// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include <map> #include "common/common.h" #include "core/mem_map.h" #include "core/hw/hw.h" #include "hle/config_mem.h" namespace Memory { static std::map<u32, MemoryBlock> heap_map; static std::map<u32, MemoryBlock> heap_gsp_map; static std::map<u32, MemoryBlock> shared_map; /// Convert a physical address to virtual address VAddr PhysicalToVirtualAddress(const PAddr addr) { // Our memory interface read/write functions assume virtual addresses. Put any physical address // to virtual address translations here. This is quite hacky, but necessary until we implement // proper MMU emulation. // TODO: Screw it, I'll let bunnei figure out how to do this properly. if ((addr >= VRAM_PADDR) && (addr < VRAM_PADDR_END)) { return addr - VRAM_PADDR + VRAM_VADDR; }else if ((addr >= FCRAM_PADDR) && (addr < FCRAM_PADDR_END)) { return addr - FCRAM_PADDR + FCRAM_VADDR; } ERROR_LOG(MEMMAP, "Unknown physical address @ 0x%08x", addr); return addr; } /// Convert a physical address to virtual address PAddr VirtualToPhysicalAddress(const VAddr addr) { // Our memory interface read/write functions assume virtual addresses. Put any physical address // to virtual address translations here. This is quite hacky, but necessary until we implement // proper MMU emulation. // TODO: Screw it, I'll let bunnei figure out how to do this properly. if ((addr >= VRAM_VADDR) && (addr < VRAM_VADDR_END)) { return addr - 0x07000000; } else if ((addr >= FCRAM_VADDR) && (addr < FCRAM_VADDR_END)) { return addr - FCRAM_VADDR + FCRAM_PADDR; } ERROR_LOG(MEMMAP, "Unknown virtual address @ 0x%08x", addr); return addr; } template <typename T> inline void Read(T &var, const VAddr vaddr) { // TODO: Figure out the fastest order of tests for both read and write (they are probably different). // TODO: Make sure this represents the mirrors in a correct way. // Could just do a base-relative read, too.... TODO // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { var = *((const T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR]); // Hardware I/O register reads // 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space } else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) { HW::Read<T>(var, vaddr); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { var = *((const T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR]); // FCRAM - GSP heap } else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) { var = *((const T*)&g_heap_gsp[vaddr - HEAP_GSP_VADDR]); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { var = *((const T*)&g_heap[vaddr - HEAP_VADDR]); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { var = *((const T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR]); // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { var = *((const T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR]); // Config memory } else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) { ConfigMem::Read<T>(var, vaddr); // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { var = *((const T*)&g_vram[vaddr - VRAM_VADDR]); } else { ERROR_LOG(MEMMAP, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, vaddr); } } template <typename T> inline void Write(const VAddr vaddr, const T data) { // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { *(T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR] = data; // Hardware I/O register writes // 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space } else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) { HW::Write<T>(vaddr, data); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { *(T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR] = data; // FCRAM - GSP heap } else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) { *(T*)&g_heap_gsp[vaddr - HEAP_GSP_VADDR] = data; // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { *(T*)&g_heap[vaddr - HEAP_VADDR] = data; // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { *(T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR] = data; // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { *(T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR] = data; // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { *(T*)&g_vram[vaddr - VRAM_VADDR] = data; //} else if ((vaddr & 0xFFF00000) == 0x1FF00000) { // _assert_msg_(MEMMAP, false, "umimplemented write to DSP memory"); //} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) { // _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory"); //} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) { // _assert_msg_(MEMMAP, false, "umimplemented write to shared page"); // Error out... } else { ERROR_LOG(MEMMAP, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr); } } u8 *GetPointer(const VAddr vaddr) { // Kernel memory command buffer if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) { return g_kernel_mem + (vaddr - KERNEL_MEMORY_VADDR); // ExeFS:/.code is loaded here } else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) { return g_exefs_code + (vaddr - EXEFS_CODE_VADDR); // FCRAM - GSP heap } else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) { return g_heap_gsp + (vaddr - HEAP_GSP_VADDR); // FCRAM - application heap } else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) { return g_heap + (vaddr - HEAP_VADDR); // Shared memory } else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) { return g_shared_mem + (vaddr - SHARED_MEMORY_VADDR); // System memory } else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) { return g_system_mem + (vaddr - SYSTEM_MEMORY_VADDR); // VRAM } else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) { return g_vram + (vaddr - VRAM_VADDR); } else { ERROR_LOG(MEMMAP, "unknown GetPointer @ 0x%08x", vaddr); return 0; } } /** * Maps a block of memory on the heap * @param size Size of block in bytes * @param operation Memory map operation type * @param flags Memory allocation flags */ u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = HEAP_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (heap_map.size() > 0) { const MemoryBlock last_block = heap_map.rbegin()->second; block.address = last_block.address + last_block.size; } heap_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } /** * Maps a block of memory on the GSP heap * @param size Size of block in bytes * @param operation Memory map operation type * @param flags Memory allocation flags */ u32 MapBlock_HeapGSP(u32 size, u32 operation, u32 permissions) { MemoryBlock block; block.base_address = HEAP_GSP_VADDR; block.size = size; block.operation = operation; block.permissions = permissions; if (heap_gsp_map.size() > 0) { const MemoryBlock last_block = heap_gsp_map.rbegin()->second; block.address = last_block.address + last_block.size; } heap_gsp_map[block.GetVirtualAddress()] = block; return block.GetVirtualAddress(); } u8 Read8(const VAddr addr) { u8 data = 0; Read<u8>(data, addr); return data; } u16 Read16(const VAddr addr) { u16_le data = 0; Read<u16_le>(data, addr); // Check for 16-bit unaligned memory reads... if (addr & 1) { // TODO(bunnei): Implement 16-bit unaligned memory reads ERROR_LOG(MEMMAP, "16-bit unaligned memory reads are not implemented!"); } return (u16)data; } u32 Read32(const VAddr addr) { u32_le data = 0; Read<u32_le>(data, addr); // Check for 32-bit unaligned memory reads... if (addr & 3) { // ARM allows for unaligned memory reads, however older ARM architectures read out memory // from unaligned addresses in a shifted way. Our ARM CPU core (SkyEye) corrects for this, // so therefore expects the memory to be read out in this manner. // TODO(bunnei): Determine if this is necessary - perhaps it is OK to remove this from both // SkyEye and here? int shift = (addr & 3) * 8; data = (data << shift) | (data >> (32 - shift)); } return (u32)data; } u32 Read8_ZX(const VAddr addr) { return (u32)Read8(addr); } u32 Read16_ZX(const VAddr addr) { return (u32)Read16(addr); } void Write8(const VAddr addr, const u8 data) { Write<u8>(addr, data); } void Write16(const VAddr addr, const u16 data) { Write<u16_le>(addr, data); } void Write32(const VAddr addr, const u32 data) { Write<u32_le>(addr, data); } void Write64(const VAddr addr, const u64 data) { Write<u64_le>(addr, data); } void WriteBlock(const VAddr addr, const u8* data, const size_t size) { u32 offset = 0; while (offset < (size & ~3)) { Write32(addr + offset, *(u32*)&data[offset]); offset += 4; } if (size & 2) { Write16(addr + offset, *(u16*)&data[offset]); offset += 2; } if (size & 1) Write8(addr + offset, data[offset]); } } // namespace