// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // Originally written by Sven Peter <sven@fail0verflow.com> for anergistic. #include <algorithm> #include <atomic> #include <climits> #include <csignal> #include <cstdarg> #include <cstdio> #include <cstring> #include <map> #include <numeric> #include <fcntl.h> #ifdef _WIN32 #include <winsock2.h> // winsock2.h needs to be included first to prevent winsock.h being included by other includes #include <io.h> #include <iphlpapi.h> #include <ws2tcpip.h> #define SHUT_RDWR 2 #else #include <netinet/in.h> #include <sys/select.h> #include <sys/socket.h> #include <sys/un.h> #include <unistd.h> #endif #include "common/logging/log.h" #include "common/string_util.h" #include "common/swap.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/core_cpu.h" #include "core/gdbstub/gdbstub.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/scheduler.h" #include "core/hle/kernel/vm_manager.h" #include "core/loader/loader.h" #include "core/memory.h" namespace GDBStub { namespace { constexpr int GDB_BUFFER_SIZE = 10000; constexpr char GDB_STUB_START = '$'; constexpr char GDB_STUB_END = '#'; constexpr char GDB_STUB_ACK = '+'; constexpr char GDB_STUB_NACK = '-'; #ifndef SIGTRAP constexpr u32 SIGTRAP = 5; #endif #ifndef SIGTERM constexpr u32 SIGTERM = 15; #endif #ifndef MSG_WAITALL constexpr u32 MSG_WAITALL = 8; #endif constexpr u32 LR_REGISTER = 30; constexpr u32 SP_REGISTER = 31; constexpr u32 PC_REGISTER = 32; constexpr u32 PSTATE_REGISTER = 33; constexpr u32 UC_ARM64_REG_Q0 = 34; constexpr u32 FPCR_REGISTER = 66; // For sample XML files see the GDB source /gdb/features // GDB also wants the l character at the start // This XML defines what the registers are for this specific ARM device constexpr char target_xml[] = R"(l<?xml version="1.0"?> <!DOCTYPE target SYSTEM "gdb-target.dtd"> <target version="1.0"> <feature name="org.gnu.gdb.aarch64.core"> <reg name="x0" bitsize="64"/> <reg name="x1" bitsize="64"/> <reg name="x2" bitsize="64"/> <reg name="x3" bitsize="64"/> <reg name="x4" bitsize="64"/> <reg name="x5" bitsize="64"/> <reg name="x6" bitsize="64"/> <reg name="x7" bitsize="64"/> <reg name="x8" bitsize="64"/> <reg name="x9" bitsize="64"/> <reg name="x10" bitsize="64"/> <reg name="x11" bitsize="64"/> <reg name="x12" bitsize="64"/> <reg name="x13" bitsize="64"/> <reg name="x14" bitsize="64"/> <reg name="x15" bitsize="64"/> <reg name="x16" bitsize="64"/> <reg name="x17" bitsize="64"/> <reg name="x18" bitsize="64"/> <reg name="x19" bitsize="64"/> <reg name="x20" bitsize="64"/> <reg name="x21" bitsize="64"/> <reg name="x22" bitsize="64"/> <reg name="x23" bitsize="64"/> <reg name="x24" bitsize="64"/> <reg name="x25" bitsize="64"/> <reg name="x26" bitsize="64"/> <reg name="x27" bitsize="64"/> <reg name="x28" bitsize="64"/> <reg name="x29" bitsize="64"/> <reg name="x30" bitsize="64"/> <reg name="sp" bitsize="64" type="data_ptr"/> <reg name="pc" bitsize="64" type="code_ptr"/> <flags id="pstate_flags" size="4"> <field name="SP" start="0" end="0"/> <field name="" start="1" end="1"/> <field name="EL" start="2" end="3"/> <field name="nRW" start="4" end="4"/> <field name="" start="5" end="5"/> <field name="F" start="6" end="6"/> <field name="I" start="7" end="7"/> <field name="A" start="8" end="8"/> <field name="D" start="9" end="9"/> <field name="IL" start="20" end="20"/> <field name="SS" start="21" end="21"/> <field name="V" start="28" end="28"/> <field name="C" start="29" end="29"/> <field name="Z" start="30" end="30"/> <field name="N" start="31" end="31"/> </flags> <reg name="pstate" bitsize="32" type="pstate_flags"/> </feature> <feature name="org.gnu.gdb.aarch64.fpu"> </feature> </target> )"; int gdbserver_socket = -1; u8 command_buffer[GDB_BUFFER_SIZE]; u32 command_length; u32 latest_signal = 0; bool memory_break = false; Kernel::Thread* current_thread = nullptr; u32 current_core = 0; // Binding to a port within the reserved ports range (0-1023) requires root permissions, // so default to a port outside of that range. u16 gdbstub_port = 24689; bool halt_loop = true; bool step_loop = false; bool send_trap = false; // If set to false, the server will never be started and no // gdbstub-related functions will be