,
CallTernary = Call | 3,
CallQuaternary = Call | 4,
// The atomic instructions have one extra operand,
// for the storage slot and offset pair.
AtomicBinary = Call | Atomic | 3,
AtomicTernary = Call | Atomic | 4,
Commutative = 1 << 8,
Op = 1 << 9,
Call = 1 << 10,
Atomic = 1 << 11,
Special = 1 << 12,
ArityMask = 0xff,
}
}

View file

@ -0,0 +1,83 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using Ryujinx.Graphics.Shader.Translation;
using System.Globalization;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions
{
static class IoMap
{
public static (string, AggregateType) GetMslBuiltIn(
ShaderDefinitions definitions,
IoVariable ioVariable,
int location,
int component,
bool isOutput,
bool isPerPatch)
{
var returnValue = ioVariable switch
{
IoVariable.BaseInstance => ("base_instance", AggregateType.U32),
IoVariable.BaseVertex => ("base_vertex", AggregateType.U32),
IoVariable.CtaId => ("threadgroup_position_in_grid", AggregateType.Vector3 | AggregateType.U32),
IoVariable.ClipDistance => ("out.clip_distance", AggregateType.Array | AggregateType.FP32),
IoVariable.FragmentOutputColor => ($"out.color{location}", definitions.GetFragmentOutputColorType(location)),
IoVariable.FragmentOutputDepth => ("out.depth", AggregateType.FP32),
IoVariable.FrontFacing => ("in.front_facing", AggregateType.Bool),
IoVariable.GlobalId => ("thread_position_in_grid", AggregateType.Vector3 | AggregateType.U32),
IoVariable.InstanceId => ("instance_id", AggregateType.U32),
IoVariable.InstanceIndex => ("instance_index", AggregateType.U32),
IoVariable.InvocationId => ("INVOCATION_ID", AggregateType.S32),
IoVariable.PointCoord => ("in.point_coord", AggregateType.Vector2 | AggregateType.FP32),
IoVariable.PointSize => ("out.point_size", AggregateType.FP32),
IoVariable.Position => ("out.position", AggregateType.Vector4 | AggregateType.FP32),
IoVariable.PrimitiveId => ("in.primitive_id", AggregateType.U32),
IoVariable.SubgroupEqMask => ("thread_index_in_simdgroup >= 32 ? uint4(0, (1 << (thread_index_in_simdgroup - 32)), uint2(0)) : uint4(1 << thread_index_in_simdgroup, uint3(0))", AggregateType.Vector4 | AggregateType.U32),
IoVariable.SubgroupGeMask => ("uint4(insert_bits(0u, 0xFFFFFFFF, thread_index_in_simdgroup, 32 - thread_index_in_simdgroup), uint3(0)) & (uint4((uint)((simd_vote::vote_t)simd_ballot(true) & 0xFFFFFFFF), (uint)(((simd_vote::vote_t)simd_ballot(true) >> 32) & 0xFFFFFFFF), 0, 0))", AggregateType.Vector4 | AggregateType.U32),
IoVariable.SubgroupGtMask => ("uint4(insert_bits(0u, 0xFFFFFFFF, thread_index_in_simdgroup + 1, 32 - thread_index_in_simdgroup - 1), uint3(0)) & (uint4((uint)((simd_vote::vote_t)simd_ballot(true) & 0xFFFFFFFF), (uint)(((simd_vote::vote_t)simd_ballot(true) >> 32) & 0xFFFFFFFF), 0, 0))", AggregateType.Vector4 | AggregateType.U32),
IoVariable.SubgroupLaneId => ("thread_index_in_simdgroup", AggregateType.U32),
IoVariable.SubgroupLeMask => ("uint4(extract_bits(0xFFFFFFFF, 0, min(thread_index_in_simdgroup + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)thread_index_in_simdgroup + 1 - 32, 0)), uint2(0))", AggregateType.Vector4 | AggregateType.U32),
IoVariable.SubgroupLtMask => ("uint4(extract_bits(0xFFFFFFFF, 0, min(thread_index_in_simdgroup, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)thread_index_in_simdgroup - 32, 0)), uint2(0))", AggregateType.Vector4 | AggregateType.U32),
IoVariable.ThreadKill => ("simd_is_helper_thread()", AggregateType.Bool),
IoVariable.UserDefined => GetUserDefinedVariableName(definitions, location, component, isOutput, isPerPatch),
IoVariable.ThreadId => ("thread_position_in_threadgroup", AggregateType.Vector3 | AggregateType.U32),
IoVariable.VertexId => ("vertex_id", AggregateType.S32),
// gl_VertexIndex does not have a direct equivalent in MSL
IoVariable.VertexIndex => ("vertex_id", AggregateType.U32),
IoVariable.ViewportIndex => ("viewport_array_index", AggregateType.S32),
IoVariable.FragmentCoord => ("in.position", AggregateType.Vector4 | AggregateType.FP32),
_ => (null, AggregateType.Invalid),
};
if (returnValue.Item2 == AggregateType.Invalid)
{
Logger.Warning?.PrintMsg(LogClass.Gpu, $"Unable to find type for IoVariable {ioVariable}!");
}
return returnValue;
}
private static (string, AggregateType) GetUserDefinedVariableName(ShaderDefinitions definitions, int location, int component, bool isOutput, bool isPerPatch)
{
string name = isPerPatch
? Defaults.PerPatchAttributePrefix
: (isOutput ? Defaults.OAttributePrefix : Defaults.IAttributePrefix);
if (location < 0)
{
return (name, definitions.GetUserDefinedType(0, isOutput));
}
name += location.ToString(CultureInfo.InvariantCulture);
if (definitions.HasPerLocationInputOrOutputComponent(IoVariable.UserDefined, location, component, isOutput))
{
name += "_" + "xyzw"[component & 3];
}
string prefix = isOutput ? "out" : "in";
return (prefix + "." + name, definitions.GetUserDefinedType(location, isOutput));
}
}
}

