// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "core/core_timing_util.h" #include <cinttypes> #include <limits> #include "common/logging/log.h" #include "common/uint128.h" #include "core/hardware_properties.h" namespace Core::Timing { constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE; s64 msToCycles(std::chrono::milliseconds ms) { if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits<s64>::max(); } if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000); } return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000; } s64 usToCycles(std::chrono::microseconds us) { if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) { LOG_ERROR(Core_Timing, "Integer overflow, use max value"); return std::numeric_limits<s64>::max(); } if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) { LOG_DEBUG(Core_Timing, "Time very big, do rounding"); return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000); } return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000; } s64 nsToCycles(std::chrono::nanoseconds ns) { const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE); return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first; } u64 msToClockCycles(std::chrono::milliseconds ns) { const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); return Common::Divide128On32(temp, 1000).first; } u64 usToClockCycles(std::chrono::microseconds ns) { const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); return Common::Divide128On32(temp, 1000000).first; } u64 nsToClockCycles(std::chrono::nanoseconds ns) { const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ); return Common::Divide128On32(temp, 1000000000).first; } u64 CpuCyclesToClockCycles(u64 ticks) { const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ); return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; } std::chrono::milliseconds CyclesToMs(s64 cycles) { const u128 temporal = Common::Multiply64Into128(cycles, 1000); u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; return std::chrono::milliseconds(ms); } std::chrono::nanoseconds CyclesToNs(s64 cycles) { const u128 temporal = Common::Multiply64Into128(cycles, 1000000000); u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; return std::chrono::nanoseconds(ns); } std::chrono::microseconds CyclesToUs(s64 cycles) { const u128 temporal = Common::Multiply64Into128(cycles, 1000000); u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first; return std::chrono::microseconds(us); } } // namespace Core::Timing