executed. std::atomic<bool> server_enabled(false); #ifdef _WIN32 WSADATA InitData; #endif struct Breakpoint { bool active; VAddr addr; u64 len; std::array<u8, 4> inst; }; using BreakpointMap = std::map<VAddr, Breakpoint>; BreakpointMap breakpoints_execute; BreakpointMap breakpoints_read; BreakpointMap breakpoints_write; struct Module { std::string name; VAddr beg; VAddr end; }; std::vector<Module> modules; } // Anonymous namespace void RegisterModule(std::string name, VAddr beg, VAddr end, bool add_elf_ext) { Module module; if (add_elf_ext) { Common::SplitPath(name, nullptr, &module.name, nullptr); module.name += ".elf"; } else { module.name = std::move(name); } module.beg = beg; module.end = end; modules.push_back(std::move(module)); } static Kernel::Thread* FindThreadById(s64 id) { for (u32 core = 0; core < Core::NUM_CPU_CORES; core++) { const auto& threads = Core::System::GetInstance().Scheduler(core).GetThreadList(); for (auto& thread : threads) { if (thread->GetThreadID() == static_cast<u64>(id)) { current_core = core; return thread.get(); } } } return nullptr; } static u64 RegRead(std::size_t id, Kernel::Thread* thread = nullptr) { if (!thread) { return 0; } const auto& thread_context = thread->GetContext(); if (id < SP_REGISTER) { return thread_context.cpu_registers[id]; } else if (id == SP_REGISTER) { return thread_context.sp; } else if (id == PC_REGISTER) { return thread_context.pc; } else if (id == PSTATE_REGISTER) { return thread_context.pstate; } else if (id > PSTATE_REGISTER && id < FPCR_REGISTER) { return thread_context.vector_registers[id - UC_ARM64_REG_Q0][0]; } else { return 0; } } static void RegWrite(std::size_t id, u64 val, Kernel::Thread* thread = nullptr) { if (!thread) { return; } auto& thread_context = thread->GetContext(); if (id < SP_REGISTER) { thread_context.cpu_registers[id] = val; } else if (id == SP_REGISTER) { thread_context.sp = val; } else if (id == PC_REGISTER) { thread_context.pc = val; } else if (id == PSTATE_REGISTER) { thread_context.pstate = static_cast<u32>(val); } else if (id > PSTATE_REGISTER && id < FPCR_REGISTER) { thread_context.vector_registers[id - (PSTATE_REGISTER + 1)][0] = val; } } static u128 FpuRead(std::size_t id, Kernel::Thread* thread = nullptr) { if (!thread) { return u128{0}; } auto& thread_context = thread->GetContext(); if (id >= UC_ARM64_REG_Q0 && id < FPCR_REGISTER) { return thread_context.vector_registers[id - UC_ARM64_REG_Q0]; } else if (id == FPCR_REGISTER) { return u128{thread_context.fpcr, 0}; } else { return u128{0}; } } static void FpuWrite(std::size_t id, u128 val, Kernel::Thread* thread = nullptr) { if (!thread) { return; } auto& thread_context = thread->GetContext(); if (id >= UC_ARM64_REG_Q0 && id < FPCR_REGISTER) { thread_context.vector_registers[id - UC_ARM64_REG_Q0] = val; } else if (id == FPCR_REGISTER) { thread_context.fpcr = static_cast<u32>(val[0]); } } /** * Turns hex string character into the equivalent byte. * * @param hex Input hex character to be turned into byte. */ static u8 HexCharToValue(u8 hex) { if (hex >= '0' && hex <= '9') { return hex - '0'; } else if (hex >= 'a' && hex <= 'f') { return hex - 'a' + 0xA; } else if (hex >= 'A' && hex <= 'F') { return hex - 'A' + 0xA; } LOG_ERROR(Debug_GDBStub, "Invalid nibble: {} ({:02X})", hex, hex); return 0; } /** * Turn nibble of byte into hex string character. * * @param n Nibble to be turned into hex character. */ static u8 NibbleToHex(u8 n) { n &= 0xF; if (n < 0xA) { return '0' + n; } else { return 'a' + n - 0xA; } } /** * Converts input hex string characters into an array of equivalent of u8 bytes. * * @param src Pointer to array of output hex string characters. * @param len Length of src array. */ static u32 HexToInt(const u8* src, std::size_t len) { u32 output = 0; while (len-- > 0) { output = (output << 4) | HexCharToValue(src[0]); src++; } return output; } /** * Converts input hex string characters into an array of equivalent of u8 bytes. * * @param src Pointer to array of output hex string characters. * @param len Length of src array. */ static u64 HexToLong(const u8* src, std::size_t len) { u64 output = 0; while (len-- > 0) { output = (output << 4) | HexCharToValue(src[0]); src++; } return output; } /** * Converts input array of u8 bytes into their