View file

@ -0,0 +1,286 @@
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.Shader.CodeGen.Msl.Instructions;
using Ryujinx.Graphics.Shader.StructuredIr;
using Ryujinx.Graphics.Shader.Translation;
using System;
using System.Linq;
using static Ryujinx.Graphics.Shader.CodeGen.Msl.TypeConversion;
namespace Ryujinx.Graphics.Shader.CodeGen.Msl
{
static class MslGenerator
{
public static string Generate(StructuredProgramInfo info, CodeGenParameters parameters)
{
if (parameters.Definitions.Stage is not (ShaderStage.Vertex or ShaderStage.Fragment or ShaderStage.Compute))
{
Logger.Warning?.Print(LogClass.Gpu, $"Attempted to generate unsupported shader type {parameters.Definitions.Stage}!");
return "";
}
CodeGenContext context = new(info, parameters);
var sets = Declarations.Declare(context, info);
if (info.Functions.Count != 0)
{
for (int i = 1; i < info.Functions.Count; i++)
{
PrintFunction(context, info.Functions[i], parameters.Definitions.Stage, sets);
context.AppendLine();
}
}
PrintFunction(context, info.Functions[0], parameters.Definitions.Stage, sets, true);
return context.GetCode();
}
private static void PrintFunction(CodeGenContext context, StructuredFunction function, ShaderStage stage, int[] sets, bool isMainFunc = false)
{
context.CurrentFunction = function;
context.AppendLine(GetFunctionSignature(context, function, stage, sets, isMainFunc));
context.EnterScope();
Declarations.DeclareLocals(context, function, stage, isMainFunc);
PrintBlock(context, function.MainBlock, isMainFunc);
// In case the shader hasn't returned, return
if (isMainFunc && stage != ShaderStage.Compute)
{
context.AppendLine("return out;");
}
context.LeaveScope();
}
private static string GetFunctionSignature(
CodeGenContext context,
StructuredFunction function,
ShaderStage stage,
int[] sets,
bool isMainFunc = false)
{
int additionalArgCount = isMainFunc ? 0 : CodeGenContext.AdditionalArgCount + (context.Definitions.Stage != ShaderStage.Compute ? 1 : 0);
bool needsThreadIndex = false;
// TODO: Replace this with a proper flag
if (function.Name.Contains("Shuffle"))
{
needsThreadIndex = true;
additionalArgCount++;
}
string[] args = new string[additionalArgCount + function.InArguments.Length + function.OutArguments.Length];
// All non-main functions need to be able to access the support_buffer as well
if (!isMainFunc)
{
if (stage != ShaderStage.Compute)
{
args[0] = stage == ShaderStage.Vertex ? "VertexIn in" : "FragmentIn in";
args[1] = "constant ConstantBuffers &constant_buffers";
args[2] = "device StorageBuffers &storage_buffers";
if (needsThreadIndex)
{
args[3] = "uint thread_index_in_simdgroup";
}
}
else
{
args[0] = "constant ConstantBuffers &constant_buffers";
args[1] = "device StorageBuffers &storage_buffers";
if (needsThreadIndex)
{
args[2] = "uint thread_index_in_simdgroup";
}
}
}
int argIndex = additionalArgCount;
for (int i = 0; i < function.InArguments.Length; i++)
{
args[argIndex++] = $"{Declarations.GetVarTypeName(function.InArguments[i])} {OperandManager.GetArgumentName(i)}";
}
for (int i = 0; i < function.OutArguments.Length; i++)
{
int j = i + function.InArguments.Length;
args[argIndex++] = $"thread {Declarations.GetVarTypeName(function.OutArguments[i])} &{OperandManager.GetArgumentName(j)}";
}
string funcKeyword = "inline";
string funcName = null;
string returnType = Declarations.GetVarTypeName(function.ReturnType);
if (isMainFunc)
{
if (stage == ShaderStage.Vertex)
{
funcKeyword = "vertex";
funcName = "vertexMain";
returnType = "VertexOut";
}
else if (stage == ShaderStage.Fragment)
{
funcKeyword = "fragment";
funcName = "fragmentMain";
returnType = "FragmentOut";
}
else if (stage == ShaderStage.Compute)
{
funcKeyword = "kernel";
funcName = "kernelMain";
returnType = "void";
}
if (stage == ShaderStage.Vertex)
{
args = args.Prepend("VertexIn in [[stage_in]]").ToArray();
}
else if (stage == ShaderStage.Fragment)
{
args = args.Prepend("FragmentIn in [[stage_in]]").ToArray();
}
// TODO: add these only if they are used
