// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "core/core_timing.h" #include <algorithm> #include <mutex> #include <string> #include <tuple> #include <unordered_map> #include <vector> #include "common/assert.h" #include "common/thread.h" #include "common/threadsafe_queue.h" #include "core/core_timing_util.h" namespace CoreTiming { static s64 global_timer; static int slice_length; static int downcount; struct EventType { TimedCallback callback; const std::string* name; }; struct Event { s64 time; u64 fifo_order; u64 userdata; const EventType* type; }; // Sort by time, unless the times are the same, in which case sort by the order added to the queue static bool operator>(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order); } static bool operator<(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order); } // unordered_map stores each element separately as a linked list node so pointers to elements // remain stable regardless of rehashes/resizing. static std::unordered_map<std::string, EventType> event_types; // The queue is a min-heap using std::make_heap/push_heap/pop_heap. // We don't use std::priority_queue because we need to be able to serialize, unserialize and // erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated // by the standard adaptor class. static std::vector<Event> event_queue; static u64 event_fifo_id; // the queue for storing the events from other threads threadsafe until they will be added // to the event_queue by the emu thread static Common::MPSCQueue<Event, false> ts_queue; constexpr int MAX_SLICE_LENGTH = 20000; static s64 idled_cycles; // Are we in a function that has been called from Advance() // If events are sheduled from a function that gets called from Advance(), // don't change slice_length and downcount. static bool is_global_timer_sane; static EventType* ev_lost = nullptr; static void EmptyTimedCallback(u64 userdata, s64 cyclesLate) {} EventType* RegisterEvent(const std::string& name, TimedCallback callback) { // check for existing type with same name. // we want event type names to remain unique so that we can use them for serialization. ASSERT_MSG(event_types.find(name) == event_types.end(), "CoreTiming Event \"{}\" is already registered. Events should only be registered " "during Init to avoid breaking save states.", name.c_str()); auto info = event_types.emplace(name, EventType{callback, nullptr}); EventType* event_type = &info.first->second; event_type->name = &info.first->first; return event_type; } void UnregisterAllEvents() { ASSERT_MSG(event_queue.empty(), "Cannot unregister events with events pending"); event_types.clear(); } void Init() { downcount = MAX_SLICE_LENGTH; slice_length = MAX_SLICE_LENGTH; global_timer = 0; idled_cycles = 0; // The time between CoreTiming being intialized and the first call to Advance() is considered // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before // executing the first cycle of each slice to prepare the slice length and downcount for // that slice. is_global_timer_sane = true; event_fifo_id = 0; ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback); } void Shutdown() { MoveEvents(); ClearPendingEvents(); UnregisterAllEvents(); } // This should only be called from the CPU thread. If you are calling // it from any other thread, you are doing something evil u64 GetTicks() { u64 ticks = static_cast<u64>(global_timer); if (!is_global_timer_sane) { ticks += slice_length - downcount; } return ticks; } void AddTicks(u64 ticks) { downcount -= static_cast<int>(ticks); } u64 GetIdleTicks() { return static_cast<u64>(idled_cycles); } void ClearPendingEvents() { event_queue.clear(); } void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata) { ASSERT(event_type != nullptr); s64 timeout = GetTicks() + cycles_into_future; // If this event needs to be scheduled before the next advance(), force one early if (!is_global_timer_sane) ForceExceptionCheck(cycles_into_future); event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type}); std::push_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); } void ScheduleEventThreadsafe(s64 cycles_into_future, const EventType* event_type, u64 userdata) { ts_queue.Push(Event{global_timer + cycles_into_future, 0, userdata, event_type}); } void UnscheduleEvent(const EventType* event_type, u64 userdata) { auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { return e.type == event_type && e.userdata == userdata; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != event_queue.end()) { event_queue.erase(itr, event_queue.end()); std::make_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); } } void RemoveEvent(const EventType* event_type) { auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { return e.type == event_type; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != event_queue.end()) { event_queue.erase(itr, event_queue.end()); std::make_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); } } void RemoveNormalAndThreadsafeEvent(const EventType* event_type) { MoveEvents(); RemoveEvent(event_type); } void ForceExceptionCheck(s64 cycles) { cycles = std::max<s64>(0, cycles); if (downcount > cycles) { // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int // here. Account for cycles already executed by adjusting the g.slice_length slice_length -= downcount - static_cast<int>(cycles); downcount = static_cast<int>(cycles); } } void MoveEvents() { for (Event ev; ts_queue.Pop(ev);) { ev.fifo_order = event_fifo_id++; event_queue.emplace_back(std::move(ev)); std::push_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); } } void Advance() { MoveEvents(); int cycles_executed = slice_length - downcount; global_timer += cycles_executed; slice_length = MAX_SLICE_LENGTH; is_global_timer_sane = true; while (!event_queue.empty() && event_queue.front().time <= global_timer) { Event evt = std::move(event_queue.front()); std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<Event>()); event_queue.pop_back(); evt.type->callback(evt.userdata, static_cast<int>(global_timer - evt.time)); } is_global_timer_sane = false; // Still events left (scheduled in the future) if (!event_queue.empty()) { slice_length = static_cast<int>( std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH)); } downcount = slice_length; } void Idle() { idled_cycles += downcount; downcount = 0; } u64 GetGlobalTimeUs() { return GetTicks() * 1000000 / BASE_CLOCK_RATE; } int GetDowncount() { return downcount; } } // namespace CoreTiming