equivalent hex string characters. * * @param dest Pointer to buffer to store output hex string characters. * @param src Pointer to array of u8 bytes. * @param len Length of src array. */ static void MemToGdbHex(u8* dest, const u8* src, std::size_t len) { while (len-- > 0) { u8 tmp = *src++; *dest++ = NibbleToHex(tmp >> 4); *dest++ = NibbleToHex(tmp); } } /** * Converts input gdb-formatted hex string characters into an array of equivalent of u8 bytes. * * @param dest Pointer to buffer to store u8 bytes. * @param src Pointer to array of output hex string characters. * @param len Length of src array. */ static void GdbHexToMem(u8* dest, const u8* src, std::size_t len) { while (len-- > 0) { *dest++ = (HexCharToValue(src[0]) << 4) | HexCharToValue(src[1]); src += 2; } } /** * Convert a u32 into a gdb-formatted hex string. * * @param dest Pointer to buffer to store output hex string characters. * @param v Value to convert. */ static void IntToGdbHex(u8* dest, u32 v) { for (int i = 0; i < 8; i += 2) { dest[i + 1] = NibbleToHex(static_cast<u8>(v >> (4 * i))); dest[i] = NibbleToHex(static_cast<u8>(v >> (4 * (i + 1)))); } } /** * Convert a u64 into a gdb-formatted hex string. * * @param dest Pointer to buffer to store output hex string characters. * @param v Value to convert. */ static void LongToGdbHex(u8* dest, u64 v) { for (int i = 0; i < 16; i += 2) { dest[i + 1] = NibbleToHex(static_cast<u8>(v >> (4 * i))); dest[i] = NibbleToHex(static_cast<u8>(v >> (4 * (i + 1)))); } } /** * Convert a gdb-formatted hex string into a u32. * * @param src Pointer to hex string. */ static u32 GdbHexToInt(const u8* src) { u32 output = 0; for (int i = 0; i < 8; i += 2) { output = (output << 4) | HexCharToValue(src[7 - i - 1]); output = (output << 4) | HexCharToValue(src[7 - i]); } return output; } /** * Convert a gdb-formatted hex string into a u64. * * @param src Pointer to hex string. */ static u64 GdbHexToLong(const u8* src) { u64 output = 0; for (int i = 0; i < 16; i += 2) { output = (output << 4) | HexCharToValue(src[15 - i - 1]); output = (output << 4) | HexCharToValue(src[15 - i]); } return output; } /** * Convert a gdb-formatted hex string into a u128. * * @param src Pointer to hex string. */ static u128 GdbHexToU128(const u8* src) { u128 output; for (int i = 0; i < 16; i += 2) { output[0] = (output[0] << 4) | HexCharToValue(src[15 - i - 1]); output[0] = (output[0] << 4) | HexCharToValue(src[15 - i]); } for (int i = 0; i < 16; i += 2) { output[1] = (output[1] << 4) | HexCharToValue(src[16 + 15 - i - 1]); output[1] = (output[1] << 4) | HexCharToValue(src[16 + 15 - i]); } return output; } /// Read a byte from the gdb client. static u8 ReadByte() { u8 c; std::size_t received_size = recv(gdbserver_socket, reinterpret_cast<char*>(&c), 1, MSG_WAITALL); if (received_size != 1) { LOG_ERROR(Debug_GDBStub, "recv failed: {}", received_size); Shutdown(); } return c; } /// Calculate the checksum of the current command buffer. static u8 CalculateChecksum(const u8* buffer, std::size_t length) { return static_cast<u8>(std::accumulate(buffer, buffer + length, 0, std::plus<u8>())); } /** * Get the map of breakpoints for a given breakpoint type. * * @param type Type of breakpoint map. */ static BreakpointMap& GetBreakpointMap(BreakpointType type) { switch (type) { case BreakpointType::Execute: return breakpoints_execute; case BreakpointType::Read: return breakpoints_read; case BreakpointType::Write: return breakpoints_write; default: return breakpoints_read; } } /** * Remove the breakpoint from the given address of the specified type. * * @param type Type of breakpoint. * @param addr Address of breakpoint. */ static void RemoveBreakpoint(BreakpointType type, VAddr addr) { BreakpointMap& p = GetBreakpointMap(type); const auto bp = p.find(addr); if (bp == p.end()) { return; } LOG_DEBUG(Debug_GDBStub, "gdb: removed a breakpoint: {:016X} bytes at {:016X} of type {}", bp->second.len, bp->second.addr, static_cast<int>(type)); if (type == BreakpointType::Execute) { Memory::WriteBlock(bp->second.addr, bp->second.inst.data(), bp->second.inst.size()); Core::System::GetInstance().InvalidateCpuInstructionCaches(); } p.erase(addr); } BreakpointAddress GetNextBreakpointFromAddress(VAddr addr, BreakpointType