if (stage == ShaderStage.Vertex)
{
args = args.Append("uint vertex_id [[vertex_id]]").ToArray();
args = args.Append("uint instance_id [[instance_id]]").ToArray();
args = args.Append("uint base_instance [[base_instance]]").ToArray();
args = args.Append("uint base_vertex [[base_vertex]]").ToArray();
}
else if (stage == ShaderStage.Compute)
{
args = args.Append("uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]]").ToArray();
args = args.Append("uint3 thread_position_in_grid [[thread_position_in_grid]]").ToArray();
args = args.Append("uint3 thread_position_in_threadgroup [[thread_position_in_threadgroup]]").ToArray();
args = args.Append("uint thread_index_in_simdgroup [[thread_index_in_simdgroup]]").ToArray();
}
args = args.Append($"constant ConstantBuffers &constant_buffers [[buffer({Defaults.ConstantBuffersIndex})]]").ToArray();
args = args.Append($"device StorageBuffers &storage_buffers [[buffer({Defaults.StorageBuffersIndex})]]").ToArray();
foreach (var set in sets)
{
var bindingIndex = set + Defaults.BaseSetIndex;
args = args.Append($"constant {Declarations.GetNameForSet(set)} &{Declarations.GetNameForSet(set, true)} [[buffer({bindingIndex})]]").ToArray();
}
}
var funcPrefix = $"{funcKeyword} {returnType} {funcName ?? function.Name}(";
var indent = new string(' ', funcPrefix.Length);
return $"{funcPrefix}{string.Join($", \n{indent}", args)})";
}
private static void PrintBlock(CodeGenContext context, AstBlock block, bool isMainFunction)
{
AstBlockVisitor visitor = new(block);
visitor.BlockEntered += (sender, e) =>
{
switch (e.Block.Type)
{
case AstBlockType.DoWhile:
context.AppendLine("do");
break;
case AstBlockType.Else:
context.AppendLine("else");
break;
case AstBlockType.ElseIf:
context.AppendLine($"else if ({GetCondExpr(context, e.Block.Condition)})");
break;
case AstBlockType.If:
context.AppendLine($"if ({GetCondExpr(context, e.Block.Condition)})");
break;
default:
throw new InvalidOperationException($"Found unexpected block type \"{e.Block.Type}\".");
}
context.EnterScope();
};
visitor.BlockLeft += (sender, e) =>
{
context.LeaveScope();
if (e.Block.Type == AstBlockType.DoWhile)
{
context.AppendLine($"while ({GetCondExpr(context, e.Block.Condition)});");
}
};
bool supportsBarrierDivergence = context.HostCapabilities.SupportsShaderBarrierDivergence;
bool mayHaveReturned = false;
foreach (IAstNode node in visitor.Visit())
{
if (node is AstOperation operation)
{
if (!supportsBarrierDivergence)
{
if (operation.Inst == IntermediateRepresentation.Instruction.Barrier)
{
// Barrier on divergent control flow paths may cause the GPU to hang,
// so skip emitting the barrier for those cases.
if (visitor.Block.Type != AstBlockType.Main || mayHaveReturned || !isMainFunction)
{
context.Logger.Log($"Shader has barrier on potentially divergent block, the barrier will be removed.");
continue;
}
}
else if (operation.Inst == IntermediateRepresentation.Instruction.Return)
{
mayHaveReturned = true;
}
}
string expr = InstGen.GetExpression(context, operation);
if (expr != null)
{
context.AppendLine(expr + ";");
}
}
else if (node is AstAssignment assignment)
{
AggregateType dstType = OperandManager.GetNodeDestType(context, assignment.Destination);
AggregateType srcType = OperandManager.GetNodeDestType(context, assignment.Source);
string dest = InstGen.GetExpression(context, assignment.Destination);
string src = ReinterpretCast(context, assignment.Source, srcType, dstType);
context.AppendLine(dest + " = " + src + ";");
}
else if (node is AstComment comment)
{
context.AppendLine("// " + comment.Comment);
}
else
{
throw new InvalidOperationException($"Found unexpected node type \"{node?.GetType().Name ?? "null"}\".");
}
}
}
private static string GetCondExpr(CodeGenContext context, IAstNode cond)
{
AggregateType srcType = OperandManager.GetNodeDestType(context, cond);
return ReinterpretCast(context, cond, srcType, AggregateType.Bool);
}
}
}

Some files were not shown because too many files have changed in this diff Show more