type) { const BreakpointMap& p = GetBreakpointMap(type); const auto next_breakpoint = p.lower_bound(addr); BreakpointAddress breakpoint; if (next_breakpoint != p.end()) { breakpoint.address = next_breakpoint->first; breakpoint.type = type; } else { breakpoint.address = 0; breakpoint.type = BreakpointType::None; } return breakpoint; } bool CheckBreakpoint(VAddr addr, BreakpointType type) { if (!IsConnected()) { return false; } const BreakpointMap& p = GetBreakpointMap(type); const auto bp = p.find(addr); if (bp == p.end()) { return false; } u64 len = bp->second.len; // IDA Pro defaults to 4-byte breakpoints for all non-hardware breakpoints // no matter if it's a 4-byte or 2-byte instruction. When you execute a // Thumb instruction with a 4-byte breakpoint set, it will set a breakpoint on // two instructions instead of the single instruction you placed the breakpoint // on. So, as a way to make sure that execution breakpoints are only breaking // on the instruction that was specified, set the length of an execution // breakpoint to 1. This should be fine since the CPU should never begin executing // an instruction anywhere except the beginning of the instruction. if (type == BreakpointType::Execute) { len = 1; } if (bp->second.active && (addr >= bp->second.addr && addr < bp->second.addr + len)) { LOG_DEBUG(Debug_GDBStub, "Found breakpoint type {} @ {:016X}, range: {:016X}" " - {:016X} ({:X} bytes)", static_cast<int>(type), addr, bp->second.addr, bp->second.addr + len, len); return true; } return false; } /** * Send packet to gdb client. * * @param packet Packet to be sent to client. */ static void SendPacket(const char packet) { std::size_t sent_size = send(gdbserver_socket, &packet, 1, 0); if (sent_size != 1) { LOG_ERROR(Debug_GDBStub, "send failed"); } } /** * Send reply to gdb client. * * @param reply Reply to be sent to client. */ static void SendReply(const char* reply) { if (!IsConnected()) { return; } LOG_DEBUG(Debug_GDBStub, "Reply: {}", reply); memset(command_buffer, 0, sizeof(command_buffer)); command_length = static_cast<u32>(strlen(reply)); if (command_length + 4 > sizeof(command_buffer)) { LOG_ERROR(Debug_GDBStub, "command_buffer overflow in SendReply"); return; } memcpy(command_buffer + 1, reply, command_length); u8 checksum = CalculateChecksum(command_buffer, command_length + 1); command_buffer[0] = GDB_STUB_START; command_buffer[command_length + 1] = GDB_STUB_END; command_buffer[command_length + 2] = NibbleToHex(checksum >> 4); command_buffer[command_length + 3] = NibbleToHex(checksum); u8* ptr = command_buffer; u32 left = command_length + 4; while (left > 0) { int sent_size = send(gdbserver_socket, reinterpret_cast<char*>(ptr), left, 0); if (sent_size < 0) { LOG_ERROR(Debug_GDBStub, "gdb: send failed"); return Shutdown(); } left -= sent_size; ptr += sent_size; } } /// Handle query command from gdb client. static void HandleQuery() { LOG_DEBUG(Debug_GDBStub, "gdb: query '{}'", command_buffer + 1); const char* query = reinterpret_cast<const char*>(command_buffer + 1); if (strcmp(query, "TStatus") == 0) { SendReply("T0"); } else if (strncmp(query, "Supported", strlen("Supported")) == 0) { // PacketSize needs to be large enough for target xml std::string buffer = "PacketSize=2000;qXfer:features:read+;qXfer:threads:read+"; if (!modules.empty()) { buffer += ";qXfer:libraries:read+"; } SendReply(buffer.c_str()); } else if (strncmp(query, "Xfer:features:read:target.xml:", strlen("Xfer:features:read:target.xml:")) == 0) { SendReply(target_xml); } else if (strncmp(query, "Offsets", strlen("Offsets")) == 0) { const VAddr base_address = Core::CurrentProcess()->VMManager().GetCodeRegionBaseAddress(); std::string buffer = fmt::format("TextSeg={:0x}", base_address); SendReply(buffer.c_str()); } else if (strncmp(query, "fThreadInfo", strlen("fThreadInfo")) == 0) { std::string val = "m"; for (u32 core = 0; core < Core::NUM_CPU_CORES; core++) { const auto& threads = Core::System::GetInstance().Scheduler(core).GetThreadList(); for (const auto& thread : threads) { val += fmt::format("{:x},", thread->GetThreadID()); } } val.pop_back(); SendReply(val.c_str()); } else if (strncmp(query, "sThreadInfo", strlen("sThreadInfo")) == 0) { SendReply("l"); } else if (strncmp(query, "Xfer:threads:read", strlen("Xfer:threads:read")) == 0) { std::string buffer; buffer += "l<?xml version=\"1.0\"?>"; buffer += "<threads>"; for (u32 core = 0; core < Core::NUM_CPU_CORES; core++) { const auto& threads = Core::System::GetInstance().Scheduler(core).GetThreadList(); for (const auto& thread : threads) { buffer += fmt::format(R"*(<thread id="{:x}" core="{:d}" name="Thread {:x}"></thread>)*", thread->GetThreadID(), core, thread->GetThreadID()); } } buffer += "</threads>"; SendReply(buffer.c_str()); } else if (strncmp(query, "Xfer:libraries:read", strlen("Xfer:libraries:read")) == 0) { std::string buffer; buffer += "l<?xml version=\"1.0\"?>"; buffer += "<library-list>"; for (const auto& module : modules) { buffer += fmt::format(R"*("<library name = "{}"><segment address = "0x{:x}"/></library>)*", module.name, module.beg); } buffer += "</library-list>"; SendReply(buffer.c_str()); } else { SendReply(""); } } /// Handle set thread command from gdb client. static void HandleSetThread() { int thread_id = -1; if (command_buffer[2] != '-') { thread_id = static_cast<int>(HexToInt(command_buffer + 2, command_length - 2)); } if (thread_id >= 1) { current_thread = FindThreadById(thread_id); } if (!current_thread) { thread_id = 1; current_thread = FindThreadById(thread_id); } if (current_thread) { SendReply("OK"); return; } SendReply("E01"); } /// Handle thread alive command from gdb client. static void HandleThreadAlive() { int thread_id = static_cast<int>(HexToInt(command_buffer + 1, command_length - 1)); if (thread_id == 0) { thread_id = 1; } if (FindThreadById(thread_id)) { SendReply("OK"); return; } SendReply("E01"); } /** * Send signal packet to client. * * @param signal Signal to be sent to client. */ static void SendSignal(Kernel::Thread* thread, u32 signal, bool full = true) { if (gdbserver_socket == -1) { return; } latest_signal = signal; if (!thread) { full = false; } std::string buffer; if (full) { buffer = fmt::format("T{:02x}{:02x}:{:016x};{:02x}:{:016x};{:02x}:{:016x}", latest_signal, PC_REGISTER, Common::swap64(RegRead(PC_REGISTER, thread)), SP_REGISTER, Common::swap64(RegRead(SP_REGISTER, thread)), LR_REGISTER, Common::swap64(RegRead(LR_REGISTER, thread))); } else { buffer = fmt::format("T{:02x}", latest_signal); } if (thread) { buffer += fmt::format(";thread:{:x};", thread->GetThreadID()); } SendReply(buffer.c_str()); } /// Read command from gdb client. static void ReadCommand() { command_length = 0; memset(command_buffer, 0, sizeof(command_buffer)); u8 c = ReadByte(); if (c == '+') { // ignore ack return; } else if (c == 0x03) { LOG_INFO(Debug_GDBStub, "gdb: found break command"); halt_loop = true; SendSignal(current_thread, SIGTRAP); return; } else if (c != GDB_STUB_START) { LOG_DEBUG(Debug_GDBStub, "gdb: read invalid byte {:02X}", c); return; } while ((c = ReadByte()) != GDB_STUB_END) { if (command_length >= sizeof(command_buffer)) { LOG_ERROR(Debug_GDBStub, "gdb: command_buffer overflow"); SendPacket(GDB_STUB_NACK); return; } command_buffer[command_length++] = c; } u8 checksum_received = HexCharToValue(ReadByte()) << 4; checksum_received |= HexCharToValue(ReadByte()); u8 checksum_calculated = CalculateChecksum(command_buffer, command_length); if (checksum_received != checksum_calculated) { LOG_ERROR(Debug_GDBStub, "gdb: invalid checksum: calculated {:02X} and read {:02X} for ${}# (length: {})", checksum_calculated, checksum_received, command_buffer, command_length); command_length = 0; SendPacket(GDB_STUB_NACK); return; } SendPacket(GDB_STUB_ACK); } /// Check if there is data to be read from the gdb client. static bool IsDataAvailable() { if (!IsConnected()) { return false; } fd_set fd_socket; FD_ZERO(&fd_socket); FD_SET(static_cast<u32>(gdbserver_socket), &fd_socket); struct timeval t; t.tv_sec = 0; t.tv_usec = 0; if (select(gdbserver_socket + 1, &fd_socket, nullptr, nullptr, &t) < 0) { LOG_ERROR(Debug_GDBStub, "select failed"); return false; } return FD_ISSET(gdbserver_socket, &fd_socket) != 0; } /// Send requested register to gdb client. static void ReadRegister() { static u8 reply[64]; memset(reply, 0, sizeof(reply)); u32 id = HexCharToValue(command_buffer[1]); if (command_buffer[2] != '\0') { id <<= 4; id |= HexCharToValue(command_buffer[2]); } if (id <= SP_REGISTER) { LongToGdbHex(reply, RegRead(id, current_thread)); } else if (id == PC_REGISTER) { LongToGdbHex(reply, RegRead(id, current_thread)); } else if (id == PSTATE_REGISTER) { IntToGdbHex(reply, static_cast<u32>(RegRead(id, current_thread))); } else if (id >= UC_ARM64_REG_Q0 && id < FPCR_REGISTER) { u128 r = FpuRead(id, current_thread); LongToGdbHex(reply, r[0]); LongToGdbHex(reply + 16, r[1]); } else if (id == FPCR_REGISTER) { u128 r = FpuRead(id, current_thread); IntToGdbHex(reply, static_cast<u32>(r[0])); } else if (id == FPCR_REGISTER + 1) { u128 r = FpuRead(id, current_thread); IntToGdbHex(reply, static_cast<u32>(r[0] >> 32)); } SendReply(reinterpret_cast<char*>(reply)); } /// Send all registers to the gdb client. static void ReadRegisters() { static u8 buffer[GDB_BUFFER_SIZE - 4]; memset(buffer, 0, sizeof(buffer)); u8* bufptr = buffer; for (u32 reg = 0; reg <= SP_REGISTER; reg++) { LongToGdbHex(bufptr + reg * 16, RegRead(reg, current_thread)); } bufptr += 32 * 16; LongToGdbHex(bufptr, RegRead(PC_REGISTER, current_thread)); bufptr += 16; IntToGdbHex(bufptr, static_cast<u32>(RegRead(PSTATE_REGISTER, current_thread))); bufptr += 8; u128 r; for (u32 reg = UC_ARM64_REG_Q0; reg < FPCR_REGISTER; reg++) { r = FpuRead(reg, current_thread); LongToGdbHex(bufptr + reg * 32, r[0]); LongToGdbHex(bufptr + reg * 32 + 16, r[1]); } bufptr += 32 * 32; r = FpuRead(FPCR_REGISTER, current_thread); IntToGdbHex(bufptr, static_cast<u32>(r[0])); bufptr += 8; SendReply(reinterpret_cast<char*>(buffer)); } /// Modify data of register specified by gdb client. static void WriteRegister() { const u8* buffer_ptr = command_buffer + 3; u32 id = HexCharToValue(command_buffer[1]); if (command_buffer[2] != '=') { ++buffer_ptr; id <<= 4; id |= HexCharToValue(command_buffer[2]); } if (id <= SP_REGISTER) { RegWrite(id, GdbHexToLong(buffer_ptr), current_thread); } else if (id == PC_REGISTER) { RegWrite(id, GdbHexToLong(buffer_ptr), current_thread); } else if (id == PSTATE_REGISTER) { RegWrite(id, GdbHexToInt(buffer_ptr), current_thread); } else if (id >= UC_ARM64_REG_Q0 && id < FPCR_REGISTER) { FpuWrite(id, GdbHexToU128(buffer_ptr), current_thread); } else if (id == FPCR_REGISTER) { } else if (id == FPCR_REGISTER + 1) { } // Update ARM context, skipping scheduler - no running threads at this point Core::System::GetInstance() .ArmInterface(current_core) .LoadContext(current_thread->GetContext()); SendReply("OK"); } /// Modify all registers with data received from the client. static void WriteRegisters() { const u8* buffer_ptr = command_buffer + 1; if (command_buffer[0] != 'G') return SendReply("E01"); for (u32 i = 0, reg = 0; reg <= FPCR_REGISTER; i++, reg++) { if (reg <= SP_REGISTER) { RegWrite(reg, GdbHexToLong(buffer_ptr + i * 16), current_thread); } else if (reg == PC_REGISTER) { RegWrite(PC_REGISTER, GdbHexToLong(buffer_ptr + i * 16), current_thread); } else if (reg == PSTATE_REGISTER) { RegWrite(PSTATE_REGISTER, GdbHexToInt(buffer_ptr + i * 16), current_thread); } else if (reg >= UC_ARM64_REG_Q0 && reg < FPCR_REGISTER) { RegWrite(reg, GdbHexToLong(buffer_ptr + i * 16), current_thread); } else if (reg == FPCR_REGISTER) { RegWrite(FPCR_REGISTER, GdbHexToLong(buffer_ptr + i * 16), current_thread); } else if (reg == FPCR_REGISTER + 1) { RegWrite(FPCR_REGISTER, GdbHexToLong(buffer_ptr + i * 16), current_thread); } } // Update ARM context, skipping scheduler - no running threads at this point Core::System::GetInstance() .ArmInterface(current_core) .LoadContext(current_thread->GetContext()); SendReply("OK"); } /// Read location in memory specified by gdb client. static void ReadMemory() { static u8 reply[GDB_BUFFER_SIZE - 4]; auto start_offset = command_buffer + 1; const auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); const VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset)); start_offset = addr_pos + 1; const u64 len = HexToLong(start_offset, static_cast<u64>((command_buffer + command_length) - start_offset)); LOG_DEBUG(Debug_GDBStub, "gdb: addr: {:016X} len: {:016X}", addr, len); if (len * 2 > sizeof(reply)) { SendReply("E01"); } if (!Memory::IsValidVirtualAddress(addr)) { return SendReply("E00"); } std::vector<u8> data(len); Memory::ReadBlock(addr, data.data(), len); MemToGdbHex(reply, data.data(), len); reply[len * 2] = '\0'; SendReply(reinterpret_cast<char*>(reply)); } /// Modify location in memory with data received from the gdb client. static void WriteMemory() { auto start_offset = command_buffer + 1; auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset)); start_offset = addr_pos + 1; auto len_pos = std::find(start_offset, command_buffer + command_length, ':'); u64 len = HexToLong(start_offset, static_cast<u64>(len_pos - start_offset)); if (!Memory::IsValidVirtualAddress(addr)) { return SendReply("E00"); } std::vector<u8> data(len); GdbHexToMem(data.data(), len_pos + 1, len); Memory::WriteBlock(addr, data.data(), len); Core::System::GetInstance().InvalidateCpuInstructionCaches(); SendReply("OK"); } void Break(bool is_memory_break) { send_trap = true; memory_break = is_memory_break; } /// Tell the CPU that it should perform a single step. static void Step() { if (command_length > 1) { RegWrite(PC_REGISTER, GdbHexToLong(command_buffer + 1), current_thread); // Update ARM context, skipping scheduler - no running threads at this point Core::System::GetInstance() .ArmInterface(current_core) .LoadContext(current_thread->GetContext()); } step_loop = true; halt_loop = true; send_trap = true; Core::System::GetInstance().InvalidateCpuInstructionCaches(); } /// Tell the CPU if we hit a memory breakpoint. bool IsMemoryBreak() { if (!IsConnected()) { return false; } return memory_break; } /// Tell the CPU to continue executing. static void Continue() { memory_break = false; step_loop = false; halt_loop = false; Core::System::GetInstance().InvalidateCpuInstructionCaches(); } /** * Commit breakpoint to list of breakpoints. * * @param type Type of breakpoint. * @param addr Address of breakpoint. * @param len Length of breakpoint. */ static bool CommitBreakpoint(BreakpointType type, VAddr addr, u64 len) { BreakpointMap& p = GetBreakpointMap(type); Breakpoint breakpoint; breakpoint.active = true; breakpoint.addr = addr; breakpoint.len = len; Memory::ReadBlock(addr, breakpoint.inst.data(), breakpoint.inst.size()); static constexpr std::array<u8, 4> btrap{0x00, 0x7d, 0x20, 0xd4}; if (type == BreakpointType::Execute) { Memory::WriteBlock(addr, btrap.data(), btrap.size()); Core::System::GetInstance().InvalidateCpuInstructionCaches(); } p.insert({addr, breakpoint}); LOG_DEBUG(Debug_GDBStub, "gdb: added {} breakpoint: {:016X} bytes at {:016X}", static_cast<int>(type), breakpoint.len, breakpoint.addr); return true; } /// Handle add breakpoint command from gdb client. static void AddBreakpoint() { BreakpointType type; u8 type_id = HexCharToValue(command_buffer[1]); switch (type_id) { case 0: case 1: type = BreakpointType::Execute; break; case 2: type = BreakpointType::Write; break; case 3: type = BreakpointType::Read; break; case 4: type = BreakpointType::Access; break; default: return SendReply("E01"); } auto start_offset = command_buffer + 3; auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset)); start_offset = addr_pos + 1; u64 len = HexToLong(start_offset, static_cast<u64>((command_buffer + command_length) - start_offset)); if (type == BreakpointType::Access) { // Access is made up of Read and Write types, so add both breakpoints type = BreakpointType::Read; if (!CommitBreakpoint(type, addr, len)) { return SendReply("E02"); } type = BreakpointType::Write; } if (!CommitBreakpoint(type, addr, len)) { return SendReply("E02"); } SendReply("OK"); } /// Handle remove breakpoint command from gdb client. static void RemoveBreakpoint() { BreakpointType type; u8 type_id = HexCharToValue(command_buffer[1]); switch (type_id) { case 0: case 1: type = BreakpointType::Execute; break; case 2: type = BreakpointType::Write; break; case 3: type = BreakpointType::Read; break; case 4: type = BreakpointType::Access; break; default: return SendReply("E01"); } auto start_offset = command_buffer + 3; auto addr_pos = std::find(start_offset, command_buffer + command_length, ','); VAddr addr = HexToLong(start_offset, static_cast<u64>(addr_pos - start_offset)); if (type == BreakpointType::Access) { // Access is made up of Read and Write types, so add both breakpoints type = BreakpointType::Read; RemoveBreakpoint(type, addr); type = BreakpointType::Write; } RemoveBreakpoint(type, addr); SendReply("OK"); } void HandlePacket() { if (!IsConnected()) { return; } if (!IsDataAvailable()) { return; } ReadCommand(); if (command_length == 0) { return; } LOG_DEBUG(Debug_GDBStub, "Packet: {}", command_buffer); switch (command_buffer[0]) { case 'q': HandleQuery(); break; case 'H': HandleSetThread(); break; case '?': SendSignal(current_thread, latest_signal); break; case 'k': Shutdown(); LOG_INFO(Debug_GDBStub, "killed by gdb"); return; case 'g': ReadRegisters(); break; case 'G': WriteRegisters(); break; case 'p': ReadRegister(); break; case 'P': WriteRegister(); break; case 'm': ReadMemory(); break; case 'M': WriteMemory(); break; case 's': Step(); return; case 'C': case 'c': Continue(); return; case 'z': RemoveBreakpoint(); break; case 'Z': AddBreakpoint(); break; case 'T': HandleThreadAlive(); break; default: SendReply(""); break; } } void SetServerPort(u16 port) { gdbstub_port = port; } void ToggleServer(bool status) { if (status) { server_enabled = status; // Start server if (!IsConnected() && Core::System::GetInstance().IsPoweredOn()) { Init(); } } else { // Stop server if (IsConnected()) { Shutdown(); } server_enabled = status; } } static void Init(u16 port) { if (!server_enabled) { // Set the halt loop to false in case the user enabled the gdbstub mid-execution. // This way the CPU can still execute normally. halt_loop = false; step_loop = false; return; } // Setup initial gdbstub status halt_loop = true; step_loop = false; breakpoints_execute.clear(); breakpoints_read.clear(); breakpoints_write.clear(); modules.clear(); // Start gdb server LOG_INFO(Debug_GDBStub, "Starting GDB server on port {}...", port); sockaddr_in saddr_server = {}; saddr_server.sin_family = AF_INET; saddr_server.sin_port = htons(port); saddr_server.sin_addr.s_addr = INADDR_ANY; #ifdef _WIN32 WSAStartup(MAKEWORD(2, 2), &InitData); #endif int tmpsock = static_cast<int>(socket(PF_INET, SOCK_STREAM, 0)); if (tmpsock == -1) { LOG_ERROR(Debug_GDBStub, "Failed to create gdb socket"); } // Set socket to SO_REUSEADDR so it can always bind on the same port int reuse_enabled = 1; if (setsockopt(tmpsock, SOL_SOCKET, SO_REUSEADDR, (const char*)&reuse_enabled, sizeof(reuse_enabled)) < 0) { LOG_ERROR(Debug_GDBStub, "Failed to set gdb socket option"); } const sockaddr* server_addr = reinterpret_cast<const sockaddr*>(&saddr_server); socklen_t server_addrlen = sizeof(saddr_server); if (bind(tmpsock, server_addr, server_addrlen) < 0) { LOG_ERROR(Debug_GDBStub, "Failed to bind gdb socket"); } if (listen(tmpsock, 1) < 0) { LOG_ERROR(Debug_GDBStub, "Failed to listen to gdb socket"); } // Wait for gdb to connect LOG_INFO(Debug_GDBStub, "Waiting for gdb to connect..."); sockaddr_in saddr_client; sockaddr* client_addr = reinterpret_cast<sockaddr*>(&saddr_client); socklen_t client_addrlen = sizeof(saddr_client); gdbserver_socket = static_cast<int>(accept(tmpsock, client_addr, &client_addrlen)); if (gdbserver_socket < 0) { // In the case that we couldn't start the server for whatever reason, just start CPU // execution like normal. halt_loop = false; step_loop = false; LOG_ERROR(Debug_GDBStub, "Failed to accept gdb client"); } else { LOG_INFO(Debug_GDBStub, "Client connected."); saddr_client.sin_addr.s_addr = ntohl(saddr_client.sin_addr.s_addr); } // Clean up temporary socket if it's still alive at this point. if (tmpsock != -1) { shutdown(tmpsock, SHUT_RDWR); } } void Init() { Init(gdbstub_port); } void Shutdown() { if (!server_enabled) { return; } LOG_INFO(Debug_GDBStub, "Stopping GDB ..."); if (gdbserver_socket != -1) { shutdown(gdbserver_socket, SHUT_RDWR); gdbserver_socket = -1; } #ifdef _WIN32 WSACleanup(); #endif LOG_INFO(Debug_GDBStub, "GDB stopped."); } bool IsServerEnabled() { return server_enabled; } bool IsConnected() { return IsServerEnabled() && gdbserver_socket != -1; } bool GetCpuHaltFlag() { return halt_loop; } bool GetCpuStepFlag() { return step_loop; } void SetCpuStepFlag(bool is_step) { step_loop = is_step; } void SendTrap(Kernel::Thread* thread, int trap) { if (!send_trap) { return; } if (!halt_loop || current_thread == thread) { current_thread = thread; SendSignal(thread, trap); } halt_loop = true; send_trap = false; } }; // namespace GDBStub